首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Stress responses depend on the correct regulation of gene expression. The discovery that abiotic as well as biotic stresses can regulate miRNA levels, coupled with the identification and functional analyses of stress-associated genes as miRNA targets, provided clues about the vital role that several miRNAs may play in modulating plant resistance to stresses. Nitrogen availability seriously affects crops productivity and environment and the understanding of the miRNA-guided stress regulatory networks should provide new tools for the genetic improvement of nitrogen use efficiency of crops. A recent study revealed the potential role of a number of nitrate-responsive miRNAs in the maize adaptation to nitrate fluctuations. In particular, results obtained suggested that a nitrate depletion might regulate the expression of genes involved in the starvation adaptive response, by affecting the spatio-temporal expression patterns of specific miRNAs.  相似文献   

3.
4.
Frank W  Ratnadewi D  Reski R 《Planta》2005,220(3):384-394
In order to determine the degree of tolerance of the moss Physcomitrella patens to different abiotic stress conditions, we examined its tolerance against salt, osmotic and dehydration stress. Compared to other plants like Arabidopsis thaliana, P. patens exhibits a high degree of abiotic stress tolerance, making it a valuable source for the identification of genes effecting the stress adaptation. Plants that had been treated with NaCl tolerated concentrations up to 350 mM. Treatments with sorbitol revealed that plants are able to survive concentrations up to 500 mM. Furthermore, plants that had lost 92% water on a fresh-weight basis were able to recover successfully. For molecular analyses, a P. patens expressed sequence tag (EST) database was searched for cDNA sequences showing homology to stress-associated genes of seed plants and bacteria. 45 novel P. patens genes were identified and subjected to cDNA macroarray analyses to define their expression pattern in response to water deficit. Among the selected cDNAs, we were able to identify a set of genes that is specifically up-regulated upon dehydration. These genes encode proteins exerting their function in maintaining the integrity of the plant cell as well as proteins that are known to be members of signaling networks. The identified genes will serve as molecular markers and potential targets for future functional analyses.  相似文献   

5.
6.
Plant cell organelle proteomics in response to abiotic stress   总被引:2,自引:0,他引:2  
Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.  相似文献   

7.
Growing in their natural environment, plants often encounter unfavorable environmental conditions that interrupt normal plant growth and productivity. Drought, high/low temperature and saline soils are the most common abiotic stresses that plants encounter in their natural environments. Molecular and genomic analyses have facilitated gene discovery and enabled genetic engineering using several functional or regulatory genes that are known to be involved in stress response and preliminary tolerance, to activate specific or broad pathways related to abiotic stress tolerance in plants. Through the use of transgenic technology, goals such as production of plants with desired traits that were unattainable with traditional selection programs are achieved. This review deals with recent advancement in understanding the role of various stress responsive genes and their critical importance for explaining the control mechanism of abiotic stress tolerance and engineering stress tolerant crops based on the expression of specific stress related genes.  相似文献   

8.
MicroRNAs (miRNAs) are tiny non-coding regulatory molecules that modulate plant’s gene expression either by cleaving or repressing their mRNA targets. To unravel the plant actions in response to various environmental factors, identification of stress related miRNAs is essential. For understanding the regulatory behaviour of various abiotic stresses and miRNAs in wheat genotype C-306, we examined expression profile of selected conserved miRNAs viz. miR159, miR164, miR168, miR172, miR393, miR397, miR529 and miR1029 tangled in adapting osmotic, salt and cold stresses. The investigation revealed that two miRNAs (miR168, miR397) were down-regulated and miR172 was up-regulated under all the stress conditions. However, miR164 and miR1029 were up-regulated under cold and osmotic stresses in contrast to salt stress. miR529 responded to cold alone and does not change under osmotic and salt stress. miR393 showed up-regulation under osmotic and salt, and down-regulation under cold stress indicating auxin based differential cold response. Variation in expression level of studied miRNAs in presence of target genes delivers a likely elucidation of miRNAs based abiotic stress regulation. In addition, we reported new stress induced miRNAs Ta-miR855 using computational approach. Results revealed first documentation that miR855 is regulated by salinity stress in wheat. These findings indicate that diverse miRNAs were responsive to osmotic, salt and cold stress and could function in wheat response to abiotic stresses.  相似文献   

9.
10.
MiR398 and plant stress responses   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
13.
逆境胁迫严重影响着全世界范围内的作物产量。为减少逆境胁迫损伤,植物在长期的进化过程中形成了多级别(转录、转录后和翻译、翻译后)的基因表达调控应答机制。最近研究发现,内源microRNA(miRNA)在植物逆境胁迫应答中具有重要的调节作用。在逆境胁迫发生时,一些miRNA会表达上调,而另一些miRNA会表达下调;miRNA正是通过下调胁迫应答过程的负调节子靶基因和上调胁迫应答过程中的正调节子靶基因,来执行生理调控功能。通过综述miRNA在植物逆境应答中的作用,以期全面的了解逆境胁迫调控网络。  相似文献   

14.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions.  相似文献   

15.
Plants react towards changes in their environment, which can be a result of biotic or abiotic activities. Numerous studies have investigated the effects of abiotic stress on plants, and how it affects the primary as well as secondary metabolism. Generally it is accepted that plants react to environmental stress by increasing secondary metabolites. This is however a very broad and simplified explanation and often inaccurate. Various examples are provided where plants react positively, and often negatively towards seasonal variation and water availability, resulting in a lowering of certain secondary metabolites concentration, while others are increased. Furthermore species differences, cultivars and interaction of other environmental factors such as temperature complicates a simple conclusion from the effect of stress on plants. The differential expression of genes in different species and in different metabolic pathways ensures a complex and very specific reaction of a plant to environmental stress. Overall the paper provides support for a complex and intricate response system which differs for each plant species, and could be explained by understanding and studying the different metabolic pathways responsible for secondary metabolite production.  相似文献   

16.
17.
Cumulatively, biotic and abiotic stresses of various magnitudes can decrease the production of crops by 70%. miRNAs have emerged as a genetic tool with enormous potential that can be exploited to understand stress tolerance at the molecular level and eventually regulate stress in crops. Plant miRNA targets frequently fit into diverse families of TFs that control the expression of genes related to a certain trait. As key machinery in gene regulatory networks, it is agreed that a broad understanding of miRNAs will greatly increase our understanding of plant responses to environmental stresses. miRNA-led stress regulatory networks are being considered as novel tools for the development of abiotic stress tolerance in crops. At this time, we need to expand our knowledge about the modulatory role of miRNAs during environmental fluctuations. It has become exceedingly clear that with increased understanding of the role of miRNAs during stress, the techniques for using miRNA-mediated gene regulation to enhance plant stress tolerance will become more effective and reliable. In this review we present: (1) miRNAs as a potential avenue for the modulation of abiotic stresses, and (2) summarize the research progress regarding plant responses to stress. Current progress is explained through discussion of the identification and validation of several miRNAs that enhance crop tolerance of salinity, drought, etc., while missing links on different aspects of miRNAs related to abiotic stress tolerance are noted.  相似文献   

18.
植物对非生物胁迫应答的转录因子及调控机制   总被引:10,自引:2,他引:8  
植物对非生物胁迫的应答反应涉及到许多基因和生化分子机制,胁迫相关基因、蛋白质及代谢物构成了一个复杂的调控网络,其中转录控制具有举足轻重的作用。本文主要对近年来发现的几种在转录控制中起关键作用的转录因子CBF/DREB、bZIP、MYB/MYC和HSF及其调控机制进行介绍。这几种转录因子可以分别和胁迫应答顺式作用元件CRT/DRE、ABRE、MYB/MYC识别位点及HSE结合,在非生物胁迫条件下调控下游靶基因的表达,进而使一些胁迫保护物质如脯氨酸、可溶性糖类、自由基的清除剂、热休克蛋白和分子伴侣等的表达水平升高,最终增强植物对非生物胁迫的耐受能力。  相似文献   

19.
DREB2s是植物特有的转录因子,隶属于AP2/EREBP转录因子家族,对干旱、高盐或低温、高温等非生物胁迫应答基因的表达有重要的调控作用。不同植物来源的DREB2在基因结构上有细微差异,对非生物胁迫的响应亦有不同表现。本文阐述了DREB2s的蛋白质结构特征及其对多种非生物胁迫的应答反应,并深入分析了DREB2s转录水平和转录后加工水平的表达调控分子机制的最新研究进展,为理解DREB2s基因功能、分子调控机制及作物抗逆基因工程提供理论依据。  相似文献   

20.
The study of abiotic stress response of plants is important because they have to cope with environmental changes to survive. The plant genomes have evolved to meet environmental challenges. Salt, temperature, and drought are the main abiotic stresses. The tolerance and response to stress vary differently in plants. The idea was to analyze the genes showing differential expression under abiotic stresses. There are many pathways connecting the perception of external stimuli to cellular responses. In plants, these pathways play an important role in the transduction of abiotic stresses. In the present study, the gene expression data have been analyzed for their involvement in different steps of signaling pathways. The conserved genes were analyzed for their role in each pathway. The functional annotations of these genes and their response under abiotic stresses in other plant species were also studied. The enzymes of signal pathways, showing similarity with conserved genes, were analyzed for their role in different abiotic stresses. Our findings will help to understand the expression of genes in response to various abiotic stresses. These genes may be used to study the response of different abiotic stresses in other plant species and the molecular basis of stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号