首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the major problems in industrial water systems is the generation of biofilm, which is resistant to antimicrobial agents and causes failure of sanitization policy. This work aimed to study the anti-biofilm activity of peracetic acid (PAA) at contact times and temperatures combinations. To this end, a 96-well microtiter-based calorimetric method was applied in in vitro biofilm production using Escherichia coli, isolated from the water supply system of a pharmaceutical plant. The phenotypic and phylogenetic tests confirmed that the isolated bacteria belong to strains of Escherichia coli. The anti-biofilm activity of peracetic acid on formed biofilm was investigated at concentrations of 0·15–0·5% for a contact time of 5–15 min at 20–60°C. The maximum biofilm formation by MTP method using an Escherichia coli isolate was achieved in 96-h incubation in TSB containing wells at 37°C. Biofilm formation rate shown to be high by the environmental isolate compared with that of standard strain. PAA at concentrations above 0·25%, the temperature of 40°C and a minimum of 10 min of contact time was effective in the eradication of biofilm in an MTP-based system.  相似文献   

2.
Propionibacterium acnes is an opportunistic pathogen which has become notorious owing to its ability to form a recalcitrant biofilm and to develop drug resistance. The current study aimed to develop anti-biofilm treatments against clinical isolates of P. acnes under in vitro and in vivo conditions. A combination of ellagic acid and tetracycline (ETC; 250 μg ml?1 + 0.312 μg ml?1) was determined to effectively inhibit biofilm formation by P. acnes (80–91%) without affecting its growth, therefore potentially limiting the possibility of the bacterium attaining resistance. In addition, ETC reduced the production of extracellular polymeric substances (EPS) (20–26%), thereby making P. acnes more susceptible to the human immune system and antibiotics. The anti-biofilm potential of ETC was further substantiated under in vivo conditions using Caenorhabditis elegans. This study reports a novel anti-biofilm combination that could be developed as an ideal therapeutic agent with broad cosmeceutical and pharmaceutical applicability in the era of antibiotic resistance.  相似文献   

3.
Quorum quenching (QQ) is an effective approach for the prevention of bacterial infections involving biofilms. This study reports the QQ and anti-biofilm activities of a rhizospheric bacterium identified as Stenotrophomonas maltophilia BJ01. The QQ activity was demonstrated using Chromobacterium violaceum CV026 as a biosensor. A maximum of 95% reduction in violacein production, a quorum sensing-regulated behavior, was observed. Gas chromatography–mass spectroscopy of the extract showed that the active compound was cis-9-octadecenoic acid, which was confirmed by electronspray ionization–mass spectroscopy data. The extract also inhibited biofilm formation of Pseudomonas aeruginosa ATCC 9027 without affecting its growth. Scanning electron and atomic force microscopy showed architectural disruption of the biofilm when treated with the extract. This is the first report of the QQ and anti-biofilm activities of cis-9-octadecenoic acid isolated from any bacterium. It may have the potential to combat detrimental infections with P. aeruginosa. Further validation is required for any possible medical application.  相似文献   

4.
Pseudomonas aeruginosa, an opportunistic pathogen frequently associated with nosocomial infections, is emerging as a serious threat due to its resistance to broad spectrum antimicrobials. The biofilm mode of growth confers resistance to antibiotics and novel anti-biofilm agents are urgently needed. Nanoparticle based treatments and therapies have been of recent interest because of their versatile applications. This study investigates the anti-biofilm activity of copper nanoparticles (CuNPs) synthesized by the one pot method against P. aeruginosa. Standard physical techniques including UV–visible and Fourier transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy were used to characterize the synthesized CuNPs. CuNP treatments at 100 ng ml?1 resulted in a 94, 89 and 92% reduction in biofilm, cell surface hydrophobicity and exopolysaccharides respectively, without bactericidal activity. Evidence of biofilm inhibition was also seen with light and confocal microscope analysis. This study highlights the anti-biofilm potential of CuNPs, which could be utilized as coating agents on surgical devices and medical implants to manage biofilm associated infections.  相似文献   

5.
Christian Traba 《Biofouling》2013,29(7):763-772
Formation of bacterial biofilms at solid–liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.  相似文献   

6.
Abstract

Staphylococcus epidermidis, a harmless human skin colonizer, is a significant nosocomial pathogen in predisposed hosts because of its capability to form a biofilm on indwelling medical devices. In a recent paper, the purification and identification of the pentadecanal produced by the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, able to impair S. epidermidis biofilm formation, were reported. Here the authors report on the chemical synthesis of pentadecanal derivatives, their anti-biofilm activity on S. epidermidis, and their action in combination with antibiotics. The results clearly indicate that the pentadecanal derivatives were able to prevent, to a different extent, biofilm formation and that pentadecanoic acid positively modulated the antimicrobial activity of the vancomycin. The cytotoxicity of these new anti-biofilm molecules was tested on two different immortalized eukaryotic cell lines in view of their potential applications.  相似文献   

7.
Staphylococcus epidermidis is a significant nosocomial pathogen in predisposed hosts because of its capability of forming a biofilm on indwelling medical devices. The initial stage of biofilm formation has a key role in S. epidermidis abiotic surface colonization. Recently, many strategies have been developed to create new anti-biofilm surfaces able to control bacterial adhesion mechanisms. In this work, the self-assembled amphiphilic layers formed by two fungal hydrophobins (Vmh2 and Pac3) have proven to be able to reduce the biofilm formed by different strains of S. epidermidis on polystyrene surfaces. The reduction in the biofilm thickness on the coated surfaces and the preservation of cell vitality have been demonstrated through confocal laser scanning microscope analysis. Moreover, the anti-biofilm efficiency of the self-assembled layers on different medically relevant materials has also been demonstrated using a CDC biofilm reactor.  相似文献   

8.
In this research, salicylic acid is proposed as an alternative biocide-free agent suitable for a preventive or integrative anti-biofilm approach. Salicylic acid has been proved to: (1) reduce bacterial adhesion up to 68.1 ± 5.6%; (2) affect biofilm structural development, reducing viable biomass by 97.0 ± 0.7% and extracellular proteins and polysaccharides by 83.9 ± 2.5% and 49.5 ± 5.5% respectively; and (3) promote biofilm detachment 3.4 ± 0.6-fold. Moreover, salicylic acid treated biofilm showed an increased amount of intracellular (2.3 ± 0.2-fold) and extracellular (2.1 ± 0.3-fold) reactive oxygen species, and resulted in increased production of the quorum sensing signal indole (7.6 ± 1.4-fold). For the first time, experiments revealed that salicylic acid interacts with proteins that play a role in quorum sensing, reactive oxygen species accumulation, motility, extracellular polymeric matrix components, transport and metabolism.  相似文献   

9.
The present study was designed to investigate the anti-biofilm potential of alpha-mangostin (α-MG) against Acinetobacter baumannii (AB). The biofilm inhibitory concentration (BIC) of α-MG against AB was found to be 2 μg ml?1. α-MG (0.5, 1 and 2 μg ml?1) exhibited non-bactericidal concentration-dependent anti-biofilm activities against AB. However, α-MG failed to disintegrate the mature biofilms of AB even at a 10-fold increased concentration from its BIC. Results from qRT-PCR and in vitro bioassays further demonstrated that α-MG downregulated the expression of bfmR, pgaA, pgaC, csuA/B, ompA, bap, katE, and sodB genes, which correspondingly affects biofilm formation and its associated virulence traits. The present study suggests that α-MG exerts its anti-biofilm property by interrupting initial biofilm formation and the cell-to-cell signaling mechanism of AB. Additional studies are required to understand the mode of action responsible for the anti-biofilm property.  相似文献   

10.
Abstract

In vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis biofilm producers from blood cultures of patients with prosthetic hip infections was evaluated. The Minimum Inhibitory Concentration (MIC) for AP7121 was determined and the bactericidal activity of AP7121 (MICx1, MICx4) against planktonic cells was studied at 4, 8 and 24?h. The biofilms formed were incubated with AP7121 (MICx1, MICx4) for 1 and 24?h. The anti-adhesion effect of an AP7121-treated inert surface over the highest MIC isolate was studied with scanning electron microscopy (SEM). The bactericidal activity of AP7121 against all the planktonic staphylococcal cells was observed at 4?h at both peptide concentrations. Dose-dependent anti-biofilm activity was detected. AP7121 (MICx4) showed bactericidal activity at 24?h in all isolates. SEM confirmed prevention of biofilm formation. This research showed the in vitro anti-biofilm activity of AP7121 against MRSA and S. epidermidis and the prevention of biofilm formation by them on an abiotic surface.  相似文献   

11.
12.
Staphylococcus aureus is a versatile human pathogen that produces diverse virulence factors, and its biofilm cells are difficult to eradicate due to their inherent ability to tolerate antibiotics. The anti-biofilm activities of the spent media of 252 diverse endophytic microorganisms were investigated using three S. aureus strains. An attempt was made to identify anti-biofilm compounds in active spent media and to assess their anti-hemolytic activities and hydrophobicities in order to investigate action mechanisms. Unlike other antibiotics, actinomycin D (0.5 μg ml?1) from Streptomyces parvulus significantly inhibited biofilm formation by all three S. aureus strains. Actinomycin D inhibited slime production in S. aureus and it inhibited hemolysis by S. aureus and caused S. aureus cells to become less hydrophobic, thus supporting its anti-biofilm effect. In addition, surface coatings containing actinomycin D prevented S. aureus biofilm formation on glass surfaces. Given these results, FDA-approved actinomycin D warrants further attention as a potential antivirulence agent against S. aureus infections.  相似文献   

13.
Proteus mirabilis is one of the leading causes of catheter-associated UTIs (CAUTI) in individuals with prolonged urinary catheterization. Since, biofilm assisted antibiotic resistance is reported to complicate the treatment strategies of P. mirabilis infections, the present study was aimed to attenuate biofilm and virulence factor production in P. mirabilis. Linalool is a naturally occurring monoterpene alcohol found in a wide range of flowers and spice plants and has many biological applications. In this study, linalool exhibited concentration dependent anti-biofilm activity against crystalline biofilm of P. mirabilis through reduced production of the virulence enzyme urease that raises the urinary pH and drives the formation of crystals (struvite) in the biofilm. The results of q-PCR analysis unveiled the down regulation of biofilm/virulence associated genes upon linalool treatment, which was in correspondence with the in vitro bioassays. Thus, this study reports the feasibility of linalool acting as a promising anti-biofilm agent against P. mirabilis mediated CAUTI.  相似文献   

14.
15.
Traba C  Liang JF 《Biofouling》2011,27(7):763-772
Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.  相似文献   

16.
17.
18.
Poly(2-(dimethylaminoethyl) methacrylate) (pDMAEMA) was grafted to low density polyethylene (LDPE) and silicone rubber (SR) in order to make them less susceptible to microbial biofilm formation. The direct grafting of DMAEMA using γ-rays was an efficient and fast procedure for obtaining modified materials, which could be quaternized in a second step using methyl iodide. Raman spectroscopy showed that the grafting occurred only at the surface of the LDPE, but both at the surface and in the bulk of the SR. Consequently, the grafted chains caused changes in the surface-related features of the LDPE (water contact angle and viscoelastic behavior in the dry state) and in the bulk-related properties of the SR (swelling and viscoelasticity in the swollen state). The microbiological assays revealed that the grafted DMAEMA reduced Candida albicans biofilm formation (almost no biofilm on SR), while the quaternized surfaces inhibited C. albicans and Staphylococcus aureus biofilm by more than 99% compared to pristine materials. Modified LDPE and SR were capable of holding considerable amounts of nalidixic acid, an anionic antimicrobial drug, and sustained the release for several hours. In addition, the grafted materials were cytocompatible (fibroblast cell survival?>?70%). In conclusion, these materials have the ability to inhibit microbial biofilm formation and at the same time act as drug-eluting systems, and for that reason may hold great promise for anti-biofouling applications.  相似文献   

19.
Dryopteris crassirhizoma is a semi-evergreen plant. Previous studies have shown the potential of this plant as an agent for the control of cariogenic biofilms. In this study, the main antibacterial components of the plant were identified by correlating gas chromatography–mass spectrometry data with the antibacterial activity of chloroform and n-hexane fractions and then evaluating the activity of the most potent antibacterial component against Streptococcus mutans UA159 biofilms. The most potent antibacterial component was linoleic acid, a main component of the n-hexane fraction. Linoleic acid reduced viability in a dose dependent manner and reduced biofilm accumulation during initial and mature biofilm formation. Furthermore, when the biofilms were briefly treated with linoleic acid (10?min/treatment, a total of six times), the dry weight of the biofilms was significantly diminished. In addition, the anti-biofilm activity of the n-hexane fraction was similar to that of linoleic acid. These results suggest that the n-hexane fraction of D. crassirhizoma and linoleic acid may be useful for controlling cariogenic biofilms.  相似文献   

20.
In this work, the uronic acids assay was evaluated for its potential to function as a bioassay to screen for antagonistic activity against the production of microbial biofilm exopolysaccharide (EPS). The assay was first applied to biofilms produced in the presence of two universal disinfectants (sodium hypochlorite and sodium dodecyl sulfate) known to inhibit microbial growth and biofilm formation. The performance of the assay was then characterized through statistical assessment of threshold concentrations for disinfection efficiency and consistency relative to values reported in the literature. The assay was then evaluated for its utility in screening for enzymatic or chemical inhibitors of biofilm formation (eg glycosidases, halogenated furanones, and semi-crude fractions extracted from minimally fouled marine plants) and its ability to distinguish between true anti-biofilm activity and simple disinfection. Activity was characterized as (i) no effect, (ii) a true positive effect (ie increased biofilm EPS), (iii) anti-bacterial activity (ie decreased biofilm EPS and analogous decrease in planktonic growth), and (iv) anti-biofilm EPS activity (ie decreased biofilm EPS, without analogous decrease in planktonic growth). Results demonstrate that the uronic acids assay can augment existing biofilm characterization methods by providing a quantitative measure of biofilm EPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号