首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
在高温水体中分离得到2株具有较高产氢活性的微生物菌株Z-16和C-32。根据两菌株的16S rDNA序列分析,初步鉴定菌株Z-16为Enterobacter sp.,菌株C-32为Clostridium sp.。研究了起始pH值、反应温度、碳源等对菌株放氢活性的影响。菌株Z-16的最适产氢条件为:反应系统起始pH7.0,反应温度35℃,以蔗糖为产氢底物。在最适条件下,菌株Z-16的氢转化率为2.68mol H2/mol蔗糖。菌株C-32的最适产氢条件为:反应系统起始pH 8.0,反应温度35℃,以麦芽糖为产氢底物。在最适条件下,菌株C-32的氢转化率为2.71mol H2/mol 麦芽糖。以葡萄糖为碳源时,菌株Z-16和菌株C-32的氢转化率分别为2.35和2.48mol H2/mol葡萄糖。  相似文献   

2.
在高温水体中分离得到2株具有较高产氢活性的微生物菌株Z-16和C-32。根据两菌株的16S rDNA序列分析,初步鉴定菌株Z-16为Enterobacter sp.,菌株C-32为Clostridium sp.。研究了起始pH值、反应温度、碳源等对菌株放氢活性的影响。菌株Z-16的最适产氢条件为:反应系统起始pH7.0,反应温度35℃,以蔗糖为产氢底物。在最适条件下,菌株Z-16的氢转化率为2.68mol H2/mol蔗糖。菌株C-32的最适产氢条件为:反应系统起始pH 8.0,反应温度35℃,以麦芽糖为产氢底物。在最适条件下,菌株C-32的氢转化率为2.71mol H2/mol 麦芽糖。以葡萄糖为碳源时,菌株Z-16和菌株C-32的氢转化率分别为2.35和2.48mol H2/mol葡萄糖。  相似文献   

3.
在自然环境中分离到一株具有高产氢活性的微生物菌株,经细菌鉴定仪及16S rRNA基因序列分析,鉴定该菌株为Enterbacter sakazakii HP。分析了起始pH值、反应温度、碳源、起始糖浓度、起始氧浓度及菌体密度等因素对菌株产氢活性的影响。研究表明,该菌株发酵产氢较适合的条件为:以葡萄糖为产氢底物,起始pH值8.0,菌体密度OD600=0.7,反应温度35℃,糖浓度为0.1mol/L,氧浓度为0%的条件下,此时产氢菌株的最高产氢活性为5.34μmolH2/h.mgdw,氢的得率为1.94molH2/mol葡萄糖。  相似文献   

4.
一个新的产氢细菌的鉴定及产氢特性的研究   总被引:5,自引:0,他引:5  
利用Hungate滚管技术从福建省漳州垃圾处理厂厌氧消化器的颗粒污泥中分离到一株产氢的细菌L15。菌株L15为严格厌氧的革兰氏阳性杆菌,菌体大小为0.5μm~0.7μm×2.5μm~5.0μm,以侧生鞭毛运动。在孢肉培养基上产生端生的卵圆形芽孢。温度生长范围15℃~45℃(最适温度30℃~37℃);pH 范围5.0~8.4(最适pH 6.3~6.8)。该菌株不水解明胶和七叶灵,不还原硫酸盐,牛奶变酸但不凝固,发酵多糖和少数的单糖、双糖和寡糖;发酵葡萄糖的最终产物为乙酸、丁酸、H2和CO2。G+C含量为298mol%。16S rDNA序列分析表明,该菌株属于梭菌的簇Ⅰ,与Clostridium paraputrificum较为接近(相似性为97.1%)。通过生理特征和16S rDNA序列的同源性分析,表明菌株L15应是梭菌属簇Ⅰ中的一个新种,命名为Clostridium defluvii。菌株L15保藏在中国普通微生物菌种保藏中心,保藏号为AS1.3489。菌株L15的最佳产氢温度为34℃、pH为7.0。当葡萄糖浓度为0.4%时,氢气产率可达到1.41mol H2/mol 葡萄糖。该菌可利用下列底物产酸产氢,括号内为产氢率(底物浓度1%):果糖(1.00mol H2/mol)、麦芽糖(2.17mol H2/mol)、蔗糖(1.69mol H2/mol)、菊糖(4.70mol H2/mol)、糖原(5.49mmol H2/g)、淀粉(7.34mmol H2/g)。  相似文献   

5.
厌氧细菌Acetanaerobacterium elongatum从葡萄糖的产氢特性研究   总被引:7,自引:0,他引:7  
为了了解影响厌氧发酵产氢细菌Acetanaerobacterium elongatumZ7产氢效率的因素,采用生理学方法对其进行了研究。结果表明:乙醇型发酵菌A.elongatumZ7的最适产氢温度为37℃,最适产氢的起始pH为8.0。该菌发酵葡萄糖和阿拉伯糖产氢的能力较强,氢气产率分别为1.55mol H2/mol葡萄糖和1.50mol H2/mol阿拉伯糖。酵母粉是菌株Z7生长和产氢所必须的生长因子;pH影响菌株的生长和葡萄糖利用率;氢压则影响电子流的分配,从而改变代谢产物乙酸和乙醇的比例;当产氢菌与甲烷菌共培养以维持发酵体系低的氢压时,可使氢的理论产量提高约4倍;培养基中乙酸钠浓度>60mmol/L明显抑制产氢。另外,一个只利用蛋白类物质的细菌能够促进菌株Z7对葡萄糖的利用,进而提供氢产量,为生物制氢的工业化生产提供理论参考。  相似文献   

6.
一个新的高温产氢菌及产氢特性的研究   总被引:11,自引:0,他引:11  
利用Hungate滚管技术从西藏山南地区热泉淤泥中分离到一株高温产氢的厌氧发酵细菌T42。菌株T42革兰氏染色反应为阴性,但KOH裂解试验证实其为革兰氏阳性杆菌。菌体大小为0.7μm~0.9μm×3.2μm~7μm,不运动,不产芽孢。其生长温度范围为32℃~69℃,最适生长温度为60℃~62℃,生长pH范围为5.0~8.8,最适生长pH为7.0~7.5,代时30min。有机氮源是T42菌株的必需生长因子。菌株T42利用淀粉、纤维二糖、蔗糖、麦芽糖、糊精、果糖、糖原和海藻糖等底物生长并发酵产氢,发酵葡萄糖的终产物为乙酸、乙醇、H2和CO2。G C含量为31.2mol%。系统发育分析表明菌株T42与Thermobrachium celere和Caloramator indicus位于同一分支,生理生化特征也表明菌株T42应是Thermobrachium属的一个新菌株,在中国普通微生物菌种保藏中心的保藏号为AS1.5039。菌株T42的最佳产氢初始pH为7.2,最佳产氢温度为62℃,其氢转化率为1.06mol H2/mol葡萄糖,最大产氢速率为24.0mmol H2/gDW/h。20mmol/L的Mg2 和2mmol/L的Fe2 可分别提高菌株T42的产氢量20%和23.3%,而Ni2 对其产氢无明显的作用。当菌株T42和热自养甲烷热杆菌(Methanothermobacter thermautotrophicus)Z245共培养时,由于降低了氢分压,使其葡萄糖利用率和氢产量分别提高1倍和2.8倍,发酵产物乙酸和乙醇的比例也从1提高到1.7。  相似文献   

7.
为了了解影响厌氧发酵产氢细菌Acetanaerobacterium elongatum Z7产氢效率的因素,采用生理学方法对其进行了研究。结果表明:乙醇型发酵菌A. elongatum Z7的最适产氢温度为37℃, 最适产氢的起始pH为8.0。该菌发酵葡萄糖和阿拉伯糖产氢的能力较强,氢气产率分别为1.55mol H2/mol葡萄糖和1.50mol H2/mol阿拉伯糖。酵母粉是菌株Z7生长和产氢所必须的生长因子;pH影响菌株的生长和葡萄糖利用率;氢压则影响电子流的分配,从而改变代谢产物乙酸和乙醇的比例;当产氢菌与甲烷菌共培养以维持发酵体系低的氢压时,可使氢的理论产量提高约4倍;培养基中乙酸钠浓度> 60mmol/L明显抑制产氢。另外,一个只利用蛋白类物质的细菌能够促进菌株Z7对葡萄糖的利用,进而提供氢产量,为生物制氢的工业化生产提供理论参考。  相似文献   

8.
目的:对产淀粉酶嗜热菌Anoxybacillu sp.菌株进行培养基优化及产酶条件研究,以便提高菌株的产酶能力,并为下一步菌 株的诱变育种研究提供基础。方法:常规方法液体培养菌株,用平板初筛和DNS法复筛选择产淀粉酶能力较高的菌株;单因素筛 选培养基最适的碳源、氮源、Ca2+浓度和Mg2+浓度,对单因素筛选的最佳碳源、氮源、Ca2+和Mg2+的三个较佳浓度进行四因素三 水平正交试验优化培养基;对培养基不同pH值及不同培养温度进行培养条件研究。结果:产淀粉酶菌株筛选结果显示:六株菌中 淀粉酶酶活力值最大的是菌株Anoxybacillu sp.DL4,差异有统计学意义(P<0.05)。培养基单因素筛选结果显示:最适碳源为麦芽糖、最适氮源为 硝酸铵、最适Ca2+、Mg2+浓度均为0.02%,差异有统计学意义(P<0.05)。培养基优化结果显示:C 源0.1 %,N源0.2 %,Mg2+ 0.04%, Ca2+ 0.04 %为最佳的培养基成分组合。产酶条件筛选结果显示:培养基pH 值为6、培养温度为55 ℃时菌株产酶水平最高,差异有 统计学意义(P<0.05)。结论:培养基的优化及最适的产酶条件能提高嗜热菌Anoxybacillu sp.DL4 产淀粉酶能力,Ca2+、Mg2+离子 对菌株产淀粉酶有促进作用。  相似文献   

9.
对光合细菌(Rhodopseudomonas sp. DT)与产气肠杆菌(Enterobacter aerogenes)进行了发酵产氢试验, 考察了不同起始接种比例、培养温度及碳源条件下混合菌协同产氢特性。结果表明: 光合细菌与产气肠杆菌初始接种比例对协同产氢影响较大, 初始接种比例为1:1最有利于协同产氢, 产氢效率和产氢周期达到了3.1 mol H2/mol葡萄糖及81 h。进一步培养液pH动力学变化研究发现初始接种比例为1:1的混合菌培养液pH变化较小, 为pH 6~7, 利于混合菌协同产氢。28°  相似文献   

10.
产氢菌的复合诱变选育及突变株HCM-23的产氢特性   总被引:1,自引:0,他引:1  
以厌氧产氢细菌Clostridium sp.H-61为原始菌株,先后经亚硝基胍(NTG)、紫外(UV)诱变,选育得到1株高产突变株HCM-23.在葡萄糖浓度为10 g/L的条件下,其产氢量为3024 mL/L,比原始菌株提高了69.89%;其最大产氢速率为33.19 mmol H2/g DW·h,比原始菌株(19.74 mmolH2/g DW·h)提高了68.14%.经过多次传代试验,稳定性良好.其发酵末端产物以乙醇和乙酸为主,属于典型乙醇型发酵代谢类型.其最适产氢初始pH为6.5,最适生长温度为36℃,以蔗糖为最佳碳源.与原始菌株相比,突变株HCM-23的产氢特性发生了改变,如生长延滞期延长,可利用无机氮源等.  相似文献   

11.
A new alkaliphilic and moderately halophilic chemoorganotrophic anaerobic bacterium (strain Z-7986), which is spore-forming, rod-shaped, and has a gram-negative cell wall pattern, was isolated from the coastal lagoon mud of the highly mineralized Lake Magadi (Kenya). The organism is an obligatorily carbonate- and sodium chloride-dependent. It is a motile peritrichously flagellated rod that has developed within 3-17% NaCl concentration (with an optimum at 7-12% NaCl) and within a pH range of 7.7-10.3 (with an optimum at pH values of 8-8.5). It is a moderate thermophile with a broad temperature optimum from 36-55 degrees C and a growth maximum at 60 degrees C. The bacterium catabolizes glucose, fructose, sucrose, maltose, starch, glycogen, N-acetyl-D-glucosamine, and, to a slight degree, peptone and yeast extract. Its anabolism requires yeast extract or casamino acids. Glucose fermentation yields formate, acetate, ethanol, H2, and CO2. The bacterium is sulfidetolerant and capable of the nonspecific reduction of S0 to H2S. The G + C content of the DNA is 34.4 mol %. The analysis of the 16S rRNA sequence revealed that strain Z-7986 belongs to the order Haloanaerobiales and represents a new genus in the family Halobacteroidaceae. We suggest calling the organism Halonatronum saccharophilum gen. nov. sp. nov. The type strain of this species is Z-7986T (= DSM13868, = Uniqem 211).  相似文献   

12.
Zhilina  T. N.  Garnova  E. S.  Tourova  T. P.  Kostrikina  N. A.  Zavarzin  G. A. 《Microbiology》2001,70(1):64-72
A new alkaliphilic and moderately halophilic chemoorganotrophic anaerobic bacterium (strain Z-7986), which is spore-forming, rod-shaped, and has a gram-negative cell wall pattern, was isolated from the coastal lagoon mud of the highly mineralized Lake Magadi (Kenya). The organism is an obligatorily carbonate- and sodium chloride-dependent motile peritrichously flagellated rod that grows within a 3–17% NaCl concentration range (with an optimum at 7–12% NaCl) and within a pH range of 7.7–10.3 (with an optimum at pH values of 8–8.5). It is a moderate thermophile with a broad temperature optimum at 36–55°C; maximum growth temperature is 60°C. The bacterium catabolizes glucose, fructose, sucrose, maltose, starch, glycogen, N-acetyl-D-glucosamine, and, to a slight degree, peptone and yeast extract. Its anabolism requires yeast extract or casamino acids. Glucose fermentation yields formate, acetate, ethanol, H2, and CO2. The bacterium is sulfide-tolerant and capable of the nonspecific reduction of S0 to H2S. The G+C content of the DNA is 34.4 mol %. The analysis of the 16S rRNA sequence revealed that strain Z-7986 belongs to the order Haloanaerobiales and represents a new genus in the family Halobacteroidaceae. We suggest the name Halonatronum saccharophilum gen. nov. sp. nov. The type strain of this species is Z-7986T (= DSM13868, = Uniqem*211).  相似文献   

13.
木糖发酵产氢菌的筛选及其生长产氢特性研究   总被引:2,自引:0,他引:2  
利用改进的Hungate厌氧技术, 从牛粪堆肥中分离出一株能有效利用木糖发酵产氢的中温菌HR-1。通过16S rRNA系统发育树分析表明, 菌株 HR-1 与丙酮丁醇梭菌Clostridium acetobutylicum ATCC 824 相似性最高为96%, 结合生理生化和生长特性分析表明, HR-1是梭菌属Clostridium的一个新种, 命名为Clostridium sp. HR-1。菌株HR-1为单胞生长的规则杆状菌(0.3 mm ~0.6 mm)×(1.4 mm~2.3 mm), 革兰氏染色为阴性, 无荚膜、无鞭毛、表面光滑、无明显凸起, 专性厌氧菌。HR-1可在10°C~45°C, pH 4.0~10.0条件下生长; 37°C和pH 8.0分别为其最适生长条件。发酵PYG的主要发酵产物有氢气、二氧化碳、乙酸、丁酸及少量乙醇。HR-1可以利用有机氮源和无机氮源生长并产氢, 酵母提取物是其最佳产氢氮源。HR-1在木糖浓度为3 g/L和初始pH 6.5条件下, 其比产氢量为1.84 mol-H2/mol-木糖, 最大比产氢速率为10.52 mmol H2/h·g-细胞干重。HR-1可以亦利用葡萄糖、半乳糖、纤维二糖、甘露糖和果糖等碳源生长并发酵产氢, 发酵葡萄糖时比产氢量为2.36 mol-H2/mol-葡萄糖。  相似文献   

14.
A novel aerobic bacterial strain Z-0088 was assigned to the genus Spirosoma on the basis of 16S rRNA analysis; it was isolated from a bacterial community of moderately acidic (pH 5.0) dystrophic, slightly humified water formed by xylotrophic fungi grown on decaying spruce wood. The cells are nonmotile, gramnegative, straight or curved rods, 0.5–1.5 × 1.0–6.0 μm; they may also be toroidal. The cells are usually single but can form spiral filaments containing from 4 to 13 coils; their reproduction is by division. Strain Z-0088 is an organoheterotroph utilizing xylan, inulin, xylose, sucrose, and N-acetylglucosamine as organic growth substrates. The bacterium is oligotrophic (the optimum substrate concentration is 0.5 g/L). It is characterized by high sensitivity to NaCl concentration; growth was completely suppressed at 1% NaCl. The strain grows in a pH range of 3.8–7.5 with the optimum at pH 5.5–6.5. The temperature range for growth was 13–35°C with the optimum at 28°C. The DNA G+C base content was 50.2 mol %. The ecophysiological features of strain Z-0088, such as oligotrophic, mesophilic, moderate acidophilic properties, and sensitivity to NaCl, support its designation as a representative of ombrophilic dissipotrophs. The strain is assigned to a novel species Spirosoma xylofaga sp. nov.  相似文献   

15.
Identification, characterization, and end-product synthesis patterns were analyzed in a newly identified mesophilic, anaerobic Clostridium sp. strain URNW, capable of producing hydrogen (H?) and ethanol. Metabolic profiling was used to characterize putative end-product synthesis pathways of the Clostridium sp. strain URNW, which was found to grow on cellobiose; on hexose sugars, such as glucose, sucrose, and mannose; and on sugar alcohols, like mannitol and sorbitol. When grown in batch cultures on 2 g cellobiose·L?1, Clostridium sp. strain URNW showed a cell generation time of 1.5 h, and the major end-products were H2, formate, carbon dioxide (CO?), lactate, butyrate, acetate, pyruvate, and ethanol. The total volumetric H? production was 14.2 mmol·(L culture)?1 and the total production of ethanol was 0.4 mmol·(L culture)?1. The maximum yield of H? was 1.3 mol·(mol glucose equivalent)?1 at a carbon recovery of 94%. The specific production rates of H?, CO?, and ethanol were 0.45, 0.13, and 0.003 mol·h?1·(g dry cell mass)-1, respectively. BLAST analyses of 16S rDNA and chaperonin 60 (cpn60) sequences from Clostridium sp. strain URNW revealed a 98% nucleotide sequence identity with the 16S rDNA and cpn60 sequences from Clostridium intestinale ATCC 49213. Phylogenetic analyses placed Clostridium sp. strain URNW within the butyrate-synthesizing clostridia.  相似文献   

16.
A cellulase-producing bacterial strain designated Z5 was isolated from the fecal matter of Zebra (Equus zebra). The strain was identified as Microbacterium sp. on the basis of 16S rDNA sequence analysis. The effect of substrates like CMC, avicel, starch, maltose, sucrose, glucose, fructose, galactose, and lactose on cellulase production was also determined. Lactose as the sole carbon source induced cellulase production in this bacterial strain and a positive synergistic effect of lactose and CMC was also observed with enhancement of 3-4 times in cellulase activity. The optimum cellulase production was recorded with 3% CMC and 1% lactose when added individually in the Omeliansky's medium. The optimum temperature and time for cellulase production by this bacterial strain was 37°C and 10 days, respectively. To our knowledge this is the first report on enhancement of cellulase production by lactose in the Microbacterium sp.  相似文献   

17.
To isolate a salt tolerant hydrogen-producing bacterium, we used the sludge from the intertidal zone of a bathing beach in Tianjin as inoculum to enrich hydrogen-producing bacteria. The sludge was treated by heat-shock pretreatment with three different temperature (80, 100 and 121°C) respectively. A hydrogen-producing bacterium was isolated from the sludge pretreated at 80°C by sandwich plate technique and identified using microscopic examination and 16S rDNA gene sequence analysis. The isolated bacterium was named as Bacillus sp. B2. The present study examined the hydrogen-producing ability of Bacillus sp. B2. The strain was able to produce hydrogen over a wide range of initial pH from 5.0 to 10.0, with an optimum at pH 7.0. The level of hydrogen production was also affected by the salt concentration. Strain B2 has unique capability to adapt high salt concentration. It could produce hydrogen at the salt concentration from 4 to 60‰. The maximum of hydrogen-producing yield of strain B2 was 1.65 ± 0.04 mol H2/mol glucose (mean ± SE) at an initial pH value of 7.0 in marine culture conditions. Hydrogen production under fresh culture conditions reached a higher level than that in marine ones. As a result, it is likely that Bacillus sp. B2 could be applied to biohydrogen production using both marine and fresh organic waste.  相似文献   

18.
Synechococus sp. strain Miami BG 043511 exhibits very high H(2) photoproduction from water, but the H(2) photoproduction capability is lost rapidly with the age of the batch culture. The decreases of the capability coincides with the decrease of cellular glucose (glycogen) content. However, H(2) photoproduction capability can be restored by the addition of organic substrates. Among 40 organic compounds tested, carbohydrates such as glucose, fructose, maltose, and sucrose were effective electron donors. Among organic acids tested, only pyruvate was an effective electron donor. Among alcohols tested, glycerol was a good electron donor. These results demonstrate that this unicellular cyanobacterium exhibits a wide substrate specificity for H(2) photoproduction but has a different substrate specificity compared to photosynthetic bacteria. The maximum rates of H(2) photoproduction from a 6-day-old batch culture with 25 mmol of pyruvate, glucose, maltose, sucrose, fructose, and glycerol were 1.11, 0.62, 0.50, 0.47, 0.30, and 0.39 micromoles per mg cell dry weight per hour respectively. Therefore, this cyanobacterium strain may have a potential significance in removing organic materials from the wastewater and simultaneously transforming them to H(2) gas, a pollution free energy. The activity of nitrogenase, which catalyzes hydrogen production, completely disappeared when intracellular glucose (glycogen) was used up, but it could be restored by the addition of organic substrates such as glucose and pyruvate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号