首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
计翔  章朝华 《动物学报》2001,47(3):256-265
用8种水热条件孵化中国石龙子(Eumeces chinensis)卵,观测孵化卵质量变化、胚胎利用卵内物质和能量及孵出坳体特征,孵化卵因净吸水增重,卵增重与入孵卵质量、孵化温度和基质湿度有关。孵出幼体湿重的处理间差异主要是因为幼体水分含量不同。温度显著影响孵化期、孵化卵吸水量、胚胎利用孵内物质和能量几乎所有被检的幼体特征;温度甚至影响胚胎动用卵壳无机物。然而,在24-32℃范围内,温度对卵孵化成功率无显著的影响。32℃孵出幼体比较低于此温度的孵出幼体发育差,表现为躯干小、未利用的卵黄多。此外,32℃孵出幼体的运动表现比低温孵出幼体差,表现为特定体长(snout-vent length,SVL)的疾跑速小于低温孵出幼体,表明高温孵化卵对孵出幼体的运动能力有不利的影响,潮湿基质中旗子同幼体的体长和尾长大于干燥基质中孵出的幼体,并特征性地具有较小的剩余卵黄。24℃胚胎发育能耗较大,胚胎从卵壳动用的无机物较少。温度影响孵出幼体的体形和头部大小,30℃孵出幼体的尾长最大,32℃孵出幼体的头部最小,其质湿度对孵出幼体的体形和头部大小无显著的影响。温度对孵出幼体特征的影响与湿度的影响无关。孵化水热环境诱导的幼体大小、质量和形态差异可能对幼体的生存和适应性具有重要的影响。26-30℃为孵化中国石龙子卵的适宜温度范围。  相似文献   

2.
杜卫国  计翔 《生态学报》2002,22(4):548-553
用4个恒定温(24-32℃)孵化灰鼠蛇卵,检测温度对孵化期,孵化成功率和孵出幼体特征的影响。在24-32℃范围内,孵化温度显影响孵化期及孵出幼体的体长和剩余卵黄大小,但不影响孵化成功率和孵出幼体的性别,体重,躯干重和脂肪体重。24,26,30和32℃孵化期分别为99.0,72.2,54.7和48.7d。24℃和26℃孵出幼体的体筮大于30℃和32℃孵出幼体;24℃和32℃孵同幼体内的卵黄较多。不同温度下发育的胚胎对卵内物质和能量的利用一定的差异,但差异不显。雌性幼体的体长,尾长和总长均大于雄性幼体,这些两性差异与孵化温度无关。孵出幼体和新生卵内容的灰分含量无显差异,孵化前后卵壳灰分含量也无显差异,表明灰鼠蛇的卵黄可提供胚胎发育所需的所有无机物。  相似文献   

3.
孵化水热环境对渔异色蛇孵化卵和孵出幼体的影响   总被引:10,自引:6,他引:4  
渔异色蛇卵孵化时能从环境中吸收水分导致质量增加,卵质量的增加与初始卵质量和孵化基质湿度有关。较大幅度的孵化基质湿度变化对孵化期、孵化成功率、胚胎动用孵内物质和能量、孵出幼体的性比、大小和质量无显著影响。孵化期随温度升高而缩短,并显示极强的窝间差异。温度对孵出幼体的性别无影响,但显著影响孵化成功率、胚胎对卵内物质和能量的动用、幼体的大小和质量、躯干和剩余卵黄的质量。孵出幼体总长的两性差异不显著,但雌体体长大于雄体而尾长小于雄体。32℃不适于孵化渔异色蛇卵,该温度下孵出的幼体躯干发育不良,剩余孵黄较多,尾部均呈畸形,孵化过程中能量转化率较低。24℃和26℃中孵出的幼体躯干发育良好,孵化过程中能量转化率较高,各项被测定的幼体特征指标均极相似。  相似文献   

4.
水热环境对白条草蜥孵化卵和孵出幼体表型特征的影响   总被引:2,自引:0,他引:2  
吴义莲  许雪峰 《动物学报》2007,53(6):966-973
用4×2(温度×湿度)八种水热环境孵化安徽滁州琅琊山白条草蜥(Takydromus wolteri)卵,观测孵化卵重量变化、胚胎利用卵内物质和能量以及孵出幼体的特征。卵从孵化环境中吸水导致重量增加,卵重量的增加与入孵卵重量、孵化温度和基质湿度有关。两种孵化基质湿度对孵化期、孵化成功率、孵出幼体性比和大小都无显著影响。孵化期随恒定孵化温度的升高而缩短,27℃、30℃和33℃孵化期分别为32.5、24.9和23.0d,波动温度孵化期为31.1d。33℃孵化成功率最低(42.8%)。温度对孵化成功率和孵出幼体的性别无显著影响,但显著影响胚胎对卵内物质的动用、幼体的大小和重量。33℃不适宜孵化白条草蜥卵,该温度下孵出的幼体躯干小,剩余卵黄多,运动能力差。27℃和波动温度中孵出幼体躯干发育良好,各项被测定的特征指标极其相似。  相似文献   

5.
火赤链游蛇卵孵化的进一步研究兼评孵化水环境的影响   总被引:9,自引:4,他引:5  
张永普  计翔 《动物学报》2002,48(1):35-43
用 2× 2四种温、湿度孵化火赤链游蛇 (Dinodonrufozonatum)卵 ,重点评估湿度及其与温度的相互作用对孵化成功率、胚胎利用卵内物质和能量及孵出幼体特征的影响。卵在孵化过程中净吸水导致重量增加 ,孵化温、湿度及其相互作用显著影响孵化卵的重量变化并导致卵内水环境的相应变化。同一湿度下 ,低温孵化卵的终末重量大于高温孵化卵 ;同一温度下 ,高湿度孵化卵的终末重量大于低湿度孵化卵。温度显著影响孵化期 ,湿度及其与温度的相互作用对孵化期无显著的影响。孵化温、湿度对孵化成功率和孵出幼体性别无显著的影响。2 4℃和 30℃中均有畸形幼体孵出 ,但畸形率与孵化温、湿度无关。孵化基质湿度显著影响孵出幼体的大小(snout ventlength ,SVL)、湿重和躯干干重 ,潮湿基质中孵出幼体的SVL和体重较大且躯干发育较好。孵化温度显著影响幼体剩余卵黄的干重和灰分含量以及幼体的能量和总灰分含量 ,30℃孵出幼体的剩余卵黄较大、总灰分含量和剩余卵黄灰分含量较高 ,但能量较低。在所有被检测的幼体特征中 ,孵化温、湿度相互作用仅影响剩余卵黄干重。各条件下孵出幼体的最大持续运动距离与其SVL无显著的相关性 ,孵化温、湿度及其相互作用对孵出幼体最大持续运动距离无显著的影响。孵化水环境虽然影响部分幼体特  相似文献   

6.
用 6种温湿度条件孵化安徽宿州乾山山地麻蜥 (Eremiasbrenchleyi)卵 ,观测孵化卵质量变化、胚胎利用卵内物质和能量以及孵出幼体特征。卵在产出后 1h内收集 ,共设置 3× 2种温湿度处理 (温度分别为2 7、 30和 33℃ ;湿度分别为 - 2 2 0、 0kPa)。每隔 5d称卵重 ,直至幼体孵出。幼体经测量、称重后 ,解剖、分离为躯干、剩余卵黄和脂肪体三组分 ,用于成分测试。卵从环境中吸水导致质量增加 ,孵化温、湿度及其相互作用显著影响孵化卵的质量变化 :同一温度下 ,高湿度 (0kPa)孵化卵的终末质量大于低湿度 (- 2 2 0kPa)孵化卵 ;同一湿度下 ,低温 (2 7和 30℃ )孵化卵的终末质量大于高温 (33℃ )孵化卵。温度显著影响孵化期 ,随温度的升高孵化期缩短 ;湿度及其与温度的相互作用对孵化期无显著影响。孵化温湿度对孵化成功率无显著影响。温度显著影响胚胎对卵内物质的动用、幼体大小、质量以及剩余卵黄质量 ;除剩余卵黄外 ,湿度及其与温度的相互作用不影响山地麻蜥孵出幼体几乎所有的被检测特征。 33℃孵出幼体的大小和质量均显著小于 2 7和 30℃ ,并特征性地具有较大的剩余卵黄。因此 ,33℃不适宜孵化山地麻蜥卵。 2 7℃和 30℃中孵出幼体躯干发育良好 ,各项被测定的特征指标极其相似。  相似文献   

7.
蓝尾石龙子孵化期卵内物质和能量的利用   总被引:1,自引:0,他引:1  
研究了安徽滁州蓝尾石龙子卵在温、湿度分别为 3 0℃、-1 2kPa的孵化条件下 ,胚胎对卵内物质和能量的利用。本研究蓝尾石龙子卵孵化期为 2 1 1d ,卵孵化时从基质中吸水导致重量增加。卵孵化过程中 ,干重、非极性脂肪和能量转化到孵出幼体的比率分别为 5 7 1 %、3 8 8%和 5 2 3 %。新生卵卵壳中5 0 %的灰分、5 9%的钙转移至孵出幼体中 ,胚胎发育所需要的无机物来自卵黄和卵壳。  相似文献   

8.
在24℃、27℃、30℃和33℃条件下孵化乌龟(Chinemysreevesii)卵,检测温度对胚胎利用卵内能量和矿物质的影响。孵化温度显著影响乌龟胚胎的能量利用。卵在温和温度下(27℃和30℃)比在高温(33℃)和低温(24℃)孵化有较高的干物质、脂肪和能量转化率。因而,27℃和30℃新生幼体的总能量高于33℃和24℃下孵出的幼体。新生幼体内剩余卵黄随温度升高而增大。27℃下新生幼体的躯干能量显著高于其它温度。此外,孵化温度显著影响乌龟胚胎钙代谢,但对镁和钾代谢影响微弱。24℃下胚胎从卵黄和卵壳吸收的总钙量小于其它温度条件下胚胎,与之相对应,24℃下孵出卵卵壳内残留较多的钙。由此可见,温和温度(27-30℃)可提高胚胎能量转化效率,促进胚胎从卵黄和卵壳吸收较多的矿物质,有利于孵出发育良好的乌龟幼体  相似文献   

9.
北草蜥卵孵化过程中物质和能量的动态   总被引:2,自引:0,他引:2  
研究北草蜥卵在温、湿度分别为 3 0℃、 -12kPa的条件下 ,孵化过程中物质和能量的动用以及胚胎生长。孵化过程中 ,每隔 5天称量卵重。孵化第 10天起 ,每隔 5天解剖来自不同窝的卵 15枚 ,并分离成胚胎、卵壳和卵黄三组分。孵出幼体称重后冰冻处死 ,之后解剖分离成躯干、剩余卵黄和脂肪体。所有材料 65℃烘至恒重 ,用索氏脂肪提取器测定脂肪含量 ,氧弹热量计测定能值 ,马福炉测定灰分含量。本研究北草蜥卵的孵化期为 2 8 1天。卵孵化时从基质中吸水导致重量增加。卵孵化 0 -10天、 11-2 0天、 2 1-2 5天、 2 6-2 8天 ,胚胎分别利用新生卵能量的 12 %、 3 5%、 3 7%和 15%。 0 -10天 ,胚胎生长较缓慢 ;10天后生长迅速。卵孵化过程中 ,干物质、非极性脂肪和能量的转化率分别为 69 7%、 3 7 0 %和 53 1%。初生幼体的能量组分为 :躯干95 2 % ,脂肪 2 4% ,剩余卵黄 2 4%。本研究结果显示 :北草蜥从新生卵到孵出幼体的物质和能量转化率较低 ;胚胎发育所需要的无机物来自卵黄和卵壳  相似文献   

10.
孵化温度对中华鳖胚胎物质和能量利用的影响   总被引:10,自引:6,他引:4  
杜卫国  计翔 《动物学报》2001,47(5):512-517
用多重温度组合[7个恒温(23、24、27、28、30、33和34℃)和1个波动温度(22.3-32.8℃)]孵化中华鳖(Pellodiscus sinensis)卵,检测温度对胚胎利用卵内物质和能量的影响。卵在波动温度和温和温度下(27℃和28℃)孵化有较高的干物质、脂肪和能量转化率,卵出幼体因而含有较多的无机物,幼体躯干和脂肪体含有较高的能量。卵在极端高温(34℃和33℃)或极端低温(23℃)下孵化物质和能量转化率较低,使得孵出幼体中无机物较少,幼体射干和脂肪中含能量较低。孵化温度显著影响中华鳖孵出幼体内的能量分配;27℃和28℃孵出幼体含能量较高且相似,但27℃孵出幼体剩余卵黄能量小于28℃孵出幼体;34℃和23℃孵出幼体含能量较低且相似,但23℃孵出幼体剩余卵黄能量大于34℃孵出幼体。波动温度拓宽存活孵化温度范围。  相似文献   

11.
Evolutionary biology has a complex relationship with ideas of chance, purpose, and progress. Probability plays a subtle role; strikingly, founding figures in statistics were motivated by evolutionary questions. The findings of evolutionary biology have been used both in support of narratives of progress, and in their deconstruction. Likewise, professional biologists bring to their scientific work a set of preconceptions about chance and progress, grounded in their philosophical, religious, and/or political views. From the religious side, questions of purpose are ever‐present. We explore this interplay in five broad categories: chance, progress, intelligence, eugenics, and the evolution of religious practices, each the subject of a semester long symposium. The intellectual influence of evolutionary biology has had a broad societal impact in these areas. Based on our experience, we draw attention to a number of relevant facts that, while accepted by experts in their respective fields, may be unfamiliar outside them. We list common areas of miscommunication, including specific examples and discussing causes: sometimes semantics and sometimes more substantive knowledge barriers. We also make recommendations for those attempting similar dialogue.  相似文献   

12.
1. Freshwater fishes are the most northerly of freshwater ectotherms, followed by frogs. North American freshwater snakes, turtles, and salamanders do not range farther north than southernmost Canada. 2. Freezing and desiccation are the main challenges during terrestrial hibernation of ectotherms. Oxygen depletion, water balance, and ionic balance are the major problems for air breathing ectotherms that hibernate underwater. 3. The importance of accumulation of energy stores for overwintering among fishes depends upon the length and severity of the winters, whether or not there is springtime reproduction, body size, latitude, and the availability and use of food during overwintering. 4. Fishes can decrease energy demands during the winter by reductions in activity, metabolic depression, and entrance in semi-torpidity. 5. Adaptations for coping with hypoxia and anoxia among overwintering freshwater fishes may include metabolic depression, a decrease in blood O2 affinity, microhabitat selection, air breathing, short-distance migration, biochemical modifications aimed at adjusting glycolytic rates, and alcoholic fermentation. 6. Freshwater turtles have a worldwide northern limit of approximately 50° N, which means that some species spend about half of their lives hibernating. 7. Aquatic turtles normally hibernate underwater, although occasionally they hibernate on land. In water they usually hibernate in a hypoxic or anoxic (mud) environment and in relatively shallow water. Wintertime movements of unknown frequency occur in some species. 8. The hatchlings of many turtle species can overwinter in the nest. Among northern species this behaviour is most common among painted turtles, whose hatchlings can withstand freezing. 9. Mortality among adult turtles is probably highest during the hibernation cycle. 10. Temperature appears to the most important cue for entry and exit from hibernation among freshwater turtles. 11. Little is known of the energetics of overwintering turtles. Energy stores for overwintering may be more important at lower latitudes than at higher ones, due to the higher metabolic rates of overwintering, but non-feeding, southern turtles. 12. The ability of turtles to tolerate submergence is a function of temperature, degree of water oxygenation, latitude of origin, efficacy of extrapulmonary respiratory pathways, and metabolic rate. 13. For turtles that hibernate in an anoxic hibernaculum, and for those without sufficient extrapulmonary uptake of O2 to allow metabolism to be completely aerobic, the most important physiological perturbation is an acidosis developed from a continuing production of lactate. If sufficient O2 can be obtained, the most likely factors limiting hibernation time are water balance and ion balance. 14. Mechanisms of turtles for coping with acidosis include metabolic depression, integumental CO2 loss, bicarbonate buffering, and changes in ion concentrations that minimize the decrease in SID (strong ion difference). The most important among the latter are a decrease in plasma [Cl-] and large increases in plasma calcium and magnesium. 15. Turtles are unique among reptiles in their ability to maintain both cardiovascular and nervous system function during prolonged anoxia. 16. Turtles gain weight from water uptake during submerged hibernation, but apparently maintain some kidney function; however, osmoregulation is one of the least known areas of the physiology of hibernation. 17. Recovery of turtles upon emergence commences with a rapid hyperventilatory compensation of pH, followed by a slower adjustment of ion levels. Basking speeds recovery greatly. 18. While hibernation of turtles in the northern parts of their ranges is most likely very stressful physiologically, northern range limits are more likely to be determined by reproductive restraints than by the rigors of extended hibernation. 19. The superior ability of turtles to tolerate anoxia may be more the result of an annual hibernation than of their diving habits during active periods of the year. 20. Freshwater snakes usually hibernate on land. However, they appear to be capable of aquatic hibernation and may not do so because of the risk of death from anoxia. 21. Some species of terrestrial snakes are known to hibernate underwater, and are able to do so in the laboratory for months. In the field, this behaviour is considered opportunistic, as there is no evidence to suggest that any snakes can tolerate extended anoxia.  相似文献   

13.
14.
This study deals with four form or organ genera from the Upper Mississippian (Chester Series) of the Illinois Basin, and provides evidence that they were produced by a single natural genus with gymnospermous affinity. The plant remains—compressions, impressions, petrifactions, and specimens that combine compression or impression with petrifaction—allow examination of both external morphology and internal anatomy. The specimens include foliage corresponding to Rhodea, stems and petioles corresponding to Heterangium, and synangiate fructifications corresponding to either Telangium or Telangiopsis. The stems and foliage are considered parts of the same plant because of the identity of the anatomical and cuticular features of petioles attached to stem and those petioles with attached foliage. The fertile material is regarded as part of the same plant because: (1) The anatomy of axes of the fertile specimens is like that of the sterile specimens. (2) A single specimen may contain both sterile Rhodea-type axes and fertile regions. (3) Axes bearing synangia have the same size and patterns of divisions as the sterile foliage. Features that indicate lyginopterid affinities include: (1) Equal forking of the petiole. (2) Presence of fiber bands in the outer cortex and sclerotic nests in the inner part of the cortex. (3) Crowded circular bordered pits on the lateral walls of the metaxylem tracheids. (4) The presence of a small amount of secondary xylem. A variety of structural details of the stem and petiole suggest the genus Heterangium. The phyletic position of the plant that produced Rhodea, Telangium, Telangiopsis, and Heterangium is reviewed in light of such discoveries as the presence of a planated frond that lacks a lamina and the presence of both monolete and trilete microspores in a single synangium.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号