首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degeneration of intervertebral disc (IVD) is mainly a chronic process of excessive destruction of the extracellular matrix (ECM), and also is thought to be the primary cause of low back pain. Presently, however, the underlying mechanism of IVD degeneration is still not elucidated. Cellular loss from cell death has been believed to contribute to the degradation of ECM and plays an important role in the process of IVD degeneration, but the mechanisms of cell death in degenerated IVD remain unclear. Apoptosis, a very important type of IVD cell death, has been considered to play a crucial role in the process of degeneration. Autophagy, a non-apoptosis death type of programmed cell death, has been considered extensively involved in many pathological and physiological processes, including the degenerative diseases. Thus, the research on cell death in IVD degeneration has become a new focus recently. In this review, by analyzing the available literature pertaining to cell death in IVD and discussing the inducing factors of IVD degeneration, NP cells and ECM in IVD degeneration, apoptotic signal transduction pathways involved in IVD cell death, the relationship of cell death with IVD degeneration and potential therapeutic strategy for IVD degeneration by regulating cell death, we conclude that different stimuli induce cell death in IVD via various signal transduction pathways, and that cell death may play a key role in the degenerative process of IVD. Regulation of cell death could be a potential and attractive therapeutic strategy for IVD degeneration.  相似文献   

2.
The suspensor of Phaseolus coccineus L. degenerates at the cotyledonary stage of embryogenesis when it is no longer necessary for continued embryonic development; this degeneration is considered to be a typical example of the so-called developmental programmed cell death (PCD) in plants. The presence of specific hallmarks of PCD as it occurs during the degeneration of P. coccineus suspensor was investigated in the current study. By using the TUNEL assay and electrophoretic analysis, we found evidence of nuclear DNA degradation, a known feature of PCD, in the endosperm and degenerating suspensors. Degeneration of the suspensor begins after degeneration in the endosperm and it starts in the neck region, spreading basipetally towards the knob. We conclude from this study that suspensor degeneration in P. coccineus occurs by means of PCD and displays typical hallmarks of PCD, such as DNA fragmentation. PCD in the suspensor is a highly asynchronous process, originating first in the neck cells and subsequently spreading to the basal cells.  相似文献   

3.
崔克明 《植物学报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD是细胞分化的最后阶段。细胞分化的临界期就处于死亡程序执行中的某个阶段。PCD包含启动期、效应期和清除期三个阶段,其间caspase家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD中的形态学变化和生物化学变化都有着严格的时序性。植物的PCD和动物的PCD有许多共性,包括细胞形态和DNA降解等变化。也有一些不同,植物PCD的产物既可被其它细胞吸收利用;也可用于构建自身的次生细胞壁。  相似文献   

4.
植物细胞程序死亡的机理及其与发育的关系   总被引:44,自引:3,他引:41  
崔克明 《植物学通报》2000,17(2):97-107
细胞程序死亡(PCD)是在植物体发育过程中普遍存在的,在发育的特定阶段发生的自然的细胞死亡过程,这一死亡过程是由某些特定基因编码的“死亡程序”控制的。PCD的细胞分化的最后阶段。细胞分化的临界期就牌死亡程序执行中的某个阶段。PCD包含启动期和清除期三个阶段,其间CASPASE家族起着重要作用。PCD在细胞和组织的平衡、特化,以及组织分化、器官建成和对病原体的反应等植物发育过程中起着重要作用。PCD  相似文献   

5.
It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar “huamai 8” during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that the increase in mitochondrial damage and corresponding release of cytochrome c may be one of the major causes of endosperm PCD advancement under waterlogging.  相似文献   

6.
The nucellus is a maternal tissue that feeds the developing embryo and the secondary endosperm. During seed development the cells of the nucellus suffer a degenerative process early after fertilization as the cellular endosperm expands and accumulates reserves. Nucellar cell degeneration has been characterized as a form of developmentally programmed cell death (PCD). In this work we show that nucellus PCD is accompanied by a considerable production of both nitric oxide and hydrogen peroxide (NO and H2O2). Interestingly, each of the two molecules is able to induce the production of the other and to cause cell death when applied to a living nucellus. We show that the induced cell death has features of a PCD, accompanied by profound changes in the morphology of the nuclei and by a massive degradation of nuclear DNA. Moreover, we report that NO and H2O2 cause an induction of caspase‐like proteases previously characterized in physiological nucellar PCD.  相似文献   

7.
被子植物有性生殖过程中的细胞程序死亡   总被引:14,自引:2,他引:12  
细胞程序死亡是植物发育过程中的一种普遍现象。早就认识到高等植物生殖器官中一些细胞的死亡对植物有性生殖具有重要作用。这些细胞的死亡过程与动物组织中的细胞程序死亡基本相同。但植物体内诱导生殖细胞程序死亡的信号及其传导系统则显示出其特点 ,有些还表现出雌、雄性细胞的相互作用。探索植物生殖过程中的细胞程序死亡现象将有利于澄清植物生殖过程中的一些机理问题 ,使过去的细胞学研究结果深入到分子水平进行探讨  相似文献   

8.
Cell-cell and extracellular cell matrix (ECM) interactions provide cells with information essential for controlling morphogenesis, cell-fate specification, and cell death. In animals, one of the major groups of enzymes that degrade the ECM is the matrix metalloproteinases (MMPs). Here, we report the characterization of the cucumber (Cucumis sativus L. cv Marketmore) Cs1-MMP gene encoding such an enzyme likely to play a role in plant ECM degradation. Cs1-MMP has all the hallmark motif characteristics of animal MMPs and is a pre-pro-enzyme having a signal peptide, propeptide, and zinc-binding catalytic domains. Cs1-MMP also displays functional similarities with animal MMPs. For example, it has a collagenase-like activity that can cleave synthetic peptides and type-I collagen, a major component of animal ECM. Cs1-MMP activity is completely inhibited by a hydroxamate-based inhibitor that binds at the active site of MMPs in a stereospecific manner. The Cs1-MMP gene is expressed de novo at the end stage of developmental senescence, prior to the appearance of DNA laddering in cucumber cotyledons leaf discs and male flowers. As the steady-state level of Cs1-MMP mRNA peaks late in senescence and the pro-enzyme must undergo maturation and activation, the protease is probably not involved in nutrient remobilization during senescence but may have another function. The physiological substrates for Cs1-MMP remain to be determined, but the enzyme represents a good candidate for plant ECM degradation and may be involved in programmed cell death (PCD). Our results suggest that PCD occurs only at the culmination of the senescence program or that the processes are distinct with PCD being triggered at the end of senescence.  相似文献   

9.
杜仲胚乳衰退过程中程序性细胞死亡的研究   总被引:6,自引:0,他引:6  
汪矛  崔跃华 《植物研究》1999,19(4):401-406
杜仲胚乳在衰退过程中显示出了程序性细胞死亡的特征:细胞质出现原位自溶,细胞器呈现不同程度的解体;环状片层吞噬并分隔细胞组分;细胞核形态异常,并出现环状核仁和致密型核仁;DNA解体,电泳显示出拖尾状的条带。胚根端和非胚根端胚乳细胞在进入程序性死亡的时间上有先后。  相似文献   

10.
Data implicate IL-1 in the altered matrix biology that characterizes human intervertebral disc (IVD) degeneration. In the current study we investigated the enzymic mechanism by which IL-1 induces matrix degradation in degeneration of the human IVD, and whether the IL-1 inhibitor IL-1 receptor antagonist (IL-1Ra) will inhibit degradation. A combination of in situ zymography (ISZ) and immunohistochemistry was used to examine the effects of IL-1 and IL-1Ra on matrix degradation and metal-dependent protease (MDP) expression in explants of non-degenerate and degenerate human IVDs. ISZ employed three substrates (gelatin, collagen, casein) and different challenges (IL-1β, IL-1Ra and enzyme inhibitors). Immunohistochemistry was undertaken for MDPs. In addition, IL-1Ra was introduced into degenerate IVD explants using genetically engineered constructs. The novel findings from this study are: IL-1Ra delivered directly onto explants of degenerate IVDs eliminates matrix degradation as assessed by multi-substrate ISZ; there is a direct relationship between matrix degradation assessed by ISZ and MDP expression defined by immunohistochemistry; single injections of IVD cells engineered to over-express IL-1Ra significantly inhibit MDP expression for two weeks. Our findings show that IL-1 is a key cytokine driving matrix degradation in the degenerate IVD. Furthermore, IL-1Ra delivered directly or by gene therapy inhibits IVD matrix degradation. IL-1Ra could be used therapeutically to inhibit degeneration of the IVD.  相似文献   

11.
The nucellus is a maternal tissue that embeds and feeds the developing embryo and secondary endosperm. During seed development, the cells of the nucellus suffer a degenerative process soon after fertilization as the cellular endosperm expands and accumulates reserves. Nucellar cell degeneration has been considered to be a form of developmentally programmed cell death (PCD). It was investigated whether or not this degenerative process is characterized by apoptotic hallmarks. Evidence showed that cell death is mostly localized in the border region of the tissue adjacent to the expanding endosperm. Cell death is accompanied by profound changes in the morphology of the nuclei and by a huge degradation of nuclear DNA. Moreover, an increase of activity of different classes of proteinases is reported, and the induction of caspase-like proteases sensitive to specific inhibitors was detected. Nucellar caspase-like proteases are characterized by an acid pH optimum suggesting a possible localization in the vacuole.  相似文献   

12.
水稻淀粉胚乳程序性细胞死亡中的去核化   总被引:1,自引:0,他引:1  
对水稻品种中籼8836淀粉胚乳细胞的去核化发育阶段的细胞超微结构变化和同期籽粒灌浆速率及相关酶活性的动态进行了观察和分析。开花受精后约在第3天胚乳完成细胞化,花后第5天少数淀粉胚乳细胞启动去核发育过程。核消亡是淀粉胚乳细胞程序性细胞死亡(PCD)的第一步。同一籽粒淀粉胚乳细胞的去核进程是不同步的。花后第13天所有淀粉胚乳细胞都已完成去核过程。在去核过程中,胚乳核的形态变化特征既有动植物PCD的共性又有其特殊性。伴随核降解过程,一部分线粒体解体,表明去核化与线粒体解体有一定联系。在去核化发育阶段,与PCD有关的酶类,如超氧化物歧化酶(SOD)过氧化氢酶(CAT)活性非常高;与淀粉合成有关的酶类,如ADPG焦磷酸化酶、可溶性淀粉合成酶(SSS酶)、淀粉分支酶(或Q酶)也表现出很高的活性。去核化发育阶段籽粒灌浆速率最高,籽粒增重亦最快。淀粉胚乳细胞去核之后,细胞并未立即死亡,这些无核的细胞仍维持正常有序的代谢活动,继续进行淀粉和贮藏蛋白的合成与积累,但上述酶类的活性明显降低,灌浆速率也明显趋缓。淀粉胚乳细胞最终被贮藏物质充满时成为死细胞,完成其程序性死亡过程。Evan’s blue染色鉴定表明淀粉胚乳细胞死亡不同步,细胞死亡在淀粉胚乳组织中是随机发生的。  相似文献   

13.
水稻淀粉胚乳程序性细胞死亡中的去核化   总被引:6,自引:0,他引:6  
对水稻品种中籼8836淀粉胚乳细胞的去核化发育阶段的细胞超微结构变化和同期籽粒灌浆速率及相关酶活性的动态进行了观察和分析。开花受精后约在第3天胚乳完成细胞化,花后第5天少数淀粉胚乳细胞启动去核发育过程。核消亡是淀粉胚乳细胞程序性细胞死亡(PCD)的第一步。同一籽粒淀粉胚乳细胞的去核进程是不同步的。花后第13天所有淀粉胚乳细胞都已完成去核过程。在去核过程中,胚乳核的形态变化特征既有动植物PCD的共性又有其特殊性。伴随核降解过程,一部分线粒体解体,表明去核化与线粒体解体有一定联系。在去核化发育阶段,与PCD有关的酶类,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性非常高;与淀粉合成有关的酶类,如ADPG焦磷酸化酶、可溶性淀粉合成酶(SSS酶)、淀粉分支酶(或Q酶)也表现出很高的活性。去核化发育阶段籽粒灌浆速率最高,籽粒增重亦最快。淀粉胚乳细胞去核之后,细胞并未立即死亡,这些无核的细胞仍维持正常有序的代谢活动,继续进行淀粉和贮藏蛋白的合成与积累,但上述酶类的活性明显降低,灌浆速率也明显趋缓。淀粉胚乳细胞最终被贮藏物质充满时成为死细胞,完成其程序性死亡过程。Evan‘s blue染色鉴定表明淀粉胚乳细胞死亡不同步,细胞死亡在淀粉胚乳组织中是随机发生的。  相似文献   

14.
Lower back pain due to intervertebral disc (IVD) degeneration is a prevalent problem which drastically affects the quality of life of millions of sufferers. Healthy IVDs begin with high populations of notochordal cells in the nucleus pulposus, while by the second stage of degeneration, these cells will be replaced by chondrocyte-like cells. Because the IVD is avascular, these cells rely on passive diffusion of nutrients to survive. It is thought that this transition in cell phenotype causes the shift of the IVD's physical properties, which impede the flow of nutrients. Our computational model of the IVD illustrates its ability to simulate the evolving chemical and mechanical environments occurring during the early ageing process. We demonstrate that, due to the insufficient nutrient supply and accompanying changes in physical properties of the IVD, there was a resultant exponential decay in the number of notochordal cells over time.  相似文献   

15.
Lower back pain due to intervertebral disc (IVD) degeneration is a prevalent problem which drastically affects the quality of life of millions of sufferers. Healthy IVDs begin with high populations of notochordal cells in the nucleus pulposus, while by the second stage of degeneration, these cells will be replaced by chondrocyte-like cells. Because the IVD is avascular, these cells rely on passive diffusion of nutrients to survive. It is thought that this transition in cell phenotype causes the shift of the IVD's physical properties, which impede the flow of nutrients. Our computational model of the IVD illustrates its ability to simulate the evolving chemical and mechanical environments occurring during the early ageing process. We demonstrate that, due to the insufficient nutrient supply and accompanying changes in physical properties of the IVD, there was a resultant exponential decay in the number of notochordal cells over time.  相似文献   

16.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which can synergistically degrade the major components of extracellular matrix (ECM). A key role in maintaining the balance between ECM deposition and degradation in several physio-pathological processes is carried out, through multiple biological functions, by four members of the tissue inhibitors of metalloproteinases (TIMPs) family. TIMP-1 and TIMP-2 are capable of inhibiting the activities of MMPs, can inhibit tumour growth, invasion and metastasis, exhibit growth factor-like activity, can inhibit angiogenesis and suppress programmed cell death (PCD) independently of the MMP-inhibitory activity. TIMP-3 is the only member which is tightly bound to ECM, inhibits TNF- converting enzyme and induces PCD through the stabilization of TNF- receptors on the cell surface. TIMP-4 plays a role in ECM homeostasis in a tissue-specific fashion and its overexpression induces PCD. The aim of this article is to review the exciting and intriguing literature on TIMPs, with special emphasis on their conflicting-paradoxical roles in PCD and their potential clinical usefulness.  相似文献   

17.
Intervertebral disc (IVD) cell apoptosis has been suggested to play an important role in promoting the degeneration process. It has been demonstrated that IVD cell apoptosis occurs through either death receptor, mitochondrial or endoplasmic reticulum (ER) pathway. Our study aimed to explore the relationship among these three pathways and grade of IVD degeneration (IVDD). IVDs were collected from patients with lumbar fracture, vertebral tumor, disc herniation or spondylolisthesis. IVDs were distinguished by MRI and histomorphological examination, cell apoptosis was detected by TUNEL staining. Biomarkers of these three apoptosis pathways were detected by RT-PCR and Western blot. Furthermore, the correlation between apoptosis pathways biomarkers and disc pathology were analyzed. Nucleus pulposus cell density decreased with degeneration process, and increased apoptotic ratio. ER pathway was predominant in mild stage of IVDD (GRP78, GADD153 upregulation and caspase-4 activation), death receptor pathway was predominant in mild and moderate stages (Fas, FasL up-regulation and caspase-8 activation) and mitochondrial pathway was predominant in moderate and severe stages (Bcl-2 down-regulation, Bax up-regulation, cytochrome-c accumulation in cytoplasm and caspase-9 activation). There were significant differences in the expressions of Fas, FasL, Bax, GADD153, cytochrome-c and cleaved caspase-8/9/3 between contained and non-contained discs. In conclusion, apoptosis occurs via these three apoptosis pathways together in IVDD. ER pathway plays a more critical role in the mild compared to moderate and severe stages, death receptor pathway in mild and moderate, and mitochondrial pathway in moderate and severe stages of IVDD. Disc cells apoptosis may progress rapidly after herniation, and may depend on the type of herniation.  相似文献   

18.
Autophagy has been implicated in both cell survival and programmed cell death (PCD), and this may explain the apparently complex role of this catabolic process in tumourigenesis. Our previous studies have shown that caspases have little influence on Drosophila larval midgut PCD, whereas inhibition of autophagy severely delays midgut removal. To assess upstream signals that regulate autophagy and larval midgut degradation, we have examined the requirement of growth signalling pathways. Inhibition of the class I phosphoinositide-3-kinase (PI3K) pathway prevents midgut growth, whereas ectopic PI3K and Ras signalling results in larger cells with decreased autophagy and delayed midgut degradation. Furthermore, premature induction of autophagy is sufficient to induce early midgut degradation. These data indicate that autophagy and the growth regulatory pathways have an important relationship during midgut PCD. Despite the roles of autophagy in both survival and death, our findings suggest that autophagy induction occurs in response to similar signals in both scenarios.  相似文献   

19.
The intervertebral disc (IVD) is a complex fibrocartilaginous structure located between the vertebral bodies that allows for movement and acts as a shock absorber in our spine for daily activities. It is composed of three components: the nucleus pulposus (NP), annulus fibrosus, and cartilaginous endplate. The characteristics of these cells are different, as they produce specific extracellular matrix (ECM) for tissue function and the niche in supporting the differentiation status of the cells in the IVD. Furthermore, cell heterogeneities exist in each compartment. The cells and the supporting ECM change as we age, leading to degenerative outcomes that often lead to pathological symptoms such as back pain and sciatica. There are speculations as to the potential of cell therapy or the use of tissue engineering as treatments. However, the nature of the cells present in the IVD that support tissue function is not clear. This review looks at the origin of cells in the making of an IVD, from the earliest stages of embryogenesis in the formation of the notochord, and its role as a signaling center, guiding the formation of spine, and in its journey to become the NP at the center of the IVD. While our current understanding of the molecular signatures of IVD cells is still limited, the field is moving fast and the potential is enormous as we begin to understand the progenitor and differentiated cells present, their molecular signatures, and signals that we could harness in directing the appropriate in vitro and in vivo cellular responses in our quest to regain or maintain a healthy IVD as we age. Birth Defects Research (Part C) 102:83–100, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.

Introduction  

Programmed cell death of intervertebral disc (IVD) cells plays an important role in IVD degeneration, but the role of autophagy, a closely related cell death event, in IVD cells has not been documented. The current study was designed to investigate the effect of interleukin (IL)-1β on the occurrence of autophagy of rat annulus fibrosus (AF) cells and the interrelationship between autophagy and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号