首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this investigation, studies were conducted to determine if size exclusion HPLC could be used to assess relative association rates (on-rates) and dissociation rates (off-rates) of biotin derivatives from avidin (Av) and streptavidin (SAv). For easy detection and quantification of biotin derivatives, molecules that can be detected by UV absorbance were conjugated to biotin. Concern that conjugation of the chromophoric moieties (dyes) might affect biotin binding with Av and SAv or might interact with the HPLC column led to evaluation of 10 biotin-dye conjugates. The dyes conjugated with biotin included dansyl, cyanocobalamin (CN-Cbl), coumarin 343, Lissamine-rhodamine, fluorescein, Cascade Blue, Lucifer Yellow, Oregon Green, tetramethylrhodamine, and Alexa Fluor 594. The biotin-dye conjugates were initially evaluated to determine their peak characteristics on two different size exclusion HPLC columns. Measurement of the percent of biotin-dye conjugate bound with Av in the presence of an equal quantity of biotin provided an association rate relative to biotin. All of the biotin-dyes tested had association rates within a factor of 3x (slower) that of biotin. The relative dissociation rate of biotin-dye conjugates was assessed by challenging the biotin conjugate bound to Av or SAv with a large excess of biotin. All of the initial biotin-dye conjugates tested bound Av and SAv tightly resulting in very slow dissociation rates. From the biotin-dye conjugates studied, biotin-CN-Cbl, 6b, was selected as the best conjugate for the HPLC assay. To test the HPLC assay, an iminobiotin-CN-Cbl conjugate, 13a, and a biotin-sarcosine-CN-Cbl conjugate, 13b, were synthesized. The fact that the iminobiotin does not bind with Av at physiological pH was easily detected in the size exclusion HPLC assay. The biotin-sarcosine-CN-Cbl conjugate was expected to have a more rapid dissociation rate than the other biotin-dye conjugates. This was confirmed in that HPLC assay. Although 13b bound tightly with Av in the absence of added biotin, it was completely released within 1 h when challenged by an excess of biotin. A slower dissociation of 13b was noted with SAv. The results obtained indicate that CN-Cbl conjugates of biotin derivatives can be used to determine relative on-rates and off-rates of biotin derivatives with Av and SAv. The studies also demonstrated that the biotin-CN-Cbl conjugate, 6b, can be used as a reference compound to compare on-rates and off-rates of nonchromophoric biotin derivatives.  相似文献   

2.
An investigation was conducted to determine the affect of structural variation of biotin conjugates on their dissociation rates from Av and SAv. This information was sought to help identify optimal biotin derivatives for in vivo applications. Fifteen biotin derivatives were conjugated with a cyanocobalamin (CN-Cbl) derivative for evaluation of their "relative" dissociation rates by size exclusion HPLC analysis. Two biotin-CN-Cbl conjugates, one containing unaltered biotin and the other containing iminobiotin, were prepared as reference compounds for comparison purposes. The first structural variations studied involved modification of the biotinamide bond with a N-methyl moiety (i.e., sarcosine conjugate), lengthening the valeric acid side chain by a methylene unit (i.e., homobiotin), and replacing the biotinamide bond with thiourea bonds in two conjugates. The rate of dissociation of the biotin-CN-Cbl derivative from Av and SAv was significantly increased for biotin derivatives containing those structural features. Nine additional biotin conjugates were obtained by coupling amino acids or functional group protected amino acids to the biotin moiety. In the conjugates, the biotin moiety and biotinamide bond were not altered, but substituents of various sizes were introduced alpha to the biotinamide bond. The results obtained from HPLC analyses indicated that the rate of dissociation from Av or SAv was not affected by small substituents alpha to the biotinamide (e.g., methyl, hydroxymethyl, and carboxylate groups), but was significantly increased when larger functional groups were present. On the basis of the results obtained, it appears that biotin conjugates which retain an unmodified biotin moiety and have a linker molecule conjugated to it that has a small functional group (e.g., hydroxymethylene or carboxylate) alpha to the biotinamide bond are excellent candidates for in vivo applications. These structural features are obtained in the biotin amino acid conjugates: biotin-serine, biotin-aspartate, biotin-lysine, and biotin-cysteine. Importantly, these biotin derivatives can be readily conjugated with other molecules for specific in vivo applications. In our studies, these derivatives will be used in the design of new biotin conjugates to carry radionuclides for cancer therapy using the pretargeting approach.  相似文献   

3.
Avidin was modified with poly(ethylene glycol) in the presence of a biotin binding site protective agent synthesised by imminobiotin conjugation to branched 20 kDa PEG. Avidin was incubated with imminobiotin–PEG and reacted with high amounts of 5, 10 or 20 kDa PEG to modify the protein amino groups. Circular dichroism demonstrated that the extensive PEGylation does not alter the protein conformational structure. The affinity of avidin–PEG conjugates for biotin and biotinylated antibodies depended on the PEG size or the use of a protective agent. Avidin–PEG 10 and 20 kDa prepared in the presence of imminobiotin–PEG maintained 100% of the native affinity for biotin. The 5 kDa PEG derivative and the ones obtained without biotin site protection maintained 79–85% of the native affinity. The affinity for biotinylated antibodies decreased to 35% when the conjugation was performed without imminobiotin–PEG, while the conjugates obtained with high-molecular-weight PEGs in the presence of protective agent displayed high residual affinity. All conjugates possessed negligible antigenicity and immunogenicity. PEGylation greatly prolonged the avidin permanence in the circulation, reduced its disposition in the liver and kidneys and promoted accumulation into solid tumors. PEGylation was found to prevent the protein cell uptake, either by phagocytosis or pinocytosis.  相似文献   

4.
《MABS-AUSTIN》2013,5(3):362-372
Antibody-drug conjugates (ADCs) with biotin as a model cargo tethered to IgG1 mAbs via different linkers and conjugation methods were prepared and tested for thermostability and ability to bind target antigen and Fc receptor. Most conjugates demonstrated decreased thermostability relative to unconjugated antibody, based on DSC, with carbohydrate and amine coupled ADCs showing the least effect compared with thiol coupled conjugates. A strong correlation between biotin-load and loss of stability is observed with thiol conjugation to one IgG scaffold, but the stability of a second IgG scaffold is relatively insensitive to biotin load. The same correlation for amine coupling was less significant. Binding of antibody to antigen and Fc receptor was investigated using surface plasmon resonance. None of the conjugates exhibited altered antigen affinity. Fc receptor FcγIIb (CD32b) interactions were investigated using captured antibody conjugate. Protein G and Protein A, known inhibitors of Fc receptor (FcR) binding to IgG, were also used to extend the analysis of the impact of conjugation on Fc receptor binding. H10NPEG4 was the only conjugate to show significant negative impact to FcR binding, which is likely due to higher biotin-load compared with the other ADCs. The ADC aHISNLC and aHISTPEG8 demonstrated some loss in affinity for FcR, but to much lower extent. The general insensitivity of target binding and effector function of the IgG1 platform to conjugation highlight their utility. The observed changes in thermostability require consideration for the choice of conjugation chemistry, depending on the system being pursued and particular application of the conjugate.  相似文献   

5.
The equilibrium binding constants and stoichiometries between PEGylated biotins and avidin have been studied for a range of PEGylated biotin molecular weights. These studies show that as the molecular weight of PEG (polyethylene glycol) increases over the range 588, 3400, and 5000 g/mol, the equilibrium dissociation constants of PEGylated biotins with avidin increase to approximately 10 (-8) M compared with 10 (-15) M for the biotin-avidin complex. The stoichiometries of PEGylated biotins with avidin are 4:1 for 588 and 3400 g/mol PEG and 1:1 for 5000 g/mol PEG. The data demonstrate that the equilibrium binding constant and the stoichiometry of the avidin-biotin-PEG complex system can be adjusted by the length of PEG chains. This approach may be used with PEGylated biotin analogues for pretargeting in drug delivery, such as a biotin-PEGylated enzyme for converting an inactive prodrug into a cytotoxin. When a PEG chain is chosen as an appropriate spacer, the length of the PEG chain must be considered because PEG can block the binding sites on avidin.  相似文献   

6.
Covalent attachment of poly(ethylene glycol) (PEG) to therapeutic proteins has been used to prolong in vivo exposure of therapeutic proteins. We have examined pharmacokinetic, biodistribution, and biophysical profiles of three different tumor necrosis factor alpha (TNF) Nanobody-40 kDa PEG conjugates: linear 1 × 40 KDa, branched 2 × 20 kDa, and 4 × 10 kDa conjugates. In accord with earlier reports, the superior PK profile was observed for the branched versus linear PEG conjugates, while all three conjugates had similar potency in a cell-based assay. Our results also indicate that (i) a superior PK profile of branched versus linear PEGs is likely to hold across species, (ii) for a given PEG size, the extent of PEG branching affects the PK profile, and (iii) tissue penetration may differ between linear and branched PEG conjugates in a tissue-specific manner. Biophysical analysis (R(g)/R(h) ratio) demonstrated that among the three protein-PEG conjugates the linear PEG conjugate had the most extended time-average conformation and the most exposed surface charges. We hypothesized that these biophysical characteristics of the linear PEG conjugate accounts for relatively less optimal masking of sites involved in elimination of the PEGylated Nanobodies (e.g., intracellular uptake and proteolysis), leading to lower in vivo exposure compared to the branched PEG conjugates. However, additional studies are needed to test this hypothesis.  相似文献   

7.
Polyethylene glycol (PEG) surface modified biocompatible InP/ZnS quantum dots (QDs) act as a potential alternative for conventional carcinogenic cadmium‐based quantum dots for in vivo and in vitro studies. Comprehensively, we studied the interaction between a model protein bovine serum albumin (BSA) and PEGylated toxic free InP/ZnS QDs using various spectroscopic tools such as absorption, fluorescence quenching, time resolved and synchronous fluorescence spectroscopic measurements. These studies principally show that tryptophan (Trp) residues of BSA have preferable binding affinity towards PEG‐InP/ZnS QDs surface and a blue shift in Trp fluorescence emission is a signature of conformational changes in its hydrophobic microenvironment. Photoluminescence (PL) intensity of Trp is quenched by ground state complex formation (static quenching) at room temperature. However, InP/ZnS@BSA conjugates become unstable with increasing temperature and PL intensity of Trp is quenched via dynamic quenching by PEG‐InP/ZnS QDs. Experimentally determined thermodynamic parameters for these conjugates have shown spontaneity, entropy driven and exothermic nature of bio‐conjugation. The calculated binding affinity (n ? 1, Hill coefficient) suggest that the affinity of InP/ZnS QDs for a BSA protein is not dependent on whether or not other BSA proteins are already bound to the QD surface. Energy transfer efficiency (E), Trp residue to InP/ZnS QDs distances and energy transfer rate (kT) were all obtained from FÖrster resonance energy.  相似文献   

8.
Antibody-drug conjugates (ADCs) with biotin as a model cargo tethered to IgG1 mAbs via different linkers and conjugation methods were prepared and tested for thermostability and ability to bind target antigen and Fc receptor. Most conjugates demonstrated decreased thermostability relative to unconjugated antibody, based on DSC, with carbohydrate and amine coupled ADCs showing the least effect compared with thiol coupled conjugates. A strong correlation between biotin-load and loss of stability is observed with thiol conjugation to one IgG scaffold, but the stability of a second IgG scaffold is relatively insensitive to biotin load. The same correlation for amine coupling was less significant. Binding of antibody to antigen and Fc receptor was investigated using surface plasmon resonance. None of the conjugates exhibited altered antigen affinity. Fc receptor FcγIIb (CD32b) interactions were investigated using captured antibody conjugate. Protein G and Protein A, known inhibitors of Fc receptor (FcR) binding to IgG, were also used to extend the analysis of the impact of conjugation on Fc receptor binding. H10NPEG4 was the only conjugate to show significant negative impact to FcR binding, which is likely due to higher biotin-load compared with the other ADCs. The ADC aHISNLC and aHISTPEG8 demonstrated some loss in affinity for FcR, but to much lower extent. The general insensitivity of target binding and effector function of the IgG1 platform to conjugation highlight their utility. The observed changes in thermostability require consideration for the choice of conjugation chemistry, depending on the system being pursued and particular application of the conjugate.  相似文献   

9.
CdTe quantum dots (QDs)-based electrochemical sensor for recognition of neutravidin, as a model protein, using anodic stripping voltammetry at electrodeposited bismuth film is presented. This biosensor involves the immobilization of the captured QDs conjugates which was dissolved with 1M HCl solution to release cadmium ions and metal components were quantified by anodic stripping voltammetry after a 3-min accumulation at -1.2V on bismuth-film electrode (BiFE) of the biotin, served as recognition element, onto the gold surface in connection with a cysteamine self-assembled monolayer. The modification procedure was characterized by electrochemical impedance spectroscopy and atomic force microscopy. We exploit QDs as labels for amplifying signal output and monitoring the extent of competition process between CdTe-labeled neutravidin and the target neutravidin for the limited binding sites on biotin. As expected for the competitive mechanism, the recognition event thus yields distinct cadmium stripping voltammetric current peak, whose response decreases upon increasing the level of target neutravidin concentrations. Under optimal conditions, the voltammetric response is highly linear over the range of 0.5-100 ngL(-1) neutravidin and the limit of detection is estimated to be 0.3 ngL(-1) (5 nM). Unlike earlier two-step sandwich bioassays, the present protocol relies on a one-step competitive assay, which is more accurate and sensitive, showing great promise for rapid, simple and cost-effective analysis of protein.  相似文献   

10.
Graft copolymers of chitosan and PEG-CO(2)H incorporating biologically active molecules and tags (mannose, cholesterol, a coumarin dye, and biotin) at the distal end of poly(ethylene glycol) (PEG) have been synthesized in excellent yields and nearly quantitative mass recoveries. Experimental conditions allowing the preparation of multifunctional graft copolymers incorporating simultaneously several of those active molecules and tags in controlled ratios are also presented. The required functionalized PEG-CO(2)H conjugates have been prepared from a heterodifunctional PEG and the experimental conditions established to ensure the purity of PEG end groups ((1)H and (13)C NMR and matrix-assisted laser desorption/ionization mass spectrometry-time of flight (MALDI-TOF)) and the completion of each synthetic step.  相似文献   

11.
Gao X  Chen J  Chen J  Wu B  Chen H  Jiang X 《Bioconjugate chemistry》2008,19(11):2189-2195
Delivery of imaging agents to the brain is highly important for the diagnosis and treatment of central nervous system (CNS) diseases, as well as the elucidation of their pathophysiology. Quantum dots (QDs) provide a novel probe with unique physical, chemical, and optical properties, and become a promising tool for in vivo molecular and cellular imaging. However, their poor stability and low blood-brain barrier permeability severely limit their ability to enter into and act on their target sites in the CNS following parenteral administration. Here, we developed a QDs-based imaging platform for brain imaging by incorporating QDs into the core of poly(ethylene glycol)-poly(lactic acid) nanoparticles, which was then functionalized with wheat germ agglutinin and delivered into the brain via nasal application. The resulting nanoparticles, with high payload capacity, are water-soluble, stable, and showed excellent and safe brain targeting and imaging properties. With PEG functional terminal groups available on the nanoparticles surface, this nanoprobe allows for conjugation of various biological ligands, holding considerable potential for the development of specific imaging agents for various CNS diseases.  相似文献   

12.
Low molecular weight copolymers of acrylic acid (AAc) and N-isopropylacrylamide (NIPAAm) have been synthesized with reactive OH groups at one end, using a chain transfer polymerization technique. The copolymer displays both pH and temperature sensitivity over a wide and useful range of pHs and temperatures, which permits both pH and temperature control of polymer conformation. This copolymer has been conjugated to a specific cysteine thiol site inserted by genetic engineering near the recognition site of streptavidin (SAv). In this paper, we demonstrate that this bioconjugate can provide pH control of biotin binding to and triggered release from the mutant SAv. These actions are relevant to affinity separations, biosensors, diagnostics, enzyme processes, and targeted delivery of drugs or chemical agents, labels, and other signals.  相似文献   

13.
Porcine organs are rapidly rejected after transplantation into primate recipients due to the presence of preexisting immunoglobulins that bind to terminal galactose alpha1,3 galactose residues (alpha-galactosyl) present on porcine glycoproteins and glycolipids. Currently available immunosuppressive reagents have been largely ineffective at controlling the synthesis of these anti-Gal antibodies. Nonantigenic hapten polymers have been shown to be effective materials for blocking humoral immune responses in various model systems. We have developed a series of alpha-galactosyl glycoconjugate polymers and tested their ability to block anti-Gal antibody binding in vitro and in vivo. A galactose alpha1,3 galactose beta 1,4 GlcNAc trisaccharide free acid (TRFA) with a hexanoic acid spacer, containing five methylene groups and a carboxylic acid, was produced and coupled to a variety of polymeric backbones including dextran, branched poly(ethylene glycol) (PEG), and poly-L-lysine. The ability of monomeric TRFA and the alpha-galactosyl conjugates to block anti-Gal IgG and IgM binding was determined using a competition ELISA assay on defined HSA-Gal glycoconjugates and porcine microvascular endothelial cell substrates. We show that branched PEG carriers, with a TRFA sugar attached to each branch, exhibit enhanced antibody blocking ability compared to TRFA, but at higher target antigen densities these simple PEG conjugates are no more effective then an equivalent amount of TRFA in blocking anti-Gal IgM antibody interactions. In contrast, polymers of the branched PEG conjugates and linear conjugates made using dextran and poly-L-lysine were 2000 to 70000-fold more effective inhibitors of anti-Gal antibodies. In a study using nonhuman primates, a single dose infusion of polymeric PEG or dextran glycoconjugates dramatically reduced the level of circulating anti-Gal antibodies in cynomologus monkeys for at least 72 h. Glycoconjugates similar to these might be useful both to block anti-Gal interactions in vivo and to specifically control the induced anti-Gal immune response.  相似文献   

14.
A flexible, trifunctional poly(ethylene glycol)-succinamide-Lysine-Lysine-maleimide (PEG-SU-Lys-Lys-mal) linker was employed to simultaneously allow biotin tagging and cell-surface targeting through an integrin alpha(4)beta(1)-binding peptidomimetic that was regiospecifically conjugated to an IgG1-derived Fc fragment with an engineered C-terminal selenocysteine residue. The resulting antibody derivative mediates Fc receptor binding by virtue of the Fc protein and selectively targets cancer cells expressing human integrin alpha(4)beta(1). The PEG-SU-Lys-Lys-mal linker may have general utility as an organic tether for the construction of antibody-drug conjugates.  相似文献   

15.
The determination of hormone‐binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA‐binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3‐mercaptopropionic acid (MPA) to 4‐amino‐2‐hydroxybenzoic acid (PAS), using 1‐ethyl‐3‐(3‐dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS–CdSe QDs were used to detect SA‐binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS–CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS–CdSe QDs on cytosolic Ca2+ levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS–CdSe QDs had similar effects on the trend in cytosolic‐free Ca2+ concentrations, suggesting that the PAS–CdSe QDs maintained the bioactivity of SA. To summarize, PAS–CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A biotin-coated quartz crystal microbalance (QCM) chip was prepared by dip-coating a long-chain alkanethiol-modified crystal with precoupled dextran-biotin hydrogels. The resulting biotin chip was used to affinity-immobilize streptavidin (SAv) and was then further employed for various biosensor assays. First, the SAv chip allowed efficient on-line binding of biotinylated bovine serum albumin (bBSA), followed by a sensitive and specific response toward anti-bovine serum albumin (BSA) antibodies. Three consecutive immunoassays were reproducibly demonstrated with a single chip. The apparent binding kinetics with kon = 5.9 μM−1 h−1, koff = 10.1 h−1, and KD = 1.71 μM was readily resolved by fitting the real-time sensorgrams. Second, the capability of the SAv chip to selectively recognize recombinant Escherichia coli with flagella displaying an artificial SAv binding peptide, Strep-tag II, was demonstrated by QCM analysis and verified by scanning transmission electron microscope (STEM) image analysis with biotin-coated gold nanoparticles as the label. Finally, the affinity of the cell-displayed Strep-tag II peptide to surface-coated SAv, KD = 6.8 × 108 CFU/ml, was resolved on-line using equilibrium binding kinetics by QCM. This study presents an easy, economical, and reliable method of preparing high-performance SAv-coated biotin chips with potential for application in real-time repetitive immunoassays, on-line binding kinetics studies, and high-affinity peptide screening.  相似文献   

17.
As part of our program directed toward the design and synthesis of high-affinity ligands for the GalCer-binding site on the HIV cell surface glycoprotein, gp120, we required a reliable method for qualitatively assessing relative binding affinities for related analogues. Due to the hydrophilic nature of these synthetic conjugates, difficulties were encountered with typical ELISA methods, which rely upon hydrophobic interactions to anchor the ligand to a microtiter plate. Other types of assays were also problematic due to nonspecific binding of gp120. Therefore, we developed a general method for plating water-soluble ligands on microtiter plates using biotin/NeutrAvidin recognition for adhesion. A water-soluble GalCer analogue was prepared by conjugating psychosine to biotin using a novel tetraethylene glycol linker. In a similar manner, LacCer and GlcCer analogues were prepared and these conjugates were plated into microtiter wells containing NeutrAvidin. Unoccupied sites were blocked using biotin functionalized as a primary amide. Gp120 binding to galactosyl sphingosine, GalSph (19), GlcSph (22), and LacSph (23) conjugates was assessed through incubation with recombinant HRP-gp120. It was determined that LacSph has the strongest interaction with gp120. The binding affinities of GalSph and GlcSph were similar to each other and less strong than LacSph. These data contradict earlier studies where HPTLC showed that LacCer and GlcCer do not significantly bind gp120. They also contradict liposome-based assays that reported psychosine is not recognized by gp120. The extent of plating for each biotinylated molecule was quantified using HRP-biotin, allowing direct comparison of ligand plating efficiencies for the first time. Several other synthetic biotin conjugates were prepared and tested, demonstrating the feasibility of performing ELISA on water-soluble ligands.  相似文献   

18.
The relative difference in polymeric architectures of dendrimer and linear bis(poly(ethylene glycol)) (PEG) polymer in conjugation with paclitaxel has been described. Paclitaxel, a poorly soluble anticancer drug, was covalently conjugated with PAMAM G4 hydroxyl-terminated dendrimer and bis(PEG) polymer for the potential enhancement of drug solubility and cytotoxicity. Both conjugates were characterized by 1NMR, HPLC, and MALDI/TOF. In addition, molecular conformations of dendrimer, bis(PEG), paclitaxel, and its polymeric conjugates were studied by molecular modeling. Hydrolysis of the ester bond in the conjugate was analyzed by HPLC using esterase hydrolyzing enzyme. In vitro cytotoxicity of dendrimer, bis(PEG), paclitaxel, and polymeric conjugates containing paclitaxel was evaluated using A2780 human ovarian carcinoma cells. Cytotoxicity increased by 10-fold with PAMAM dendrimer-succinic acid-paclitaxel conjugate when compared with free nonconjugated drug. Data obtained indicate that the nanosized dendritic polymer conjugates can be used with good success as anticancer drug carriers.  相似文献   

19.
Water‐soluble quantum dots (QDs) for liver cancer diagnosis were prepared using QDs with oleylamine ligand coated with poly(aspartate)–graft–poly(ethylene glycol)–dodecylamine (PASP–Na–g–PEG–DDA). Dynamic light scattering and transmission electron microscopy imaging showed that the novel QDs have an ellipsoidal morphology with a size of ~ 45 nm which could be used for biomedical application. Furthermore, the PASP–Na–g–PEG–DDA was then modified with anti‐(vascular endothelial growth factor) (VEGF antibody), and a 1‐(4,5‐dimethylthiazol‐2‐yl)‐3,5‐diphenylformazan (MTT) assay showed that the novel anti‐VEGF‐targeting QDs in vitro had low toxicity. Confocal laser scanning microscopy observations revealed an intracellular (HepG2) distribution of the novel anti‐VEGF‐targeting QDs and the targeting efficiency of anti‐VEGF. These novel QDs could be used as a probe for liver cancer cell imaging because of anti‐VEGF targeting. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
We have previously shown that CdSe/ZnS core/shell luminescent semiconductor nanocrystals or QDs (quantum dots) coated with PEG [poly(ethylene glycol)]-appended DHLA (dihydrolipoic acid) can bind AcWG(Pal)VKIKKP9GGH6 (Palm1) through the histidine residues. The coating on the QD provides colloidal stability and this peptide complex uniquely allows the QDs to be taken up by cultured cells and readily exit the endosome into the soma. We now show that use of a polyampholyte coating [in which the neutral PEG is replaced by the negatively heterocharged CL4 (compact ligand)], results in the specific targeting of the palmitoylated peptide to neurons in mature rat hippocampal slice cultures. There was no noticeable uptake by astrocytes, oligodendrocytes or microglia (identified by immunocytochemistry), demonstrating neuronal specificity to the overall negatively charged CL4 coating. In addition, EM (electron microscopy) images confirm the endosomal egress ability of the Palm1 peptide by showing a much more disperse cytosolic distribution of the CL4 QDs conjugated to Palm1 compared with CL4 QDs alone. This suggests a novel and robust way of delivering neurotherapeutics to neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号