首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
通过平板涂布法从我国南海三亚海域细薄星芒海绵中筛选出104株海洋细菌,采用琼脂扩散法、纸片法和细胞浓度记数法进行抗菌活性筛选,发现23株对于大肠埃希氏菌、金黄色葡萄球菌、荧光假单胞菌、枯草芽孢杆菌、黑曲霉、白假丝酵母、宛氏拟青霉具有稳定的抗菌活性,占总细菌的22.2%;根据形态学与生化指标分析初步确认其中4株抗菌活性显著的A05、A08、A72、A75为芽孢杆菌。研究发现,海绵细菌在抗菌活性方面具有正向和负向的协同效应,其中A72-75组合对于白假丝酵母和荧光假单胞菌具有显著的正向协同效应。  相似文献   

2.
细薄星芒海绵中活性菌筛选及混合菌协同效应   总被引:5,自引:0,他引:5  
通过平板涂布法从我国南海三亚海域细薄星芒海绵中筛选出104株海洋细菌,采用琼脂扩散法、纸片法和细胞浓度记数法进行抗菌活性筛选,发现23株对于大肠埃希氏菌、金黄色葡萄球菌、荧光假单胞菌、枯草芽孢杆菌、黑曲霉、白假丝酵母、宛氏拟青霉具有稳定的抗菌活性,占总细菌的22.2%;根据形态学与生化指标分析初步确认其中4株抗菌活性显著的A05、A08、A72、A75为芽孢杆菌。研究发现,海绵细菌在抗菌活性方面具有正向和负向的协同效应,其中A72-75组合对于白假丝酵母和荧光假单胞菌具有显著的正向协同效应。  相似文献   

3.
采用平板涂布法从我国南海细薄星芒海绵分离得到一株细菌A72,以大肠埃希氏菌、金黄色葡萄球菌、枯草芽孢杆菌、荧光假单胞菌、黑曲霉、白假丝酵母、宛氏拟青霉7种指标菌对A72的抗菌活性进行了研究,同时采用形态学观察、生理生化分析与16S rDNA同源性与系统发育分析进行种属鉴定。研究发现A72对于枯草芽孢杆菌等具有显著的活性,初步确认A72为粪产碱杆菌。  相似文献   

4.
采用平板涂布法从我国南海三亚周边海域贪婪倔海绵(Dysidea avara)中分离海绵共附生细菌,采用金黄色葡萄球菌、大肠埃希氏菌、荧光假单胞菌、枯草芽孢杆菌、白假丝酵母、宛氏拟青霉、黑曲霉7种指标菌进行抑菌试验筛选抗菌活性菌,同时对于得到的活性菌进行生理生化鉴定。共分离获得个149个细菌菌株,发现20株具有抑制真菌和革兰氏阳性细菌的活性,占细菌总数的13.4%。经过细菌形态观察和生理生化试验,发现此20株活性菌属于革兰氏阳性芽孢杆菌属(Bacillussp.)。  相似文献   

5.
海洋细菌抗菌和细胞毒活性的初步研究   总被引:2,自引:1,他引:1  
从不同海域的生物、海水和海泥中分离海洋细菌,利用琼脂扩散法和MTT法对细菌培养液的乙酸乙酯提取物进行了抗菌和细胞毒活性筛选。比较了活性菌株与来源的相关性.结果表明,在分离的341株海洋细菌中。42株细菌的代谢产物具有抗菌活性,7株具有细胞毒活性,其中来源于海洋无脊椎动物和海藻的活性菌株比例(22%和11%)大于来源于海水和海泥的细菌(7%和5%).细菌分类鉴定结果显示,具有活性的细菌大部分属于假单胞菌属、发光杆菌属、梭状芽孢杆菌属、交替单胞菌属和黄杆菌属.  相似文献   

6.
从硇洲岛和徐闻珊瑚礁自然保护区潮间带采集海水和沉积物标本,采用纯培养的方法分离其中的海洋细菌;以金黄色葡萄球菌、枯草芽抱杆菌和大肠埃希菌等为指示菌,以氨苄青霉素、青霉素-链霉素为阳性对照,采用琼脂扩散法筛选抗菌活性菌株;采用基于16S rDNA序列比对及其系统发育分析对分离培养的阳性海洋细菌进行分类鉴定和生物多样性分析;为进一步从海洋细菌资源中发掘新型抗菌药物奠定基础。结果从106株海洋细菌中筛选出了44株抗细菌活性菌株,阳性率为41.5%。其中,11株具有抗金黄色葡萄球菌作用,31株有抗枯草芽孢杆菌作用,13株有抗大肠埃希菌作用。抗菌活性菌株分布于31属,优势属为芽孢杆菌属(Bacillus)和弧菌属(Vibrio)。这表明分离自硇洲岛和徐闻珊瑚礁自然保护区潮间带的海洋细菌中的抗菌活性菌株具有丰富的生物多样性。  相似文献   

7.
贪婪倔海绵中抗菌活性细菌的筛选及初步鉴定   总被引:3,自引:0,他引:3  
采用平板涂布法从我国南海三亚周边海域贪婪倔海绵(Dysidea avara)中分离海绵共附生细菌,采用金黄色葡萄球菌、大肠埃希氏菌、荧光假单胞菌、枯草芽孢杆菌、白假丝酵母、宛氏拟青霉、黑曲霉7种指标菌进行抑菌试验筛选抗菌活性菌,同时对于得到的活性菌进行生理生化鉴定。共分离获得个149个细菌菌株,发现20株具有抑制真菌和革兰氏阳性细菌的活性,占细菌总数的13.4%。经过细菌形态观察和生理生化试验,发现此20株活性菌属于革兰氏阳性芽孢杆菌属(Bacillus sp.)。  相似文献   

8.
浓缩苹果汁生产过程中脂环酸芽孢杆菌的分离及初步鉴定   总被引:8,自引:0,他引:8  
本文对浓缩苹果汁生产过程中的嗜酸耐热菌进行了分离,得到45株纯的嗜酸耐热芽孢杆菌。根据脂环酸芽孢杆菌(Alicyclobacillus)嗜酸的特点,用LB平板进行筛选,结果表明所有的菌株都嗜酸。用抗热性试验研究了这些菌株产生芽孢的培养时间,结果表明,所有考察的菌株中,33株与DSM3922的生长周期一致,48h内产生芽孢;3株菌生长速度较快,培养17h就能产生芽孢;还有3株菌生长速度较慢,需培养48h后才能产生芽孢。在采用16S rDNA PCR-RFLP法对筛选得到的脂环酸芽孢杆菌进行快速鉴定的基础上,选取7株可能是新种的未知菌株与5株已知的参比菌株的19个表型特征进行了试验研究和聚类分析,结果进一步证实了这7株菌都是与已知参比菌株不同的菌株。  相似文献   

9.
醉马草内生菌的分离、鉴定及杀虫效果   总被引:1,自引:0,他引:1  
【目的】探明醉马草内生菌的种类,筛选对农作物虫害有毒杀作用的菌株。【方法】采用研磨法从健康醉马草植物的根、茎、叶和种子中进行菌种分离;通过对其形态、培养特征、生理生化及其他生物学特性的研究;16SrDNA及ITS序列的系统发育学分析进行鉴定;用玻片浸渍法和喷雾法筛选产杀虫活性物质菌株。【结果】获得细菌89株,分别属于枯草芽孢杆菌属(Bacillus)、链霉菌属(Streptomyces)、棒状杆菌属(Corynebacterium)、叶杆菌属(Phyllobacterium)、鞘脂单胞菌属(Sphingomonnas)、类芽孢杆菌(Paenibacillus)、假单胞菌属(Pseudomonas)和不动杆菌属(Acinetobacter)8个属;真菌2株,分别属于麦角菌属(Claviceps)和毛壳菌属(Chaetomium)。经初筛及复筛,内生菌娄彻氏链霉菌Streptomyces rochei(GA)和黑麦麦角菌Claviceps purpurea(PF-2)发酵液粗提物对棉蚜虫(Aphis gossypii)致死率达85%以上。【结论】醉马草内生菌株PF-2和GA的粗提代谢物对棉蚜虫有明显的毒杀作用,为开发新的生物源农药提供了生物源物质。  相似文献   

10.
【目的】认识药用昆虫九香虫(Aspongopus chinesis Dallas)成虫体内可培养细菌资源多样性。【方法】运用纯培养法、反转录重复因子扩增(BOXA1R-PCR)分析技术、16S r RNA基因测序和系统发育分析对样品中可培养细菌进行多样性研究,测定了分离菌株的抗菌特性、吲哚乙酸(IAA)含量和产淀粉酶活性等指标。【结果】通过6种不同培养基共分离得到52株菌落特征不同的细菌菌株。基于菌落特征和BOXA1R-PCR图谱选取12株代表菌株用于16S r RNA基因序列测定。16S r RNA基因序列系统发育分析显示,52株菌株分属于芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、寡养单胞菌属(Stenotrophomonas)和伯克霍尔德氏菌属(Burkholderia)4个属,其中芽孢杆菌属(Bacillus)为优势菌属。分离到的52株细菌有44株(占总分离菌株的84.6%)表现出对供试病原菌具有较好的抑制作用,高达94.2%的分离菌株能产IAA,有43株(占总分离菌株的82.7%)表现出淀粉酶活性。【结论】九香虫内细菌种群较为多样,具有潜在应用价值。  相似文献   

11.
A series of 4-hydroxycoumarin derivatives were designed and synthesized in order to find some more potent antibacterial drugs. Their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4g represented the most potent antibacterial activity against Bacillus subtilis and S. aureus with MIC of 0.236, 0.355 μg/mL, respectively. What’s more, it showed the most potent activity against SaFabI with IC50 of 0.57 μM. Molecular docking of 4g into S. aureus Enoyl-ACP-reductase active site were performed to determine the probable binding mode, while the QSAR model was built to check the previous work as well as to introduce new directions.  相似文献   

12.
A series of N-substituted carbazole derivatives were synthesized and evaluated for antibacterial and antifungal activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Bacillus proteus, Candida albicans and Aspergillus fumigatus by two fold serial dilution technique. Some of the synthesized compounds displayed comparable or even better antibacterial and antifungal activities than reference drugs fluconazole, chloramphenicol and norfloxacin against tested strains.  相似文献   

13.
为了研究对烟草中烟碱与绿原酸的快速生物降解,筛选了能有效降解烟草中烟碱与绿原酸的链霉菌Z6菌株与Z8菌株,考察了Z6和Z8菌株在不同培养基上的培养特征,探讨了所选菌株对烟碱与绿原酸的降解特性。实验结果表明,Z8链霉菌在烟草固体培养基中培养48h后,对培养基中烟碱的降解率达到83.9%;培养72h后,对烟碱的降解率可达到93.7%,此时烟草中的烟碱含量降低到0.38mg/g,达到了欧盟条例的无害化标准。Z6菌对绿原酸的降解程度较高,培养48h后,对绿原酸的降解率为57.1%;培养72h后,降解率可达到67.5%.  相似文献   

14.
Combined nano zinc oxide and titanium dioxide [nano (ZnO–TiO2)] has been reported first time for the synthesis of novel series of 4,5,6,7-tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl)methyl)thieno[2,3-c]pyridine. All the synthesized compounds (7a–7m) are novel and were screened for their antimicrobial activity against four different strains like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis and antifungal activity was determined against two strains Candida albicans and Aspergillus niger. SAR for the newly synthesised derivatives has been developed by comparing their MIC values with ampicillin, ciprofloxacin and miconazole for antibacterial and antifungal activities, respectively. Among the synthesized compounds, 2,6 dichlorophenyl analogue (7f), 4 fluorophenyl analogue (7k) and 2,6 dichlorophenyl analogue (7l) shows promising antibacterial as well as antifungal activity whereas thiophene substituted compound (7j) shows promising antibacterial activity.  相似文献   

15.
Amino acid conjugates of quinolone, metronidazole and sulfadiazine antibiotics were synthesized in good yields using benzotriazole methodology. All the conjugates were screened for their antibacterial activity using methods adapted from the Clinical and Laboratory Standards Institute. Antibiotic conjugates were tested for activity in four medically relevant organisms; Staphylococcus aureus (RN4220), Escherichia coli (DH5α), Pseudomonas aeruginosa (PAO1), and Bacillus subtilis (168). Several antibiotic conjugates show promising results against several of the strains screened.  相似文献   

16.
Thirty-seven entomopathogenic bacteria isolated from six common pests of hazelnut in the Black Sea Region of Turkey have been screened for their potential of antibacterial substance production against indicator bacteria by the agar spot assay and well diffusion assay. Results indicated that 13.5% of entomopathogenic bacteria, Pseudomonas fluorescens (Pf-Xd1), Bacillus polymyxa (Bp-Ar2), Bacillus thuringiensis (Bt-Bn1), Serratia marcescens (Sm-Mm3) and Pseudomonas flourescens (Pf-Aa4) isolated from pests of Xyleborus dispar, Anoplus roboris, Balaninus nucum, Melolontha melolontha and Agelastica alni, respectively, showed significant levels of inhibitor activities against indicator bacteria. Well diffusion assay showed that supernatants of Bp-Ar2, Bt-Bn1 and Sm-Mm3 have antibacterial activity, whereas Pf-Xd1 and Pf-Aa4 did not show any activity. Furthermore, the antibacterial activity of the substance produced by the Bp-Ar2 has a narrow spectrum, whereas those of Bt-Bn1 and Sm-Mm3 exhibit broad spectrum. The production of these antibacterial substances were similarly determined at early logarithmic phase in the growth cycle of three bacteria and continued until the beginning of the stationary phase as primer metabolite. In addition, optimal pH (at 7–9 forBt-Bn1 and 5–9 forSm-Mm3), medium (Muller Hinton broth forBt-Bn1 and Luria Bertani broth forSm-Mm3), temperature (25°C for Bt-Bn1 and Sm-Mm3) and production time (24h forBt-Bn1 and 72h forSm-Mm3) of these substances were determined. Our results demonstrate that entomopathogenic bacteria are a potential source of antibacterial substances.  相似文献   

17.
Amniotic membrane (AM), the innermost layer of the fetal membranes, has been widely employed in the surgical reconstruction and tissue engineering. Expression of the antimicrobial peptides such as defensins, elafin and SLPI which are essential elements of the innate immune system results in antibacterial properties of the AM. Preservation is necessary to reach a ready-to-use source of the AM. However, these methods might change the properties of the AM. The aim of this study was to evaluate antibacterial properties of the AM after preservation. Antibacterial property of the fresh AM was compared with cryopreserved and freeze-dried AM by modified disk diffusion method. Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and two clinical isolated strains of E. coli were cultured in Mueller Hinton agar and a piece of the AM was placed on agar surface. After 24 h incubation, the inhibition zone was measured. In addition, one of the most important antibacterial peptides, elafin, was measured by ELISA assay before and after preservations procedures. Antibacterial properties of the AM were maintained after cryopreservation and freeze-drying. However, the inhibition zone was depending on the bacterial strains. The cryopreservation and freeze-drying procedures significantly decreased elafin which shows that antibacterial property is not limited to the effects of amniotic cells and the other components such as extracellular matrix may contribute in antibacterial effects. The promising results of this study show that the preserved AM is a proper substitute of the fresh AM to be employed in clinical situations.  相似文献   

18.
The ability for rhizobacteria and fungus to act as bioprotectants via induced systemic resistance has been demonstrated, and considerable progress has been made in elucidating the mechanisms of plant–biocontrol agent–pathogen interactions. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27, and Bacillus subtilis BHHU100 from rhizospheric soils were used singly and in consortium and assessed on the basis of their ability to provide disease protection by relating changes in ascorbic acid and hydrogen peroxide (H2O2) production, lipid peroxidation, and antioxidant enzymes in pea under the challenge of Sclerotinia sclerotiorum. Increased production of H2O2 24 h after pathogen challenge was observed and was 254.4 and 231.7–287.7 % higher in the triple consortium and singly treated plants, respectively, when compared to untreated challenged control plants. A similar increase in ascorbic acid content and ascorbate peroxidase activity was observed 24 and 48 h after pathogen challenge, respectively, whereas increased activities of catalase, guaiacol peroxidase, and glutathione peroxidase were observed 72 h after pathogen challenge. Similarly, lipid peroxidation reached a maximum at 72 h of pathogen challenge and was 61.2 and 11.2–32.1 % less in the triple consortium and singly treated plants, respectively, when compared to untreated challenged control plants. These findings suggest that the interaction of microorganisms in the rhizosphere enhanced protection from oxidative stress generated by pathogen attack through induction of antioxidant enzymes and improved reactive oxygen species management.  相似文献   

19.
The purpose of the present study was to prepare new nanocomposites with antibacterial activities by surface modification of montmorillonite using quaternary ammonium compounds that are widely applied as disinfectants and antiseptics in food-processing environments. The intercalation of four quaternary ammonium compounds namely benzalkonium chloride, cetylpyridinium chloride monohydrate, hexadecyltrimethylammonium bromide, tetraethylammonium chloride hydrate into montmorillonite layers was confirmed by X-ray diffraction. The antibacterial influences of the modified clay variants against important foodborne pathogens differed based on modifiers quantities, microbial cell densities, and length of contact. Elution experiments through 0.1 g of the studied montmorillonite variants indicated that Staphylococcus aureus, Pseudomonas aeroginosa, and Listeria monocytogenes were the most sensitive strains. 1 g of hexadecyltrimethylammonium bromide intercalated montmorillonites demonstrated maximum inactivation of L. monocytogenes populations, with 4.5 log c.f.u./ml units of reduction. In adsorption experiments, 0.1 g of tetraethylammonium chloride hydrate montmorillonite variants significantly reduced the growth of Escherichia coli O157:H7, L. monocytogenes, and S. aureus populations by 5.77, 6.33, and 7.38 log units respectively. Growth of wide variety of microorganisms was strongly inhibited to undetectable levels (<log 2.0 c.f.u./g) when adsorbed to 1 g of benzalkonium chloride montmorillonite variants. This investigation highlights that reduction in counts of microbial populations adsorbed to the new nanocomposites was substantially different from that in elution experiments, where interactions of nanocomposites with bacteria were specific and more complex than simple ability to inactivate. Treatment columns packed with modified variants maintained their inactivation capacity to the growth of Salmonella Tennessee and S. aureus populations after 48 h of incubation at room temperature with maximum reductions of 6.3 and 5.0 log units respectively. New nanocomposites presented in this research may have potential applications in industrial scale for the control of foodborne pathogens by their incorporation into high-performance filters in food processing plant environments where selectivity in removal and/or inactivation of species in fluid flow streams is desirable. Nevertheless, extensive in vitro and in vivo studies of these new nanocomposites is essential to outpace the understanding of their potential impacts and consequences on human health and the environment if they will make an appearance in commercialized food packaging and containment food materials in the future.  相似文献   

20.
Summary Nineteen bacterial strains able to degrade and metabolize formaldehyde as a sole carbon source were isolated from soil and wastewater of a formaldehyde production factory. The samples were cultured in complex and mineral salts media containing 370 mg formaldehyde/l. The bacterial strains were identified to be Pseudomonas pseudoalcaligenes, P. aeruginosa, P. testosteroni, P. putida, and Methylobacterium extorquens. After adaptation of these microorganisms to high concentrations of formaldehyde; two isolated strains of M. extorquens (strains ESS and PSS) and four strains of P. pseudoalcaligenes (strains LSW, SSW, NSW and OSS) degraded 1850 mg formaldehyde/l, where as P. pseudoalcaligenes strain OSS completely consumed 3700 mg of formaldehyde/l after 24 h and degraded 70% of 5920 mg of formaldehyde/l after 72 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号