首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Roots of 28 species of epiphytic vascular plants were collected on tree trunks and branches at six afromontane forest sites between 1700 and 3300 m above sea level in Bale Mountains National Park, Ethiopia. Seven of the 28 epiphyte species were colonized by vesicular-arbuscular mycorrhizal fungi (VAM). Mycorrhizal colonization only occurred at two of the six sites examined, at 2900 m and 3300 m, but more than one type of VAM endophyte was present in each case. Three facultative epiphytic species were all highly colonized by VAM on the forest floor, whereas roots from epiphytic habitats were weakly colonized. No correlations were found between VAM colonization, fine root diameter and root hair length, but VAM colonization and root hair abundance were negatively correlated. The lack of VAM colonization of potential, epiphytic host species at the majority of the sites examined points to the dispersal of VAM propagules as the factor limiting mycorrhizal colonization of epiphytic habitats. It is suggested that root systems of hemiepiphytic tree species serve as corridors between forest floor and tree trunks through which VAM may spread via hyphal growth.  相似文献   

2.
The effects of Pratylenchus vulnus and the endomycorrhizal fungus Glomus mosseae on growth of Myrobalan 605, Marianna 2624 and San Julian 655-2 plum rootstocks were measured under shadehouse conditions in the field for two growing seasons (1990–91). Shoot dry weights were higher in the majority of the vesicular-arbuscular mycorrhizal (VAM) alone inoculated plants after both growing seasons. Root weights of mycorrhizal Myrobalan and Marianna were higher than root weights of the same rootstocks lacking mycorrhizae, inoculated with P. vulnus, and VAM in combination with the nematode. Mycorrhizal Marianna inoculated with the nematode showed a considerably higher final nematode population in relation to non-inoculated VAM treatments. No correlation was found in the number of nematodes per gram of root between mycorrhizal and non-mycorrhizal treatments. P. vulnus adversely affected the mycorrhizal colonization in Marianna, but not in Myrobalan and San Julian. Marianna appears to be more mycorrhizal dependent than the two other rootstocks.  相似文献   

3.
The growth response of Hevea brasiliensis to vesicular-arbuscular mycorrhizal (VAM) fungi inoculation was assessed in two field nursery sites containing indigenous mycorrhizal fungi (IMF). Seedling rootstocks were inoculated with mixed VAM-fungal species in a factorial combination with phosphorus (P) fertilizer application, and planted in randomised blocks on sandy (site 1) and clayey (site 2) soils. Plants were harvested after 26 weeks for measurements of shoot dry weight (DW), stem diameter, height, mycorrhizal root colonization and leaf nutrient contents. At site 1, VAM increased shoot DW, stem diameter and plant height only in treatments without P applied. Increases in shoot DW due to VAM were 70% greater than the uninoculated controls although this was reduced to 5% when P was applied. At site 2, VAM inoculation also increased shoot DW and stem diameter but the magnitude of the increases was smaller. Shoot DW response due to VAM was only 29%. At this second site, applying phosphate to uninoculated plants did not increase shoot yields further. Leaf concentrations of all nutrients were unaffected by VAM at both sites, except for copper (Cu) which was increased by VAM in treatments where P was not applied. However, leaf contents of P, potassium (K), magnesium (Mg) and Cu were increased by VAM at site 1, and of leaf nitrogen (N) and K at site 2. These experiments demonstrate that VAM-fungi could be introduced into field nursery sites to improve growth and P uptake by H. brasiliensis. The relevance of VAM-fungi to H. brasiliensis seedling rootstock development and the influence of IMF in determining field responses is discussed.  相似文献   

4.
The influence of soil application of carbofuran on the growth response of groundnut, and both mycorrhizal colonization and sporulation of Glomus clarum was studied in a pot culture experiment. Carbofuran application with or without mycorrhizal inoculation increased the height of the potted plants measured 8 weeks after sowing. Mycorrhizal plants were significantly taller than nonmycorrhizal plants at the final harvest time (14 weeks). Carbofuran, at the recommmended field dose of up to 2 kg/ha, greatly increased shoot dry matter and pod yield in mycorrhizal groundnut. Colonization and sporulation by this VAM fungus were also enhanced significantly at these dose levels. The application of carbofuran at 5 kg/ha inhibited both growth and mycorrhizal status of groundnut.  相似文献   

5.
Inoculation of finger millet (Eleusine coracana Gaertn.) plants with one of six different vesicular, arbuscular, mycorrhizal (VAM) fungi increased plant biomass, height, leaf area and absolute growth rate; however, effectiveness of the various VAM fungi varied significantly. Maximum root colonization and mycorrhizal efficacy was observed with plants inoculated with Glomus caledonicum. Among five host genotypes tested for mycorrhizal dependency against G. caledonicum, genotype HR-374 gave the highest plant biomass, mycorrhizal efficacy and root colonization, the inoculation resulting in increased mineral (phosphate, nitrogen, Zn2+ and Cu2+) content and uptake in shoots.  相似文献   

6.
M. Habte  R. L. Fox 《Plant and Soil》1993,151(2):219-226
Five tropical soils were either not inoculated or inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus aggregatum. The degree to which VAM effectiveness was expressed in the soils was evaluated prior and after solution P status was adjusted for optimal VAM activity. VAM effectiveness determined by monitoring P concentrations of pinnules of Leucaena leucocephala leaves as a function of time and as dry matter yield determined at the time of harvest, indicated that in three of the soils VAM effectiveness was either very restricted or altogether unexpressed irrespective of vesicular-arbuscular mycorrhizal fungal (VAMF) inoculation if soil solution P was not optimized for VAM effectiveness. After P optimization, effectiveness was significantly increased by VAMF inoculation although in four of the soils, densities of indigenous VAMF propagules greatly exceeded that attained by the inoculum after it was mixed with soil. Mycorrhizal fungal inoculation effects varied from soil to soil, depending on the extent to which the effectiveness of indigenous and introduced endophytes was enhanced by P optimization and the similarity of inherent soil solution P concentrations to the range known to be optimum for VAM effectiveness. Of the indicator variables monitored, VAMF colonization was least sensitive to treatment effects followed by shoot P concentration measured at the time of harvest.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3781.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3781.  相似文献   

7.
The effects of three soil temperatures on growth of spring barleys (Hordeum vulgare L.) and on their root colonization by vesicular arbuscular mycorrhizal (VAM) fungi from agricultural soils in Montana (USA) or Syria at different inoculum concentrations were tested in soil incubators in the greenhouse. The number of mycorrhizal plants as well as the proportion and intensity of roots colonized increased with higher soil temperatures. VAM fungi from Montana, primarily Glomus macrocarpum, were cold tolerant at 11°C while those from Syria, primarily G. hoi, were heat tolerant at 26°C. Inoculum potential of Montana VAM fungi was higher than Syrian VAM fungi in cool soils. Harmal, selected from Syrian barley land races, had the highest colonization by mycorrhizal fungi of the cultivars tested.Journal Series Paper: J-2532 Montana Agricultural Experiment Station.  相似文献   

8.
M. Soedarjo  M. Habte 《Plant and Soil》1993,149(2):197-203
A greenhouse investigation was undertaken to determine the influence of fresh organic matter on the formation and functioning of vesicular-arbuscular mycorrhizal symbiosis in Leucaena leucocephala grown in an acid aluminum-rich ultisol. In soil not amended with fresh organic matter or lime, plants failed to grow. Mycorrhizal infection level, mycorrhizal effectiveness measured in terms of pinnule P content of L. leucocephala leaves and dry matter yield of the legume increased with increase in fresh organic matter. Although VAM colonization level and dry matter yield of L. leucocephala were significantly higher if the test soil was limed (7.2 cmole OH) than if amended with fresh organic matter, the latter was as effective as lime in off-setting the detrimental effect of aluminum on mycorrhizal effectiveness. The lower mycorrhizal colonization level and the lower dry matter yield noted in the soil treated with fresh organic matter appears to be related to the inadequacy of Ca in the soil amended with fresh organic matter. These observations are supported by the low calcium status of soil and plant tissues in the absence of lime. It is concluded that while fresh organic matter, in appropriate amounts, could protect sensitive plants and VAM symbiosis against Al toxicity in acid soils, maximum mycorrhizal inoculation effects are not likely to be attained unless the soils are also amended with Ca.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No 3740.  相似文献   

9.
Study plots with ten types of disturbances were established in a Solidago-Aster community in western Pennsylvania. One year after disturbance, 93% of all species had vesicular-arbuscular mycorrhizae (VAM) and accounted for 92% of all plant cover. After 3 yr, 96% of the species had VAM and 96% canopy coverage. An adjacent 10-yr Solidago-Aster community had 100% VAM species. The VAM annuals, Ambrosia artemisiifolia and Setaria glauca, were major first year dominants while VAM perennials, Agropyron repens, Solidago canadensis, and Aster ericoides, dominated at 3 yr. The mean percent mycorrhizae of all dominants at 1 yr was 39% and 34% at 3 yr. Four disturbed sites had 100% VAM colonization after 1 yr and six sites after 3 yr. Severe physical disturbances (topsoil removed and topsoil-subsoil removed) resulted in complete colonization by VAM species and mean mycorrhizal infections of more than 75%. The plowed-disked-prometone and plowed-disked-vapam disturbances resulted in low levels of mycorrhizae after 3 yr. The plowed-disked-atrazine plot showed an initial severe decrease in percentage of mycorrhizae, but doubled its infection rate by 3 yr. Three non-mycorrhizal species (Chenopodium album, Rumex acetosella, and Polygonuspersicaria) were observed during the 3-yr period. C. album was the major dominant after 1 yr in the plowed-disked-fertilized site and R. acetosella a dominant in the plowed-disked-prometone plot.  相似文献   

10.
The halophytes Plantago maritima, Aster tripolium, Artemisia santonicum, Puccinellia limosa, Festuca pseudovina and Lepidium crassifolium from two different saline soils of the Hungarian steppe were examined for colonization by arbuscular mycorrhizal fungi (AMF). The salt aster (A. tripolium) and the sea plantain (P. maritima) were examined more thoroughly by recording root colonization parameters, the salt content in the soil and monthly precipitations in 2001 and 2002. Mycorrhizal colonization was maximal in late spring to early summer and had a second peak later in the autumn. Arbuscule formation and overall mycorrhizal colonization appeared to be inversely correlated with the intensity of rainfall at the investigated sites. The results suggest that, in addition to seasonality, drought may play an important role in governing mycorrhizal activity in saline habitats. In greenhouse experiments, conditions in which AMF could overcome the inhibitory effects of sodium chloride on establishing plant–mycorrhizal symbiosis were not met.  相似文献   

11.
Soil transfers from an intermediate successional site and a mature forest site were applied to Populus balsamifera L. cuttings and Alnus crispa (Ait.) Pursh seedlings placed on an abandoned mined site in south central Alaska to improve plant establishment. Mycorrhizal fungi in the soil transfers from the two successional stages were hypothesized to have different effects on plant species that colonize disturbed sites at different times or on different substrates. The site consisted of coarse, dry, low-nutrient spoils and was naturally colonized by scattered P. balsamifera but not A. crispa, although seed sources for both were adjacent to the site. Physical dimensions of the transplanted seedlings and cuttings were measured at the beginning and end of each growing season. Selected plants were harvested at the end of the 2-year study and examined for mycorrhizal formation, current growth, and leaf tissue nutrient concentrations. Both plant species were taller when treated with the soil transfers from the mature forest than with soils from the intermediate site although the increase for A. crispa was greater. Physical dimensions, current growth, and nutrient concentrations were greater when A. crispa was treated with the mature soil transfer compared with the intermediate soil transfer. Mycorrhizae which infected Alnus were predominantly a brown woody type, while other types accounted for greater relative mycorrhizal infection percentage on Populus. Insufficient quantities of mycorrhizal inoculum of suitable species, as well as low moisture and low nutrient conditions, may be factors limiting A. crispa colonization on primary disturbed sites in south central Alaska.  相似文献   

12.
 We followed the colonization frequency of ectomycorrhizal (EM), vesicular-arbuscular mycorrhizal (VAM), and dark septate (DS) fungi in 1- to 5-month-old bishop pine seedlings reestablishing after a wildfire. Seedlings were collected on a monthly basis at either a VAM-dominated chaparral scrub site or an EM-dominated forest site, both of which were burned. In both vegetation types, fully developed EM were observed from the third month after germination. EM fungi observed on the seedlings from the scrub site were limited to Rhizopogon subcaerulescens, R. ochraceorubens and Suillus pungens. Seedlings from the forest were colonized by a greater variety of EM fungi including Amanita spp., Russula brevipes and a member of the Cantharellaceae. VAM structures (vesicles, arbuscules or hyphal coils) were observed in the seedling root systems beginning 1 month after germination at the scrub site and 3 months after germination at the forest site. Seedlings from the scrub site consistently had more frequent VAM fungal colonization than those from the forest site through the fifth month after germination. DS fungi were observed in most seedlings from both the scrub and forest sites beginning in the first month post-germination. We propose that these fungi survived as a resident inoculum in the soils and did not disperse into the sites after the fire. Accepted: 14 February 1998  相似文献   

13.
Cabbage (Brassica oleracea, var. capitata, cv. Hercules) seedlings were inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi Glomus fasciculatum, G. aggregatum, and G. mosseae. Differential efficiency in mycorrhizal colonization and the specificity of fungal symbiont to stimulate the growth and nutrient uptake of the host were observed. In addition, there was an increase in phenol, protein, reducing sugar contents, and peroxidase activity in the VAM inoculated seedlings. Since these compounds are known to confer resistance against fungal pathogens, the use of VAM as a biological control agent to protect cabbage against several root diseases is suggested.  相似文献   

14.
The effect of the non-systemic fungicide thiram on the vesicular-arbuscular mycorrhizal (VAM) symbiosis and on Leucaena leucocephala was evaluated in a greenhouse experiment. In the uninoculated soil treated with P at a level optimal for mycorrhizal activity, mycorrhizal colonization of roots was low, and did not change as the concentration of thiram in the soil increased with the from 0 to 1000 mg/kg. When this soil was inoculated VAM fungus Glomus aggregatum, with VAM colonization was enhanced significantly, but decreased increase in thiram concentration until it coincided with the level observed in the uninoculated soil. Similarly, symbiotic effectiveness was reduced, its expression delayed or completely eliminated with increase in the concentration of thiram. Amending soil to a P level sufficient for non-mycorrhizal host growth fully compensated for thiram-induced loss of VAM activity if the thiram levels did not exceed 125 mg/kg. In soil treated with 50 mg thiram/kg, the toxicity of the fungicide dissipated within 66 days of application. At higher concentrations, the toxicity of the chemical on the mycorrhizal symbiosis appeared to be enhanced.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3716  相似文献   

15.
Summary Greenhouse and field experiments were conducted on the effect of VA mycorrhiza (VAM) on the growth of cassava, various tropical grass and legume species, as well as beans, coffee and tea. A large number of VAM fungal species were evaluated for effectivity in increasing cassava growth and P uptake in acid low-P soils. The effectivity of VAM species and isolates was highly variable and dependent on soil pH and fertilizer applications, as well as on soil temperature and humidity. Two species,Glomus manihotis andEntrophospora colombiana were found to be most effective for a range of crops and pastures, at low pH and at a wide range of N, P, and K levels. At very low P levels nearly all crops and pasture species were highly mycorrhizal dependent, but at higher soil P levels cassava and several pasture legumes were more dependent than grass species. Mycorrhizal inoculation significantly increased cassava and bean yields in those soils with low or ineffective indigenous mycorrhizal populations. In these soils cassava root yields increased on the average 20–25% by VAM inoculation, both at the experiment station and in farmers’ fields. VAM inoculation of various pasture legumes and grasses, in combination with rock phosphate applications, increased their early growth and establishment. Agronomic practices such as fertilization, crop rotations, intercropping and pesticide applications were found to affect both the total VAM population as well as its species composition. While there is no doubt about the importance of VA mycorrhiza in enhancing P uptake and growth of many tropical crops and pastures grown on low-P soils, much more research is required to elucidate the complicated soil-plant-VAM interactions and to increase yields through improved mycorrhizal efficiency.  相似文献   

16.
The effects of inoculation with vesicular-arbuscular mycorrhizal fungi on nonmycotrophic (plants which do not form a mycorrhizal association) colonizing annuals and on mycotrophic perennials were investigated in southwestern Wyoming. A subsoil containing no initial mycorrhizal inoculum was used, and seeds of the later successional perennials were planted. The annuals were removed from one-half of the sampling quadrats to test for the interaction of competition and mycorrhizae on the perennials. During the third and fourth years of succession, the density and percent cover of Salsola kali, the most abundant nonmycotrophic annual, decreased by one-half to one-third with inoculation. Mycorrhizal hyphae and spores were found in the rhizosphere of S. kali, with only occasional (1–2% of the root length) penetration of hyphae into the cortex. There were no differences in tissue phosphorus and nitrogen concentrations or water relations of inoculated vs. uninoculated S. kali. The planted grasses, all Agropyron species, had no significant increase in density or percent cover with inoculation. The percent root infection of A. smithii was 5–30%. Grass density and percent cover was greatest where S. kali was present, suggesting facilitation of grass establishment by annuals on this harsh, windy site. However, grass density was lower where 5. kali density was lower following inoculation. Mycorrhizal fungi were hypothesized to hasten the rate of succession on other sites. On this site where facilitation is an important process, inoculation of early seral plants and their subsequent decline may slow primary succession in the early years.  相似文献   

17.
Summary Rooted cuttings ofSeverinia buxifolia were inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungusGlomus intraradices or provided an inoculum filtrate (non-VAM plants) and grown in one of seven media combinations of fired montmorillonite clay (FMC) and Canadian peatmoss (CP) at ratios of 100%, 80%, 67%, 50%, 33%, 20%, or 0% FMC. Mycorrhizal infection increased with higher proportions of FMC, but the growth of both VAM and non-VAM plants was reduced with increased FMC amendment. The growth benefit (top and root fresh-dry weights) conferred by mycorrhizal infection was greater at higher levels of FMC in the media. Improved phosphorus uptake by inoculated severinia plants appeared at least partially responsible for increased growth compared to non-VAM plants under conditions of high soluble salts and pH associated with high FMC composition. Florida Agr. Expt. Sta. Journal Series No. 6319.  相似文献   

18.
The inoculation of Pistacia terebinthus with vesicular-arbuscular mycorrhizal (VAM) fungi and the spread of the infection were studied using a mixed cropping system, under glasshouse conditions, with Salvia officinalis, Lavandula officinalis and Thymus vulgaris colonized by Glomus mosseae as an inoculation method. This method was compared with soil inoculum placed under the seed or distributed evenly in the soil. Indirect inoculation with all the aromatic plants tested significantly increased VAM root colonization of P. terebinthus compared with the use of soil inoculum, although the effect on plant growth was different for each one of the aromatic species used as inoculum source. Inoculation with L. officinalis and T. vulgaris were the best treatments resulting in high VAM colonization and growth enhancement of P. terebinthus.  相似文献   

19.
Summary The effects of vesicular-arbuscular mycorrhiza (VAM) on the growth and phosphorus uptake of cocoa seedlings (Theobroma cacao L.) grown for 100 days in polythene bags, were studied at five levels of phosphorus fertilization in both steamed and unsterile Bungor Series soil (a fine clayey, kaolinitic isohyperthermic Typic Paleudult). The cocoa seedlings responded well to phosphorus fertilization and mycorrhizal treatments. Plants inoculated with VAM fungi (Gigaspora spp.) gave the most vigorous growth and higher phosphorus in the leaf tissues in unsterile soil compared to plants grown in steamed soil. However, the mycorrhizal effect was significantly more pronounced (P<0.01) in plants grown in steamed than in unsterile soil. High levels of phosphorus application depressed mycorrhizal development. Phosphorus fertilizer applied at the rates of 250 and 500 ug g−1 soil gave maximum root colonization and spore counts in both soil types used.  相似文献   

20.
 The mycorrhizal status of Astragalus applegatei Peck is reported for the first time on plants from a greenhouse soil bioassay. Seedlings were grown in a potting mix inoculated with soil collected near A. applegatei plants in nature. Plants were also grown in non-inoculated potting mix. Only plants from the native soil inoculation survived. Abundant colonization of VAM fungi was found in all 15 plants analyzed from the native soil treatment, and chlamydospores produced by Glomus spp. were observed. Mycorrhizal colonization was estimated to be 23% of total fine root length after 6 weeks and 53% after 14 weeks. Our results provide ecologically important information for conservation and restoration efforts underway to recover populations of this endangered species. Accepted: 22 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号