首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic effects of low cortisol during exercise in humans   总被引:1,自引:0,他引:1  
This studyexamined the physiological effect of reduced plasma cortisol (C) duringprolonged exercise in humans. The effects of normal C (NC) werecompared with metyrapone-induced low C (LC) on plasma substrateavailability and the respiratory exchange ratio during 2 h of exerciseat ~60% peak O2 consumption innine subjects. The C responses were compared with preexercise (Pre) levels and with a rest day (Con). At rest, C was attenuated by ~70%for LC compared with NC. At rest, plasma glucose, lactate, glycerol,-hydroxybutyrate, alanine, branched-chain amino acids, insulin,glucagon, growth hormone, epinephrine, and norepinephrine were similarunder LC and NC (P > 0.05). Duringexercise under NC, plasma C increased compared with Pre, whereas itremained unchanged during LC. During NC, plasma C was elevated at 90 min (compared with Con) and at 120 min (compared with Con and Pre). During exercise, plasma glucose decreased to the same extent and lactate was similar under both conditions, whereas plasma glycerol, -hydroxybutyrate, alanine, and branched-chain amino acids were higher (P < 0.01) under NC. Plasmainsulin declined (P = 0.01) to agreater extent under LC, whereas growth hormone, epinephrine, andnorepinephrine tended to be higher (0.05  P  0.10). Plasma glucagon increasedunder both conditions (P < 0.01).The respiratory exchange ratio did not differ between conditions. Weconclude that, during exercise, 1) Caccelerates lipolysis, ketogenesis, and proteolysis;2) under LC, glucoregulatory hormoneadjustments maintain glucose homeostasis; and3) LC does not alter whole body substrate utilization or the ability to complete 2 h of moderate exercise.

  相似文献   

2.
Nissen, S., R. Sharp, M. Ray, J. A. Rathmacher, D. Rice, J. C. Fuller, Jr., A. S. Connelly, and N. Abumrad. Effect of leucinemetabolite -hydroxy--methylbutyrate on muscle metabolism duringresistance-exercise training. J. Appl.Physiol. 81(5): 2095-2104, 1996.The effects ofdietary supplementation with the leucine metabolite-hydroxy--methylbutyrate (HMB) were studied in two experiments.In study 1, subjects(n = 41) were randomized among threelevels of HMB supplementation (0, 1.5 or 3.0 g HMB/day) and two proteinlevels (normal, 117 g/day, or high, 175 g/day) and weight lifted for1.5 h 3 days/wk for 3 wk. In study 2,subjects (n = 28) were fed either 0 or3.0 g HMB/day and weight lifted for 2-3 h 6 days/wk for 7 wk. Instudy 1, HMB significantly decreased the exercise-induced rise in muscle proteolysis as measured by urine3-methylhistidine during the first 2 wk of exercise (linear decrease,P < 0.04). Plasma creatinephosphokinase was also decreased with HMB supplementation(week 3, linear decrease,P < 0.05). Weight lifted wasincreased by HMB supplementation when compared with the unsupplementedsubjects during each week of the study (linear increase,P < 0.02). In study2, fat-free mass was significantly increased inHMB-supplemented subjects compared with the unsupplemented group at 2 and 4-6 wk of the study (P < 0.05). In conclusion, supplementation with either 1.5 or 3 g HMB/daycan partly prevent exercise-induced proteolysis and/or muscledamage and result in larger gains in muscle function associated withresistance training.

  相似文献   

3.
The integration of innate andadaptive immune responses is required for efficient control ofCandida albicans. The present work aimed to assess, at thelocal site of the infection, the immunocompetence of macrophages inrats infected intraperitoneally with C. albicans and exposedsimultaneously to stress during 3 days (CaS group). We studied the1) ability to remove and kill C. albicans,2) tumor necrosis factor- (TNF-) release,3) balance of the inducible enzymes NO synthase (iNOS) andarginase, and 4) expression of interleukin (IL)-1 andIL-1 receptor antagonist (ra) mRNA. Compared with only infected animals(Ca group), the number of colony-forming units was significantly higherin CaS rats (P < 0.01), and the macrophagecandidicidal activity was ~2.5-fold lower (P < 0.01). Release of TNF- was diminished in both unstimulated andheat-killed C. albicans restimulated macrophages of the CaSgroup (Ca vs. CaS, P < 0.03 and P < 0.05, respectively). In Ca- and CaS-group rats, the rates for both thearginase activity and the NO synthesis were significantly enhanced.However, the stress exposure downregulated the activity of both enzymes(CaS vs. Ca, P < 0.05). After in vitro restimulation,the IL-1ra/IL-1 ratio was significantly diminished in CaS-group rats(P < 0.05). Our results indicate that a correlationexists between early impairment of macrophage function and stress exposure.

  相似文献   

4.
Cardiovascular adaptations to 10days of cycle exercise   总被引:1,自引:0,他引:1  
Mier, Constance M., Michael J. Turner, Ali A. Ehsani, andRobert J. Spina. Cardiovascular adaptations to 10 days of cycleexercise. J. Appl. Physiol. 83(6):1900-1906, 1997.We hypothesized that 10 days of training wouldenhance cardiac output (CO) and stroke volume (SV) during peak exerciseand increase the inotropic response to -adrenergic stimulation. Tensubjects [age 26 ± 2 (SE) yr] trained on a cycleergometer for 10 days. At peak exercise, training increasedO2 uptake, CO, and SV(P < 0.001). Left ventricular (LV)size and function at rest were assessed with two-dimensional echocardiography before (baseline) and after atropine injection (1.0 mg) and during four graded doses of dobutamine. LV end-diastolic diameter increased with training (P < 0.02), whereas LV wall thickness was unchanged. LV contractileperformance was assessed by relating fractional shortening (FS) to theestimated end-systolic wall stress(ES). Training increased theslope of the FS-ES relationship (P < 0.05), indicating enhancedsystolic function. The increase in slope correlated with increases inCO (r = 0.71,P < 0.05) and SV(r = 0.70,P < 0.05). The increase in bloodvolume also correlated with increases in CO(r = 0.80, P < 0.01) and SV (r = 0.85, P < 0.004). These datashow that 10 days of training enhance the inotropic response to-adrenergic stimulation, associated with increases in CO and SVduring peak exercise.

  相似文献   

5.
The length of the silent lag time beforeelevation of the cytosolic free Ca2+ concentration([Ca2+]i) differs between individualpancreatic -cells. One important question is whether thesedifferences reflect a random phenomenon or whether the length of lagtime is inherent in the individual -cell. We compared the lag times,initial dips, and initial peak heights for[Ca2+]i from two consecutive glucosestimulations (with either 10 or 20 mM glucose) in individualob/ob mouse -cells with the fura 2 technique in amicrofluorimetric system. There was a strong correlation between thelengths of the lag times in each -cell (10 mM glucose:r = 0.94, P < 0.001; 20 mM glucose:r = 0.96, P < 0.001) as well as between theinitial dips in [Ca2+]i (10 mM glucose:r = 0.93, P < 0.001; 20 mM glucose:r = 0.79, P < 0.001) and between theinitial peak heights (10 mM glucose: r = 0.51, P < 0.01; 20 mM glucose: r = 0.77, P < 0.001). These data provide evidence that theresponse pattern, including both the length of the lag time and thedynamics of the subsequent [Ca2+]i, isspecific for the individual -cell.

  相似文献   

6.
In this study wesought to determine the effect of sepsis on two sequelae of prolonged(24-h) -agonist administration, myocardial hypertrophy andcatecholamine-induced cardiotoxicity. Sprague-Dawley rats wererandomized to cecal ligation and perforation (CLP) or sham study groupsand then further randomized to receive isoproterenol (2.4 mg · kg1 · day1 iv) or placebotreatment. At 24 h, myocardial function was assessed by using theLangendorff isolated-heart technique or the heart processed for plainlight microscopy. We found that 1)sepsis reduced contractile function, indicated by a rightward shift in the Starling curve (ANOVA with repeated measures, sepsis effect, P < 0.002);2) sepsis-induced myocardialdepression was reversed by isoproterenol treatment (isoproterenoleffect, P < 0.0001); 3) sepsis reduced, but did notblock, isoproterenol-induced myocardial hypertrophy (isoproterenoleffect, P < 0.0001);4) sepsis did not protect the heartfrom catecholamine-induced tissue injury; 5) the septic heart was protectedagainst the effects of ischemiareperfusion (decreasedpostreperfusion resting tension, ANOVA with repeated measures,P < 0.01), an effect attenuated byisoproterenol treatment (P < 0.005);and 6) sepsis reduced the incidenceof sustained asystole or ventricular fibrillation afterischemia-reperfusion (P < 0.05), an effect also attenuated by isoproterenol treatment (P < 0.01). We conclude that, insepsis, -agonists induce changes in myocardial weight and functionconsistent with acute myocardial hypertrophy. These changes occur atthe expense of significant tissue injury and increased sensitivity toischemia-reperfusion-induced tissue injury.  相似文献   

7.
Taffet, George E., Lloyd A. Michael, and Charlotte A. Tate.Exercise training improves lusitropy by isoproterenol in papillarymuscles from aged rats. J. Appl.Physiol. 81(4): 1488-1494, 1996.Aging isassociated with a decreased cardiac responsiveness to -adrenergicstimulation. We examined the effect of endurance exercise training ofold Fischer 344 male rats on -adrenergic stimulation of the functionof isolated left ventricular papillary muscle. Three groups wereexamined: sedentary mature (SM; 12-mo old), sedentary old (SO;23-24 mo old), and exercised old (EO; 23-24 mo old) that weretreadmill trained for 4-8 wk. The isometric contractile propertieswere studied at 0.2 Hz and 0.75 mM calcium. Without -adrenergicstimulation, there were no group differences for peak tension, maximumrate of tension development(+dP/dt), or maximum rateof tension dissipation(dP/dt). The time to peak tension was longer (P < 0.05) forboth EO and SO than for SM rats. Half relaxation time(RT1/2) was prolonged(P < 0.05) for SO compared with SMand EO (which did not differ). The three groups did not differ in the-adrenergic stimulation by isoproterenol of peak tension,dP/dt, time to peak tension, orcontraction duration. The inotropic response(+dP/dt) of SM was greater(P < 0.05) than that in SO or EOrats (which did not differ); however, the lusitropic response(RT1/2) was lesser(P < 0.05) in SO than in SM or EO rats (which did not differ). Thus exercise training of old rats improved the lusitropic response to isoproterenol without altering theage-associated impairment in inotropic response.

  相似文献   

8.
Kawanaka, Kentaro, Izumi Tabata, and MitsuruHiguchi. More tetanic contractions are requiredfor activating glucose transport maximally in trained muscle.J. Appl. Physiol. 83(2): 429-433, 1997.Exercise training increases contraction-stimulated maximalglucose transport and muscle glycogen level in skeletal muscle.However, there is a possibility that more muscle contractions arerequired to maximally activate glucose transport in trained than inuntrained muscle, because increased glycogen level after training mayinhibit glucose transport. Therefore, the purpose of this study was toinvestigate the relationship between the increase in glucose transportand the number of tetanic contractions in trained and untrained muscle.Male rats swam 2 h/day for 15 days. In untrained epitrochlearis muscle,resting glycogen was 26.6 µmol glucose/g muscle. Ten, 10-s-longtetani at a rate of 1 contraction/min decreased glycogen level to 15.4 µmol glucose/g muscle and maximally increased2-deoxy-D-glucose(2-DG) transport. Training increasedcontraction-stimulated maximal 2-DG transport (+71%;P < 0.01), GLUT-4 protein content(+78%; P < 0.01), and restingglycogen level (to 39.3 µmol glucose/g muscle;P < 0.01) on the next day after thetraining ended, although this training effect might be due, at least inpart, to last bout of exercise. In trained muscle, 20 tetani werenecessary to maximally activate glucose transport. Twenty tetanidecreased muscle glycogen to a lower level than 10 tetani (18.9 vs.24.0 µmol glucose/g muscle; P < 0.01). Contraction-stimulated 2-DG transport was negatively correlatedwith postcontraction muscle glycogen level in trained (r = 0.60;P < 0.01) and untrained muscle(r = 0.57;P < 0.01).

  相似文献   

9.
Van den Burg, P. J. M., J. E. H. Hospers, M. Van Vliet, W. L. Mosterd, B. N. Bouma, and I. A. Huisveld. Effect of endurance training and seasonal fluctuation on coagulation and fibrinolysis inyoung sedentary men. J. Appl. Physiol.82(2): 613-620, 1997.The effect of 12 wk of submaximal trainingon hemostatic variables was studied in 20 young sedentary men (Tr) and19 nontraining matched controls (Con). After training, a morepronounced increase in factor VIII coagulant activity(P < 0.01), reflected in a decrease in activated partial thromboplastin time(P < 0.01) during maximal exercise,was seen. Both basal plasminogen activator inhibitor 1 antigen (PAI-1Ag) and activity (PAI-1 Act; P < 0.05), as well as basal and exercise-induced tissue-type plasminogenactivator antigen (t-PA Ag; P < 0.05), were decreased after training. The overall effect onfibrinolysis was reflected in an increase in the t-PA Act/t-PA Ag ratioin the Tr group. In contrast, during the same period (February-June),the Con group demonstrated an increase in basal PAI-1 Ag and PAI-1 Act(P < 0.05), together with anincrease in basal and exercise-induced t-PA Ag(P < 0.05). Both basal andexercise-induced t-PA Act were unchanged, but t-PA Act/t-PA Ag wasdecreased (P < 0.05) in the Congroup. We conclude that physical training promotes both coagulation andfibrinolytic potential during exercise and may reverse unfavorableseasonal effects on fibrinolysis.

  相似文献   

10.
Influence of voluntary exercise on hypothalamic norepinephrine   总被引:5,自引:0,他引:5  
We combined hypothalamic tissue and plasma determinations ofnorepinephrine, dihydroxyphenylalanine, and dihydroxyphenylglycol withmeasurements of abdominal fat in voluntary running rats to examine therelationship among exercise training, hypothalamic and sympatheticnervous function, and body fat stores. The hypothalamic concentrationsof norepinephrine, dihydroxyphenylalanine, and dihydroxyphenylglycolwere reduced after exercise training(P < 0.01), with the amount ofnorepinephrine being strongly associated with the plasma norepinephrine(r = 0.58, P < 0.05) and dihydroxyphenylglycol (r = 0.65, P = 0.01) concentrations. Exercisetraining resulted in a diminution in abdominal fat mass(P < 0.01). A strongrelationship existed between fat mass and hypothalamic norepinephrinecontent (r = 0.83, P < 0.001). The presence of apositive relationship between the arterial and hypothalamicnorepinephrine levels provides presumptive evidence of an associationbetween noradrenergic neuronal activity of the hypothalamus andsympathetic nervous function. The observation that abdominal fat massis linked with norepinephrine in the hypothalamus raises thepossibility that alterations in body fat stores provide an afferentsignal linking hypothalamic function and the activity of thesympathetic nervous system.

  相似文献   

11.
Turnage, Richard H., John L. LaNoue, Kevin M. Kadesky, YanMeng, and Stuart I. Myers. ThromboxaneA2 mediates increased pulmonarymicrovascular permeability after intestinal reperfusion. J. Appl. Physiol. 82(2): 592-598, 1997.This study examines the hypothesis that intestinal reperfusion(IR)-induced pulmonary thromboxane A2(TxA2) release increases localmicrovascular permeability and induces pulmonary vasoconstriction.Sprague-Dawley rats underwent 120 min of intestinal ischemia and 60 minof IR. Sham-operated animals (Sham) served as controls. After IR orSham, the pulmonary vessels were cannulated, and the lungs wereperfused in vitro with Krebs buffer. Microvascular permeability wasquantitated by determining the filtration coefficient(Kf),and pulmonary arterial (Ppa), venous (Ppv), and capillary (Ppc)pressures were measured to calculate vascular resistance (Rt). Afterbaseline measurements, imidazole(TxA2 synthase inhibitor) orSQ-29,548 (TxA2-receptorantagonist) was added to the perfusate; thenKf, Ppa, Ppv, and Ppc were again measured. TheKfof lungs from IR animals was four times greater than that of Sham(P = 0.001), and Rt was 63% greaterin the injured group (P = 0.01). Pc of IR lungs was twice that of controls (5.4 ± 1.0 vs. 2.83 ± 0.3 mmHg, IR vs. Sham, respectively; P < 0.05). Imidazole or SQ-29,548 returnedKfto baseline measurements (P < 0.05)and reduced Rt by 23 and 17%, respectively(P < 0.05). IR-induced increases in Pc were only slightly reduced by 500 µg/ml imidazole (14%;P = 0.05) but unaffected by lowerdoses of imidazole (5 or 50 µg/ml) or SQ-29,548. These data suggestthat IR-induced pulmonary edema is caused by both increasedmicrovascular permeability and increased hydrostatic pressure and thatthese changes are due, at least in part, to the ongoing release ofTxA2.

  相似文献   

12.
Human endothelial cells wereexposed to 5 mM glucose (control), 25 mM (high) glucose, or osmoticcontrol for 72 h. TGF-1 production, cell growth, death, andcell cycle progression, and the effects of TGF-1 and TGF-neutralization on these parameters were studied. High glucose andhyperosmolarity increased endothelial TGF-1 secretion(P < 0.0001) and bioactivity (P < 0.0001). However, high glucose had a greater effect on reducingendothelial cell number (P < 0.001) and increasingcellular protein content (P < 0.001) than the osmoticcontrol. TGF- antibody only reversed the antiproliferative andhypertrophic effects of high glucose. High glucose altered cell cycleprogression and cyclin-dependent kinase inhibitor expressionindependently of hyperosmolarity. High glucose increased endothelialcell apoptosis (P < 0.01), whereashyperosmolarity induced endothelial cell necrosis (P < 0.001). TGF- antibody did not reverse the apoptotic effectsobserved with high glucose. Exogenous TGF-1 mimicked the increased Sphase delay but not endoreduplication observed with high glucose. High glucose altered endothelial cell growth, apoptosis, and cellcycle progression. These growth effects occurred principally via aTGF-1 autocrine pathway. In contrast, apoptosis andendoreduplication occurred independently of this cytokine and hyperosmolarity.

  相似文献   

13.
Hypertriglyceridemia, peripheral insulin resistance,and trunk adiposity are metabolic complications recently recognized in people infected with human immunodeficiency virus (HIV) and treated with highly active antiretroviral therapy (HAART). These complications may respond favorably to exercise training. Using a paired design, wedetermined whether 16 wk of weight-lifting exercise increased musclemass and strength and decreased fasting serum triglycerides and adiposetissue mass in 18 HIV-infected men. The resistance exercise regimenconsisted of three upper and four lower body exercises done for1-1.5 h/day, 4 days/wk for 64 sessions. Dual-energy X-rayabsorptiometry indicated that exercise training increased whole bodylean mass 1.4 kg (P = 0.005) but did not reduce adipose tissue mass (P = NS). Axial proton-magnetic resonanceimaging indicated that thigh muscle cross-sectional area increased5-7 cm2 (P < 0.005). Muscle strengthincreased 23-38% (P < 0.0001) on all exercises.Fasting serum triglycerides were decreased at the end of training(281-204 mg/dl; P = 0.02). These findings imply that resistance exercise training-induced muscle hypertrophy may promote triglyceride clearance from the circulation ofhypertriglyceridemic HIV-infected men treated with antiviral therapy.

  相似文献   

14.
We investigatedthe effects of 3 wk of moderate- (21 m/min, 8% grade) andhighintensity treadmill training (31 m/min, 15% grade) on1) monocarboxylate transporter 1 (MCT-1) content in rat hindlimb muscles and the heart and2) lactate uptake in isolated soleus(Sol) muscles and perfused hearts. In the moderately trained groupMCT-1 was not increased in any of the muscles [Sol, extensor digitorum longus (EDL), and red (RG) and white gastrocnemius(WG)] (P > 0.05). Similarly,lactate uptake in Sol strips was also not increased(P > 0.05). In contrast, in theheart, MCT-1 (+36%, P < 0.05) andlactate uptake (+72%, P < 0.05)were increased with moderate training. In the highly trained group,MCT-1 (+70%, P < 0.05) and lactateuptake (+79%, P < 0.05) wereincreased in Sol. MCT-1 was also increased in RG (+94%,P < 0.05) but not in WG and EDL(P > 0.05). In the highly trainedgroup, heart MCT-1 (+44%, P < 0.05)and lactate uptake (+173%, P < 0.05) were increased. In conclusion, it has been shown that1) in both heart and skeletal musclelactate uptake is increased only when MCT-1 is increased; 2) training-induced increases inMCT-1 occurred at a lower training intensity in the heart than inskeletal muscle; 3) in the heart, lactate uptake was increased much more after high-intensity training than after moderate-intensity training, despite similar increases inheart MCT-1 with these two training intensities; and4) the increases in MCT-1 occurredindependently of any changes in the heart's oxidative capacity (asmeasured by citrate synthase activity).

  相似文献   

15.
Asp, Sven, and Erik A. Richter. Decreased insulinaction on muscle glucose transport after eccentric contractions in rats. J. Appl. Physiol. 81(5):1924-1928, 1996.We have recently shown that eccentriccontractions (Ecc) of rat calf muscles cause muscle damage anddecreased glycogen and glucose transporter GLUT-4 protein content inthe white (WG) and red gastrocnemius (RG) but not in the soleus (S) (S. Asp, S. Kristiansen, and E. A. Richter. J. Appl.Physiol. 79: 1338-1345, 1995). To study whetherthese changes affect insulin action, hindlimbs were perfused at three different insulin concentrations (0, 200, and 20,000 µU/ml) 2 daysafter one-legged eccentric contractions of the calf muscles. Comparedwith control, basal glucose transport was slightly higher (P < 0.05) in Ecc-WG and -RG,whereas it was lower (P < 0.05) atboth submaximal and maximal insulin concentrations in the Ecc-WG and atmaximal concentrations in the Ecc-RG. In the Ecc-S, the glucosetransport was unchanged in hindquarters perfused in the absence orpresence of a submaximal stimulating concentration of insulin, whereasit was slightly (P < 0.05) higherduring maximal insulin stimulation compared with control S. At the endof perfusion the glycogen concentrations were lower in bothEcc-gastrocnemius muscles compared with control muscles at all insulinconcentrations. Fractional velocity of glycogen synthase increasedsimilarly with increasing insulin concentrations in Ecc- and control WGand RG. We conclude that insulin action on glucose transport but notglycogen synthase activity is impaired in perfused muscle exposed toprior eccentric contractions.

  相似文献   

16.
Compared with the lean(Fa/) genotype, obese(fa/fa) Zucker rats have arelative deficiency of muscle phospholipid arachidonate, and skeletalmuscle arachidonate in humans is positively correlated with insulinsensitivity. To assess the hypothesis that the positive effects ofexercise training on insulin sensitivity are mediated by increasedmuscle arachidonate, we randomized 20 lean and 20 obese weanling maleZucker rats to sedentary or treadmill exercise groups. After 9 wk,fasting serum, three skeletal muscles (white gastrocnemius, soleus, andextensor digitorum longus), and heart were obtained. Fasting insulinwas halved by exercise training in the obese rat. In whitegastrocnemius and extensor digitorum longus (fast-twitch muscles), butnot in soleus (a slow-twitch muscle) or heart, phospholipidarachidonate was lower in obese than in lean rats(P < 0.001). In all muscles,exercise in the obese rats reduced arachidonate(P < 0.03, by ANOVA contrast). Weconclude that improved insulin sensitivity with exercise in the obesegenotype is not mediated by increased muscle arachidonate and thatreduced muscle arachidonate in obese Zucker rats is unique tofast-twitch muscles.

  相似文献   

17.
Bigard, Xavier A., Chantal Janmot, Danièle Merino,Françoise Lienhard, Yannick C. Guezennec, and Anne D'Albis.Endurance training affects myosin heavy chain phenotype inregenerating fast-twitch muscle. J. Appl.Physiol. 81(6): 2658-2665, 1996.The aim of thisstudy was to analyze the effects of treadmill training (2 h/day, 5 days/wk, 30 m/min, 7% grade for 5 wk) on the expression of myosinheavy chain (MHC) isoforms during and after regeneration of afast-twitch white muscle [extensor digitorum longus (EDL)]. Male Wistar rats were randomly assigned to a sedentary(n = 10) or an endurance-trained (ET;n = 10) group. EDL muscle degeneration and regeneration were induced by two subcutaneous injections of a snaketoxin. Five days after induction of muscle injury, animals were trainedover a 5-wk period. It was verified that ~40 days after venomtreatment, central nuclei were present in the treated EDL muscles fromsedentary and ET rats. The changes in the expression of MHCs in EDLmuscles were detected by using a combination of biochemical andimmunocytochemical approaches. Compared with contralateral nondegenerated muscles, relative concentrations of types I, IIa, andIIx MHC isoforms in ET rats were greater in regenerated EDL muscles(146%, P < 0.05; 76%,P < 0.01; 87%,P < 0.01, respectively). Their elevation corresponded to a decreasein the relative concentration of type IIb MHC (36%,P < 0.01). Although type I accountedfor only 3.2% of total myosin in regenerated muscles from the ETgroup, the cytochemical analysis showed that the proportion of positive staining with the slow MHC antibody was markedly greater in regenerated muscles than in contralateral ones. Collectively, these results demonstrate that the regenerated EDL muscle is sensitive to endurance training and suggest that the training-induced shift in MHC isoforms observed in these muscles resulted from an additive effect of regeneration and repeated exercise.

  相似文献   

18.
Febbraio, M. A., D. L. Lambert, R. L. Starkie, J. Proietto,and M. Hargreaves. Effect of epinephrine on muscle glycogenolysis during exercise in trained men. J. Appl.Physiol. 84(2): 465-470, 1998.To test thehypothesis that an elevation in circulating epinephrine increasesintramuscular glycogen utilization, six endurance-trained men performedtwo 40-min cycling trials at 71 ± 2% of peak oxygen uptake in20-22°C conditions. On the first occasion, subjects wereinfused with saline throughout exercise (Con). One week later, afterdetermination of plasma epinephrine levels in Con, subjects performedthe second trial (Epi) with an epinephrine infusion, which resulted ina twofold higher (P < 0.01) plasmaepinephrine concentration in Epi compared with Con. Although oxygenuptake was not different when the two trials were compared, respiratoryexchange ratio was higher throughout exercise in Epi compared with Con(0.93 ± 0.01 vs. 0.89 ± 0.01; P < 0.05). Muscle glycogenconcentration was not different when the trials were comparedpreexercise, but the postexercise value was lower(P < 0.01) in Epi compared with Con.Thus net muscle glycogen utilization was greater during exercise withepinephrine infusion (224 ± 37 vs. 303 ± 30 mmol/kg for Con andEpi, respectively; P < 0.01). Inaddition, both muscle and plasma lactate and plasma glucoseconcentrations were higher (P < 0.05) in Epi compared with Con. These data indicate that intramuscularglycogen utilization, glycolysis, and carbohydrate oxidation areaugmented by elevated epinephrine during submaximal exercise in trainedmen.

  相似文献   

19.
Jungersten, Lennart, Anneli Ambring, Björn Wall, andÅke Wennmalm. Both physical fitness and acute exerciseregulate nitric oxide formation in healthy humans. J. Appl. Physiol. 82(3): 760-764, 1997.We analyzednitrate, a major stable end product of nitric oxide (NO) metabolism invivo in plasma and urine from groups of healthy subjects with differentworking capacities. Resting plasma nitrate was higher in athleticsubjects than in nonathletic controls [45 ± 2 vs. 34 ± 2 (SE) µM; P < 0.01]. In other subjects, both the resting plasma nitrate level(r = 0.53; P < 0.01) and the urinary excretionof nitrate at rest (r = 0.46; P < 0.01) correlated to thesubjects' peak work rates, as determined by bicycle ergometry. Twohours of physical exercise elevated plasma nitrate by 18 ± 4 (P < 0.01) and 16 ± 6%(P < 0.01), respectively, in athletes and nonathletes, compared with resting nitrate before exercise. We conclude that physical fitness and formation of NO at restare positively linked to each other. Furthermore, a single session ofexercise elicits an acute elevation of NO formation. The observedpositive relation between physical exercise and NO formation may helpto explain the beneficial effects of physical exercise oncardiovascular health.

  相似文献   

20.
Whole cellpatch-clamp techniques were used to investigate amiloride-sensitivesodium conductance (GNa) in the everted initial collecting tubule of Ambystoma. Accessibility to both theapical and basolateral membranes made this preparation ideal forstudying the regulation of sodium transport by insulin.GNa accounted for 20% of total cell conductance(GT) under control conditions. A restingmembrane potential of 75 ± 2 mV (n = 7)together with the fact that GT is stable withtime suggested that the cells studied were viable. Measurements ofcapacitance and use of a known uncoupling agent, heptanol, suggestedthat cells were not electrically coupled. Thus the values ofGT and GNa represented individual principal cells. Exposure of the basolateral membrane toinsulin (1 mU/ml) for 10-60 min significantly (P < 0.05) increased the normalized GNa [1.2 ± 0.3 nS (n = 6) vs. 2.0 ± 0.4 nS(n = 6)]. Cell-attached patch-clamp techniques wereused to further elucidate the mechanism by which insulin increasesamiloride-sensitive epithelial sodium channel (ENaC) activity. In thepresence of insulin there was no apparent change in either the numberof active levels/patch or the conductance of ENaC. The openprobability increased significantly (P < 0.01) from0.21 ± 0.04 (n = 6) to 0.46 ± 0.07 (n = 6). Thus application of insulin enhanced sodium reabsorption by increasing the fraction of time the channel spent inthe open state.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号