首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
肺癌的表皮生长因子受体分子靶向治疗与基因突变   总被引:1,自引:0,他引:1  
肺癌分子靶向治疗近年来取得较大进展,特别是针对表皮生长因子受体(EGFR)分子靶向药物表现出确定的临床效果。临床应用表明,EGFR基因酪氨酸激酶域体细胞突变与非小细胞肺癌患者对酪氨酸激酶抑制剂吉非替尼的敏感性相关,本文就相关的研究进行了简述。  相似文献   

2.
EGFR基因在非小细胞肺癌、乳腺癌中突变的研究   总被引:3,自引:0,他引:3  
表皮生长因子受体(EGFR)基因酪氨酸激酶域体细胞突变与非小细胞肺癌(NSCLC)患者对酪氨酸激酶抑制剂吉非替尼敏感性密切相关。文章分析和检测本院75例非小细胞肺癌、10例乳腺癌患者石蜡包埋标本EGFR基因突变状况。采用PCR技术进行EGFR基因19和21外显子突变分析。结果显示:75例NSCLC患者中有13例(13/75,17.33%)酪氨酸激酶域存在体细胞突变。其中7例(7/75,9.33%)为19外显子缺失突变,6例(6/75,8%)为21外显子替代突变(2573T>G,L858R)。病理分型显示,腺癌突变率高于其他几种类型NSCLC。乳腺癌患者均为免疫组化HER-2阳性女性,EGFR基因的19、21外显子中未见突变发生。中国非小细胞肺癌患者总突变率高于高加索人种,女性患者较男性患者突变率高,提示肺腺癌的患者突变率高可能在吉非替尼的治疗中获益。  相似文献   

3.
目的:探讨表皮生长因子受体(EGFR)基因突变与棘皮动物微管相关样蛋白4与间变性淋巴瘤激酶(EML4-ALK)融合基因共存(以下简称双基因异常)的非小细胞肺癌的临床病理特征及治疗策略。方法:回顾性收集并分析2012年1月至2016年12月我院收治的EGFR突变与EML4-ALK融合基因共存的非小细胞肺癌患者的临床资料及病理特点。结果:11例双突变非小细胞肺癌占医院同期入院非小细胞肺癌患者的0.68%(11/1620);男性6例,女性5例;年龄23-70岁,平均年龄51.6岁;11例患者均不吸烟;腺癌9例,肉瘤样癌2例;临床分期,ⅠA期3例,ⅡB期1例,ⅢA期1例,ⅢB期1例,ⅠV期5例;6例行手术治疗,4例使用传统化疗,最好疗效为稳定(SD),最长无进展生存期(PFS)为6月;5例患者使用表皮生长因子酪氨酸激酶抑制剂(EGFR-TKⅠ)治疗,使用EGFR-TKⅠ最好疗效为部分缓解(PR),PFS为3-23月,中位PFS为9月;截止2017年12月,死亡4例,11例患者的生存时间为1-67月,中位存活时间为21月。结论:EGFR基因突变与EML4-ALK融合基因共存型非小细胞肺癌临床少见,多见于不吸烟或少吸烟的肺腺癌患者,双基因异常的非小细胞肺癌的靶向药物的治疗缺乏统一性,有待进一步研究,基于EGFR及EML4-ALK的磷酸化水平或肿瘤突变负荷选择靶向药物的个体化精准治疗是非常重要的。  相似文献   

4.
肺癌EGFR突变与酪氨酸激酶抑制剂临床敏感性的关系   总被引:1,自引:0,他引:1  
王俊  郭燕  陈正堂 《生命的化学》2006,26(5):443-445
表皮生长因子受体(EGFR)酪氨酸激酶抑制剂(TKI)是近年来在临床中使用的一类新的小分子靶向药物,主要用于晚期非小细胞肺癌(NSCLC)的治疗,然而并非所有的NSCLC患者对TKI敏感。近期研究发现,在NSCLC治疗过程中,EGFR突变与TKI临床敏感性密切相关,通过检测肺癌EGFR突变状况可以预测TKI治疗的效果。  相似文献   

5.
目的探讨非小细胞肺癌(non-small cell lung cancer,NSCLC)患者中表皮生长因子受体(epidermic growth factor receptor,EGFR)突变、间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)和ROS1融合基因的表达情况及其与临床病理特征的关系。方法应用ARMS法检测379例非小细胞肺癌患者中EGFR突变、ALK和ROS1融合基因的表达情况,并分析其与患者临床病理特征的关系。结果 379例非小细胞肺癌患者组织中,EGFR突变率为36.15%(137/379),19del和L858R突变为其主要突变类型,同时检出L858R和T790双突变4例,L858R和19del双突变2例;EGFR突变人群主要是女性、腺癌、非吸烟患者(P<0.05)。ALK融合基因阳性率为3.43%(13/379),其中ALK-M1融合基因型4例,ALK-M2融合基因型3例,ALK-M3融合基因型3例,ALK-M4融合基因型1例,ALK-M6融合基因型2例。ROS1融合基因阳性率为3.17%(12/379),主要为ROS1-M8融合基因型(8例),存在1例ROS1-M3和ROS1-M8融合基因型双融合。不同性别、年龄、组织学和吸烟状况的NSCLC患者ALK和ROS1基因突变率无统计学差异。结论 EGFR基因在NSCLC患者中存在较高的突变率,而ALK、ROS1融合基因在NSCLC患者中突变率较低,但代表了非小细胞肺癌的特点分子亚型,为指导临床靶向治疗提供依据。  相似文献   

6.
癌组织中表皮生长因子受体(epidermal growth factor receptor,EGFR)基因突变是应用靶向药物EGFR酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)治疗的一个重要相关因素及预测指标。对其突变的检测可以指导TKI类药物(TKIs)的最佳应用。该种突变常出现在非小细胞肺癌(NSCLC)中,尤其是在亚洲女性、肺腺癌、非吸烟者中,与非小细胞肺癌患者对TKIs治疗的敏感性密切相关。本文旨在探讨利用EGFR基因的已知突变热点的相关知识选择适合不同分子遗传学背景的群体或/和个体的"个体化"治疗方案,最终达到延长肺癌患者生存时间和提高生活质量的双重目的。  相似文献   

7.
癌组织中表皮生长因子受体(epidermal growth factor receptor,EGFR)基因突变是应用靶向药物EGFR酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)治疗的一个重要相关因素及预测指标。对其突变的检测可以指导TKI类药物(TKIs)的最佳应用。该种突变常出现在非小细胞肺癌(NSCLC)中,尤其是在亚洲女性、肺腺癌、非吸烟者中,与非小细胞肺癌患者对TKIs治疗的敏感性密切相关。本文旨在探讨利用EGFR基因的已知突变热点的相关知识选择适合不同分子遗传学背景的群体或/和个体的"个体化"治疗方案,最终达到延长肺癌患者生存时间和提高生活质量的双重目的。  相似文献   

8.
肺癌是全球致死率最高的恶性肿瘤,其中非小细胞肺癌(NSCLC)占全部肺癌病例的 80% 左右。相较于传统化疗,表皮生长因 子受体酪氨酸激酶抑制剂(EGFR-TKIs)用于 EGFR 突变型 NSCLC 患者,可获得更为卓越的疗效。但是,EGFR-TKIs 长期使用会产生 获得性耐药,主要机制为 EGFR T790M 突变。临床研究表明,以奥希替尼、rociletinib 和 HM61713 为代表的第三代 EGFR-TKIs 对 EGFR T790M 突变阳性 NSCLC 具有较好的疗效,为 EGFR T790M 突变阳性患者的有效治疗带来了新的希望。综述第三代 EGFR-TKIs 的最新临床研究及耐药机制研究进展。  相似文献   

9.
表皮生长因子受体酪氨酸激酶抑制剂(EGFR TKI)是治疗非小细胞肺癌的一线药物,但在治疗过程中难以避免耐药性的产生.目前已知的获得性耐药机制主要包括EGFR T790M突变、HER2基因扩增、MET基因扩增、转分化等,并尚有15%~20%的患者的耐药机制不明.本研究发展了一种基于液体活检与高通量测序方式解析肺癌患者靶向药物耐药机制的方法.我们通过液体活检的方式取得了接受EGFR TKI治疗肺腺癌患者治疗前及EGFR TKI耐药后的胸腔积液样本,在对其中的肿瘤细胞进行富集后,通过基因组及转录组的高通量测序并结合生物信息学分析,解析耐药前、耐药后基因组变异以及基因表达的差异,进而探究该患者的靶向药物耐药机制,为制订新的治疗方案提供科学依据.  相似文献   

10.
表皮生长因子受体(epithelial growth factor receptor,EGFR)信号转导通路在非小细胞肺癌(Non-Small Cell Lung Cancer,NSCLC)中发挥重要作用,尤其胞内酪氨酸激酶结构域的突变状态决定了目前NSCLC的靶向治疗。针对EGFR突变的分子靶向药物表皮生长因子受体酪氨酸激酶抑制剂(epithelial growth factor receptor tyrosine kinase inhibitors,EGFR-TKIs)已开发并应用于NSCLC的治疗。在治疗过程中,EGFR的突变状态随时间发生动态变化,因此精准掌握EGFR的突变状态是靶向治疗方案制定、优化的关键。PET分子成像可在细胞和分子水平,对在体生物活动的发生、发展过程进行实时成像,使实时、在体揭示EGFR的突变状态成为可能。因此,多种以TKIs为前体标记放射性核素作为靶向肿瘤突变EGFR胞内段分子成像探针的研究逐渐增多。本文就EGFR-TKIs在NSCLC治疗及相关PET分子成像方面的研究进展进行综述。  相似文献   

11.
EGFR mutations correlate with improved clinical outcome whereas KRAS mutations are associated with lack of response to tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Endobronchial ultrasound (EBUS)-transbronchial needle aspiration (TBNA) is being increasingly used in the management of NSCLC. Co-amplification at lower denaturation temperature (COLD)-polymerase chain reaction (PCR) (COLD-PCR) is a sensitive assay for the detection of genetic mutations in solid tumours. This study assessed the feasibility of using COLD-PCR to screen for EGFR and KRAS mutations in cytology samples obtained by EBUS-TBNA in routine clinical practice. Samples obtained from NSCLC patients undergoing EBUS-TBNA were evaluated according to our standard clinical protocols. DNA extracted from these samples was subjected to COLD-PCR to amplify exons 18-21 of EGFR and exons two and three of KRAS followed by direct sequencing. Mutation analysis was performed in 131 of 132 (99.3%) NSCLC patients (70F/62M) with confirmed lymph node metastases (94/132 (71.2%) adenocarcinoma; 17/132 (12.8%) squamous cell; 2/132 (0.15%) large cell neuroendocrine; 1/132 (0.07%) large cell carcinoma; 18/132 (13.6%) NSCL-not otherwise specified (NOS)). Molecular analysis of all EGFR and KRAS target sequences was achieved in 126 of 132 (95.5%) and 130 of 132 (98.4%) of cases respectively. EGFR mutations were identified in 13 (10.5%) of fully evaluated cases (11 in adenocarcinoma and two in NSCLC-NOS) including two novel mutations. KRAS mutations were identified in 23 (17.5%) of fully analysed patient samples (18 adenocarcinoma and five NSCLC-NOS). We conclude that EBUS-TBNA of lymph nodes infiltrated by NSCLC can provide sufficient tumour material for EGFR and KRAS mutation analysis in most patients, and that COLD-PCR and sequencing is a robust screening assay for EGFR and KRAS mutation analysis in this clinical context.  相似文献   

12.
The discovery of new target treatments for NSCLC has led to a search for new genetic and epigenetic markers able to selectively predict response to these new drugs. Somatic mutations in EGFR and KRAS genes are routinely analyzed to predict response to tyrosine kinase inhibitors (TKIs), used in the treatment of NSCLC patients, whose efficacy depend on the presence or the absence of specific mutations. MicroRNA (miRNA) expression evaluation has been recently analyzed because of the involvement of these molecules in lung cancer pathogenesis and in drug resistance. Only 30 % of NSCLC patients present a resectable stage at time of diagnosis so tissue samples cannot be the only starting material for genetic and epigenetic analysis. Therefore, the possibility to use cytological sampling already used for diagnosis also for molecular testing is emerging. The aim of this study was to evaluate for the first time in lung cancer the use of liquid-based cytology both for EGFR and KRAS mutational testing and for the expression trend of some miRNAs involved in lung cancer pathogenesis: miR-21, miR-155, miR-7, and let7a. We enrolled 20 fine-needle aspirate (FNA) samples diagnosed as NSCLC, 10 FNAs without neoplastic cells, and tissue samples coming from 5 of the 20 patients who underwent surgery after FNA NSCLC diagnosis. All Thin-Prep processed FNA samples were evaluable for DNA and RNA analysis and results were compared with those of the small group of patients whose matched tumor histology was available. The mutational status of the EGFR and KRAS genes and the expression profile of the selected miRNA showed comparable results between FNA samples and histological tissues. Our results underline that cytological samples could give the same genetic information as that obtained from histological specimens and so could be collected to create a nucleic acids bank.  相似文献   

13.
Zhang  Jian  Yang  Yang  Tian  Ye  Xu  Ruifang  Lin  Jun 《Diagnostic pathology》2021,16(1):1-9
Quick and reliable testing of EGFR and KRAS is needed in non-small cell lung cancer (NSCLC) to ensure optimal decision-making for targeted therapy. The Idylla™ platform was designed for Formalin-Fixed Paraffin-Embedded (FFPE) tissue sections but recently several studies were published that evaluated its potential for cytological specimens. This study aimed to validate the Idylla™ platform for the detection of EGFR/KRAS mutations in cytological NSCLC samples prepared as cytoblocks using AGAR and paraffin embedding. The KRAS Idylla™ test were performed on 11 specimens with a known KRAS mutation. The EGFR Idylla™ test was performed on 18 specimens with a known primary EGFR mutation and 7 specimens with a primary EGFR-EGFR T790M resistance mutation combination. Concordant KRAS and primary EGFR mutations were detected for both KRAS and primary EGFR mutations. Samples with a total CQ value of < 26 could be considered negative. Samples with a total CQ value of > 26 could not be assessed (probability of false-negative). In specimens with a primary EGFR-EGFR T790M resistance mutation combination, 5/7 cases were not concordant. Our results confirm the conclusion of recent reports that the Idylla™EGFR assay is not suitable in a resistance to EGFR TKI setting, also not in our cytological NSCLC samples prepared as cytoblocks using AGAR and paraffin embedding. KRAS and primary EGFR mutations were detected using the Idylla™ assays in virtually all cytological NSCLC samples. This analysis was rapid and time-saving compared to other mutation detection assays and may be useful if the amount of material is insufficient to perform a full set of molecular tests.  相似文献   

14.
Lung cancer and chronic obstructive pulmonary disease (COPD) are two major lung diseases. Epidermal growth factor receptor (EGFR) mutations, v‐Ki‐ras2 Kirsten rat sarcoma (KRAS) mutations and anaplastic lymphoma kinase (ALK) gene rearrangements represent driver mutations that are frequently assessed on initial evaluation of non-small-cell lung cancer (NSCLC). The present study focused on the expression of driver mutations in NSCLC patients presenting with COPD and further evaluated the association between NSCLC and COPD. Data from 501 consecutive patients with histologically proven recurrent or metastatic NSCLC were analyzed retrospectively. The patients underwent spirometry and genotyping of EGFR, ALK, and KRAS in tissue samples. Patient characteristics and expression of driver mutations were compared between the COPD and non-COPD groups.Among 350 patients with spirometric results, 106 (30.3%) were diagnosed with COPD, 108 (30.9%) had EGFR mutations, 31 (8.9%) had KRAS mutations, and 34 (9.7%) showed ALK rearrangements. COPD was independently associated with lower prevalences of EGFR mutations (95% confidence interval [CI], 0.254–0.931, p = 0.029) and ALK rearrangements (95% CI, 0.065–0.600, p = 0.004). The proportions of EGFR mutations and ALK rearrangements decreased as the severity of airflow obstruction increased (p = 0.001). In never smokers, the prevalence of EGFR mutations was significantly lower in the COPD group than in the non-COPD group (12.7% vs. 49.0%, p = 0.002). COPD-related NSCLC patients exhibited low prevalences of EGFR mutations and ALK rearrangements compared with the non-COPD group. Further studies are required regarding the molecular mechanisms underlying lung cancer associated with COPD.  相似文献   

15.
Previous studies have revealed that EGFR mutation and/or EML4?CALK gene fusion rate was higher in the non-smoker Asian females with pulmonary adenocarcinoma. The aim of this study is to determine the distribution of known oncogenic driver mutations in the female non-smoker Asian patients with pulmonary adenocarcinoma. 104 consecutively resected lung adenocarcinomas from 396 non-smoker females (less than 100 cigarettes in a lifetime) at a single institution (Tongji University, Shanghai, China) were analyzed for mutations in EGFR, EML4?ALK, KRAS, HER2, BRAF, and PIK3CA. 73 (70.2?%) tumors harbored EGFR mutations; among these, 28 were deletions in exon 19, 44 were L858R missense changes, and eight were T790M mutations. 10 (9.6?%) harbored EML4?ALK fusions, two harbored KRAS mutations, two harbored BRAF mutations, and two harbored PI3K mutations. A majority of the mutations were mutually exclusive, except two with EGFR mutation and BRAF mutation, one with EML4?ALK fusions and PI3K mutation. Thus, 82.7?% (86 of 104; 95?% CI, 75.4?C90.0?%) of lung adenocarcinomas from non-smoker females were found to harbor the well-known oncogenic mutations in five genes. Lung cancer in non-smoking Asian females is a distinct entity, with majority of this subgroup being developed by the oncogenic mutations. The prospective mutation examination in this population will be helpful for devising a targeted therapy for a majority of the patients.  相似文献   

16.
Lv N  Lin S  Xie Z  Tang J  Ge Q  Wu M  Xie X  Xie X  Wei W 《Cancer epidemiology》2012,36(4):341-346
Aims: The epidermal growth factor receptor (EGFR) is an available target of effective anti-EGFR therapy for human breast cancer. KRAS, the human homolog of the Kirsten rat sarcoma-2 virus oncogene, encodes a main downstream signaling molecule in the EGFR pathway. The aim of this study was to assess the presence of EGFR and KRAS gene mutations in breast cancer. Materials and methods: EGFR and KRAS gene mutations were investigated in formalin-fixed, paraffin-embedded tissues from 143 Chinese female patients with breast cancer by means of real-time quantitative polymerase chain reaction (RT-PCR). Results: Based on RT-PCR, 2/143 (1.4%) samples and 1/143 (0.7%) had EGFR and KRAS gene mutations, respectively. Overall, none of the cases was identified with mutations of both of these two genes. Conclusions: In this study, both EGFR and KRAS mutations were present rarely in this cohort of samples with breast cancer. This suggested that mutation analyses for EGFR and KRAS are not useful as screening tests for sensitivity to anti-EGFR therapy for breast carcinomas.  相似文献   

17.
Lung cancer is a leading cause of cancer-related deaths worldwide, with less than a 5-year survival rate for both men and women. Epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma oncogene (KRAS) signaling pathways play a critical role in the proliferation and progression of various cancers, including lung cancer. Genetic studies have shown that amplification, over-expression, or mutation of EGFR is an early and major molecular event in many human tumors. KRAS mutation is a negative factor in various cancer, including non-small-cell lung cancer, and complicates therapeutic approaches with adjuvant chemotherapy and anti-EGFR directed therapies. This article is dedicated to evaluating the synergistic effect of a novel EGFR inhibitor AZD8931 and KRAS small interfering RNA (siRNA) on the proliferation and apoptosis of lung adenocarcinoma cancer cells. A549 lung cancer cells were treated with KRAS siRNA and the EGFR inhibitor alone or in combination. The cytotoxic effects of KRAS siRNA and te EGFR inhibitor were determined usingMTT assay, and induction of apoptosis was determined by FACS analysis. Suppression of KRAS, Her-2, and EGFR expression by treatments was measured by qRT-PCR and western blotting. KRAS siRNA and the EGFR inhibitor significantly reduced the proliferation of A549 cells as well as KRAS and EGFR mRNA levels 24 hr after treatment. The results also indicated that the silencing of KRAS and EGFR has synergistic effects on the induction of apoptosis on the A549 cells. These results indicated that KRAS and EGFR might play important roles in the progression of lung cancer and could be potential therapeutic targets for treatment of lung cancer.  相似文献   

18.

Introduction

In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI.

Patient and Methods

Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis.

Results

Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively.

Conclusion

One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival.  相似文献   

19.
Recent reports suggested that essential directions for new lung cancer, breast carcinoma therapies, as well as the roomier realm of targeted cancer therapies were provided through targeting the epidermal growth factor receptor (EGFR). Patients who carrying non‐small cell lung carcinoma (NSCLC) with activating mutations in EGFR initially respond well to the EGFR inhibitors erlotinib and gefitinib, which were located the active site of the EGFR kinase and designed to act as competitive inhibitors of combining with the ATP. However, patients who were treated with the erlotinib and gefitinib will relapse because of the emergence of drug‐resistant mutations, with T790M mutations accounting for approximately 60% of all resistance. In order to overcome drug resistance, Pharmaceutical chemistry experts recently devoted great endeavors to the development of second‐generation irreversible selective inhibitors which covalently modify Cys797 or Cys773 at the ATP binding cleft. Nevertheless, these inhibitors have not reached ideal effect of experts in patients with T790M positive mutation and apparently because of the dose‐limiting toxicities associated with inhibition of wild type EGFR. A novel class of ‘third generation’ EGFR TKIs have been developed that is sensitising and T790M mutant‐specific whilst sparing WT EGFR, representing a significant breakthrough in the treatment in NSCLC patients with acquired resistance harboring these genotypes. Herein, we provides an overview of the second and third generation inhibitors currently approved, in clinical trial and also encompasses novel structures of discovery. This review mainly focuses on drug resistance, their mechanisms of action, development of structure–activity relationships and binding modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号