首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
Forest-habitat loss and fragmentation reduce connectivity, presenting dispersal challenges for many forest-dependent species with deleterious effects on community structure and diversity. It is expected that avian forest specialists are vulnerable to fragmentation, yet seasonal migrants may be more resilient to isolation effects than sedentary specialists. We surveyed bird communities in 138 habitat patches of the critically endangered Indian Ocean Coastal Belt, South Africa, across a range of isolation distances from mainland forests during the breeding and non-breeding seasons. We quantified taxonomic and functional diversity per patch based on species’ traits and performed 26 generalized linear mixed-effects models on the effects of isolation and the amount of habitat in the surrounding matrix on avian trait-diversity measurements. We compared diversity measures between seasons for evidence of resilience to isolation effects for migrants and compared linear regressions of isolation-distance effects to segmented regressions at various isolation distances to explore dispersal limits of sedentary forest specialists. All avian diversity measures were higher during the breeding season. The amount of surrounding habitat was a positive driver of all diversity measures. Isolation-distance effects had the most negative effect during the breeding season, and on sedentary forest specialists, which were unable to disperse across isolation distances > 500 m. Sedentary forest specialists are a conservation priority given (a) their value in perpetuating ecosystem services and (b) their vulnerability to isolation effects. Migratory forest specialists exhibited resilience to the isolation effect during non-breeding; thus, certain specialized niches may be occupied given the vagility of migratory forest specialists.  相似文献   

2.
Forest fragmentation represents a threat to several bird species worldwide. Several factors can change across seasons (e.g. bird perception of the landscape, weather conditions, biotic interactions), which can modify the response of bird populations to forest fragmentation. However, most studies have been conducted only during the breeding season. Here we assessed the relationship between forest fragmentation (patch area and patch isolation) with population abundances of resident species during both the breeding and the non-breeding seasons. Bird population abundances (all species in the community, subsets of forest and habitat generalist species and for individual species) were estimated across a gradient of area-isolation in a semi-arid forest in Cordoba, Argentina. Population abundance of the overall avian community and of the subset of forest species declined with patch area reduction independently of the season. By contrast, the subset of habitat generalist species was not affected by patch area reduction or by the increase in patch isolation, either during the breeding or during the non-breeding season. When the analyses were carried out for individual species, we found four forest species and one habitat generalist species whose responses (the relationship between population abundance and patch area or with isolation) were different between breeding and non-breeding seasons. The negative effects of forest fragmentation were found mainly during the breeding season. Our results suggest that reduction of patch area may lead to a reduction of more than 65% of the population abundance of forest bird species, during both the breeding and the non-breeding season. Therefore, there is an urgent need to conserve large forest patches within the region as irreplaceable elements for the conservation of populations of several species.  相似文献   

3.
Animals have to adjust their physiology to seasonal changes, in response to variation in food availability, social tactics and reproduction. I compared basal corticosterone and testosterone levels in free ranging striped mouse from a desert habitat, comparing between the sexes, breeding and philopatric non-breeding individuals, and between the breeding and the non-breeding season. I expected differences between breeders and non-breeders and between seasons with high and low food availability. Basal serum corticosterone was measured from 132 different individuals and serum testosterone from 176 different individuals of free living striped mice. Corticosterone and testosterone levels were independent of age, body weight and not influenced by carrying a transmitter. The levels of corticosterone and testosterone declined by approximately 50% from the breeding to the non-breeding season in breeding females as well as non-breeding males and females. In contrast, breeding males showed much lower corticosterone levels during the breeding season than all other classes, and were the only class that showed an increase of corticosterone from the breeding to the non-breeding season. As a result, breeding males had similar corticosterone levels as other social classes during the non-breeding season. During the breeding season, breeding males had much higher testosterone levels than other classes, which decreased significantly from the breeding to the non-breeding season. My results support the prediction that corticosterone decreases during periods of low food abundance. Variation in the pattern of hormonal secretion in striped mice might assist them to cope with seasonal changes in energy demand in a desert habitat.  相似文献   

4.
Migratory shorebirds show highly organized seasonal cycles in physiological and morphological traits (body mass and composition, plumage, hormone levels, etc.), which in captivity is accompanied by restless behaviour at times when free-living birds would start migration. We introduce the idea that seasonally changing preference for habitat could motivate migrants to embark on migration and that this cognitive process could also guide them to seasonally appropriate places. We explored this by testing whether red knots (Calidris canutus), which also in captivity maintain marked circannual phenotypic rhythms, show evidence of seasonal change in preference for pictures of seasonally appropriate habitats. We first developed a method to verify whether red knots are able to memorize and discriminate contrasting pictures projected by LCD projectors. This was followed by two different experiments in which we tested for a seasonally changing preference for breeding or non-breeding habitat. When carried out during the pre-breeding season, the red knots are expected to prefer pictures of mudflats, their non-breeding habitat. At the start of the breeding season, they should prefer pictures of the tundra breeding habitat. We established that knots are able to distinguish and memorize projected images. We failed to demonstrate the predicted change in vision-based habitat preference, but for reasons of test design we do not interpret this as a strong rejection of the hypothesis. Instead, we suggest that experiments with greater numbers of individuals tested once, perhaps in combination with the provision of additional cues such as smells and sounds, will help the development of these ideas further.  相似文献   

5.
Long-distance migration presents complex conservation challenges, and migratory species often experience shortfalls in conservation due to the difficulty of identifying important locations and resources throughout the annual cycle. In order to prioritize habitats for conservation of migratory wildlife, it is necessary to understand how habitat needs change throughout the annual cycle, as well as to identify key habitat sites and features that concentrate large numbers of individuals and species. Among long-distance migrants, sea ducks have particularly complex migratory patterns, which often include distinct post-breeding molt sites as well as breeding, staging and wintering locations. Using a large set of individual tracking data (n = 476 individuals) from five species of sea ducks in eastern North America, we evaluated multi-species habitat suitability and partitioning across the breeding, post-breeding migration and molt, wintering and pre-breeding migration seasons. During breeding, species generally occupied distinct habitat areas, with the highest levels of multi-species overlap occurring in the Barrenlands west of Hudson Bay. Species generally preferred flatter areas closer to lakes with lower maximum temperatures relative to average conditions, but varied in distance to shore, elevation and precipitation. During non-breeding, species overlapped extensively during winter but diverged during migration. All species preferred shallow-water, nearshore habitats with high productivity, but varied in their relationships to salinity, temperature and bottom slope. Sea ducks selected most strongly for preferred habitats during post-breeding migration, with high partitioning among species; however, both selection and partitioning were weaker during pre-breeding migration. The addition of tidal current velocity, aquatic vegetation presence and bottom substrate improved non-breeding habitat models where available. Our results highlight the utility of multi-species, annual-cycle habitat assessments in identifying key habitat features and periods of vulnerability in order to optimize conservation strategies for migratory wildlife.  相似文献   

6.
Creating conservation policies for declining migrant species in response to global change presents a considerable challenge. Migrant species are affected by factors at breeding grounds, overwintering areas and during migration. Accordingly, reserve-based management during the breeding season is not always a suitable conservation strategy. Recent Pied Flycatcher population decline typifies the pattern for many migrants. The UK population has declined by 43% in the past decade, but explanations, and possible solutions, remain elusive. We use 15 years of data (1990–2004) from a declining British population to establish possible reasons for decline, considering: (1) breeding performance (including the influences of competition and predation); (2) weather patterns caused by the winter phase (December–March) of the North Atlantic Oscillation (NAO), which modify conditions experienced at wintering grounds and on migration; and (3) possible impacts of climate change on spring temperatures. We conclude that decreasing breeding performance is contributing to decline, but that non-breeding factors are more important. Winter NAO index is a strong predictor of breeding population, probably because it influences food abundance in Africa and at migratory stopover points. Importantly, however, year itself enhances the predictive model, indicating that influences on population remain unaccounted for by current research. Management strategies based on increasing breeding productivity cannot fully address population decline because non-breeding factors appear important. However, as breeding performance is declining, breeding-based strategies remain useful conservation tools. To this end, our research indicates that optimal placement of nestboxes as regards orientation and habitat management to increase larval food supplies could increase productivity significantly.  相似文献   

7.
During the non-breeding season, many species of territorial migratory birds exhibit a non-random pattern of habitat distribution, with males and females occupying different habitats. In this study, we examined possible physiological consequences arising from such habitat segregation in one migrant passerine species, the American redstart (Setophaga ruticilla), on its non-breeding grounds in Jamaica, West Indies. For 2 years, we measured concentrations of corticosterone, at the time of capture (baseline) and 30 min after capture (profile of acute corticosterone secretion), in redstarts in two distinct habitats, one occupied predominately by males and one mostly by females. All redstarts in both habitat types exhibited similar concentrations of baseline corticosterone levels in fall (October), whereas in spring (March–April), redstarts in female-biased habitat exhibited significantly higher baseline levels regardless of age or sex. In fall, all individuals in both habitats exhibited significant increases in corticosterone concentration with capture and handling, but in spring only redstarts (both sexes) in male-biased habitat continued to exhibit acute corticosterone secretion. Redstarts in female-biased habitat had elevated baseline corticosterone levels and reduced acute corticosterone secretion. In spring, baseline corticosterone concentration was negatively correlated with body mass, suggesting muscle catabolism associated with high corticosterone concentrations or possibly that birds are leaner as a result of increased foraging effort. These results indicate that redstarts (primarily females) in female-biased habitats suffered a decline in physiological condition, which could in turn influence their departure schedules, migration patterns and even their condition and arrival schedules on the breeding grounds. Thus, segregation of populations into habitats of different quality during the non-breeding period may have ramifications throughout the annual cycle of such migratory species. Furthermore, these results show the usefulness of plasma corticosterone levels as indicators of physiological condition and thus habitat quality for birds during the non-breeding period. Received: 14 November 1997 / Accepted: 9 March 1998  相似文献   

8.
D. G. Thomas 《Ibis》1980,122(3):298-306
The avifauna of Tasmanian temperate rainforest consists of 21 species, more than hitherto reported. Eleven species are very common, six are common and a further four species that have large home ranges are uncommon. Other species occur occasionally or accidentally.
The structure of the Tasmanian rainforest community was determined from measured overlaps in horizontal habitat selection, vegetation layer utilization and foraging site distribution. This demonstrates the existence of guilds, the members of which react more with each other than they do with members of other guilds. Niche differentiation is shown in each guild in the breeding season. However, adaptations enabling survival during the non-breeding season may be important in the seasonal Tasmanian environment.  相似文献   

9.
Jiang KY  Wu M  Shao XX 《动物学研究》2011,32(6):631-640
Waterbird surveys were conducted regularly in the Qiantangjiang River estuary and Hangzhou Bay from July 2007 to November 2011. A total of 128 species (nine orders and 18 families) were recorded, including 119 migrants which accounted for 93% of the total species; eleven species were listed as National Protected Species. Inter-specific correlation analysis for 13 shorebird populations and nine duck populations recorded over time found that 21 pairs of shorebirds and 23 pairs of ducks were correlated. By looking at seasonal dynamics and migration patterns we were able to divide the migration process into six stages: (1) late July to late September was the migration peak of shorebirds, which were dominated by Limosa limosa, Calidris ruficollis and Charadrius mongolus. (2) Early October to mid-December was the migration peak of wintering migrants of shorebirds and ducks, which were the first two large groups in our study areas. (3) Late December to mid-February was the wintering period of migration waterbirds. (4) Late February to late March was the peak migration of ducks and the winter migrants of shorebirds dominated by Calidris alpina. (5) Early April to mid-May was the migration peak of passage migrants such as, Calidris ruficollis, Calidris acuminate and Limosa limosa but the population size of shorebird winter migrants dominated by Calidris alpine was still larger than the former. (6) Late May to mid-July was the breeding season of all egrets, summer migrants of gulls and several species of shorebirds. Our surveys show that interaction among species is possibly an important determinant of community composition of shorebirds and wintering ducks during the migration season. It may be the geographical position and community composition of migrant shorebirds across Hangzhou Bay that mean during the northward migration there are far more shorebirds than during the southward migration.  相似文献   

10.
Bird habitat conservation may require different management strategies for different seasonal bird assemblages. We studied habitat use by winter birds in forest and scrubland habitat patches in the northern Negev, Israel. Our goal was to assess whether differences in responses to landscape and habitat structure between breeding and non-breeding seasons require changes in future conservation plans that have been suggested for the Negev breeding bird community. We evaluated habitat and area effects on bird abundance and distribution and tested whether species habitat use during winter involves niche shifts. Compared with breeding birds, a larger proportion of winter bird species occupied both scrubland and forest. As in summer, forest bird species responded to habitat structure, whereas scrubland species were associated with both habitat structure and area. Resident birds disperse into habitats in which they were not present during summer. Consequently, for several species, the correlation between bird densities and environmental factors showed a better fit at the landscape rather than at the habitat scale. In addition, rather than niche shift, birds actually extended their niche breadth. Nest site selection may constrain bird distribution into a realized niche, smaller than their fundamental niche. Despite the scale differences in habitat use, the similar species diversity patterns between seasons suggest that both winter and summer birds would benefit from conservation of scrub patches larger than 50 ha, and enrichment of foliage layers within the planted forests.  相似文献   

11.
The song of the domesticated canary (Serinus canaria) is one of the most widely used models to study the neural correlates of behavioural plasticity and the mechanisms of female mate choice. However, only few studies have described the song behaviour in detail and monitored their changes throughout the year, and these data are restricted to the “Waterslager” strain. Here, we studied the song characteristics of the male common domesticated canary at different times of the year, the spring breeding and autumnal non-breeding season, and monitored the birds' songs up to the following breeding season. During breeding, males have increased plasma levels of testosterone, and songs are on average longer and consist of fewer non-repeated syllable types compared to the non-breeding season. When subsequent seasons are compared, song duration and the proportion of non-repeated syllable types change seasonally but not across years. Repertoire size remains constant throughout seasons although syllable types are exchanged. Syllable carry-over is significantly higher from one breeding season to the next than between the breeding and non-breeding season. Further, the repertoire of the breeding season contains more potentially sexually attractive syllable types than that of the non-breeding season. These data show that overall song structure is retained throughout the year while seasonality occurs in the temporal pattern and in repertoire composition.  相似文献   

12.
刘超  丁志锋  丁平 《生态学报》2015,35(20):6759-6768
为探究千岛湖陆桥岛屿不同鸟类集团对栖息地片段化敏感性的差异和季节变化,于2009年4月—2012年1月鸟类繁殖季(4、5、6月)和冬季(11、12、1月)对千岛湖41个陆桥岛屿鸟类集团进行了研究。结果表明,冬季杂食鸟对片段化敏感性高于食虫鸟,繁殖季时二者无显著差异,繁殖季和冬季时下层鸟对片段化敏感性均高于林冠鸟,冬季留鸟对片段化敏感性高于候鸟,繁殖季则无显著差异。杂食鸟和留鸟对片段化敏感性存在季节差异,而食虫鸟、林冠鸟、下层鸟和候鸟对片段化敏感性均无季节差异。不同鸟类集团对栖息地片段化敏感性的差异和季节变化规律,有助于人们在栖息地管理和保护区设计时采取更有针对性的鸟类保护措施。  相似文献   

13.
This study provides endocrine data in relation to behavioral events during the transition of the non-breeding into the breeding season in American bison (Bison bison). Fecal progesterone metabolite patterns (20-oxo-P) were obtained in 13 adult female American bison and hormonal data were correlated with behavioral observations; i.e. copulation, male tending, female tail-up behavior and gestation length. Based on fecal progesterone metabolite patterns, the breeding season started between the middle of July and early August. Predictable short cycles reflected the transition from non-breeding to the breeding season; the luteal phase of these cycles was 4.10+/-0.86 days. Copulations and female tail-up behavior were reliably associated with the hormonally detected ovulation. Male tending behavior was more loosely associated with hormonally detected ovulation. The observed hormonal pattern in the study females indicated that 9 of 10 pregnant cows conceived during the second ovulatory period in the breeding season. One other cow conceived during her third ovulatory period, and one cow did not conceive until later in the breeding season by beginning of October. Gestation duration was on average 266.30+/-1.00 days. In summary, this study confirmed that the bison is a seasonally polyestrous species; the transition from the non-breeding into the breeding season was characterized by short cycles with low progesterone metabolite values.  相似文献   

14.
In sexually dimorphic ungulates, sexual segregation is hypothesized to have evolved because of sex-specific differences in body size and/or reproductive strategies. We tested these alternative hypotheses in kangaroos, which are ecological analogues of ungulates. Kangaroos exhibit a wide range of body sizes, particularly among mature males, and so the effects of body size and sex can be distinguished. We tested predictions derived from these hypotheses by comparing the distribution of three sex–sex size classes of western grey kangaroos Macropus fuliginosus , in different habitats, and the composition of groups of kangaroos, across seasons. In accordance with the predation risk-reproductive strategy hypothesis, during the non-breeding season, females, which were more susceptible to predation than larger males, and were accompanied by vulnerable young-at-foot, were over-represented in secure habitats. Large males, which were essentially immune to predation, occurred more often than expected in nutrient-rich habitat, and small males, which faced competing demands of predator avoidance and feeding, were intermediate between females and large males in their distribution across habitats. During the breeding season, females continued to be over-represented in secure habitats when their newly emerged pouch young were most vulnerable to predation. All males occupied these same habitats to maximize their chances of securing mates. Consistent with the social hypotheses, groups composed of individuals of the same sex, irrespective of body size, were over-represented in the population during the non-breeding season, while during the breeding season all males sought females so that mixed-sex groups predominated. These results indicate that body size and reproductive strategies are both important, yet independent, factors influencing segregation in western grey kangaroos.  相似文献   

15.
ABSTRACT.   There is growing recognition of the need to conserve areas used by birds during migration, including forest and upland habitats. Because extensive thinning and burning treatments are planned for ponderosa pine ( Pinus ponderosa ) forests in the southwestern United States, information on the use of these forests by landbirds during migration is needed for conservation planning. We compared species richness among spring, breeding, and fall seasons at 69 points in a ponderosa pine forest to assess changes in landbird communities and the role of different ponderosa pine cover types in habitat selection among seasons. We detected a total of 64 bird species. Bird community similarity was lowest between the breeding and fall seasons and highest between the spring and breeding seasons. Twenty percent of the species detected were present exclusively in the fall and, of these, over half were Neotropical migrants. Only two species (3%) were detected exclusively during the spring. Although we found little difference in bird species similarity among vegetative cover types during the breeding season, forests that contained a deciduous component exhibited higher bird species similarity with each other than with habitats that did not include a deciduous component in spring and fall. In addition, foliage foragers dominated the community in spring and fall, and all Neotropical migrants detected exclusively in fall were found in ponderosa pine forests with a deciduous component. Our results indicate that ponderosa pine forests may be important to migrating or dispersing landbirds in autumn, especially if there is a deciduous component.  相似文献   

16.
In many birds and mammals, male territorial aggression is modulated by elevated circulating concentrations of the steroid hormone testosterone (T) during the breeding season. However, many species are territorial also during the non-breeding season, when plasma T levels are basal. The endocrine control of non-breeding territorial aggression differs considerably between species, and previous studies on wintering birds suggest differences between migratory and resident species. We investigated the endocrine modulation of territorial aggression during the breeding and non-breeding season in a resident population of European stonechats (Saxicola torquata rubicola). We recorded the aggressive response to a simulated territorial intrusion in spring and winter. Then, we compared the territorial aggression between seasons and in an experiment in which we blocked the androgenic and estrogenic action of T. We found no difference in the aggressive response between the breeding and the non-breeding season. However, similarly to what is found in migratory stonechats, the hormonal treatment decreased aggressive behaviors in resident males in the breeding season, whereas no effects were recorded in the non-breeding season. When we compared the aggressive responses of untreated birds with those obtained from migratory populations in a previous study, we found that territorial aggression of resident males was lower than that of migratory males during the breeding season. Our results show that in a resident population of stonechats T and/or its metabolites control territorial aggression in the breeding but not in the non-breeding season. In addition, our study supports the hypothesis that migratory status does modulate the intensity of aggressive behavior.  相似文献   

17.
Semiarid scrubland communities are highly dynamic in terms of their species composition, abundance, and functioning, given the drastic changes in climate among seasons. Spatiotemporal patterns of saprophagous Copestylum (Diptera: Syrphidae) communities in different cactus species richness have not yet been studied, although seasonal changes and plant species richness have been shown to strongly impact the diversity and distribution of many insect communities in scrublands. We analyzed the impact of seasonality and of habitat type (disturbed and undisturbed) on Copestylum communities reared from cactus species at the Barranca de Metztitlán Biosphere Reserve, in central Mexico, by comparing their community structure between seasons and habitats, and assessing the contribution of diversity components for the total diversity of this genus. We also measured patterns of temporal niche overlap among hoverfly species considering their breeding medium. Seasonal variation influenced Copestylum community composition most significantly. Species richness and abundance of Copestylum were higher in the rainy season. Additive partitioning of diversity showed that the main component for species richness is beta diversity between seasons. We detected high niche overlap during the dry season and low overlap during the rainy season. This study provides evidence of temporal shifts in xeric hoverfly communities and suggests that the Copestylum species partition resources over time.  相似文献   

18.
1.?While the reasons for group-living have been studied for decades, little is known about why individuals become solitary. 2.?Several previous experimental studies could demonstrate that group-living can arises as a consequence of ecological constraints. 3.?It has been argued that reproductive competition between group members leads to significant costs of group-living, being a main reason of solitary-living. However, so far, no studies tested experimentally whether reproductive competition can explain solitary-living. 4.?Using a socially flexible species, the African striped mouse (Rhabdomys pumilio), we tested experimentally in the field whether dispersal and solitary-living are more likely to occur when reproductive competition is present. 5.?We investigated ecological constraints, here expressed as a function of population density, by removing groups of striped mice and creating vacant territories. To control for the effect of reproductive competition, which occurs only during the breeding season, we performed experiments during both the breeding and the non-breeding season. This is the first removal experiment performed in a species with communal breeding during the non-breeding season. 6.?During the breeding season, when population density was low, more striped mice from experimental groups moved into the vacant territories and became solitary than striped mice from control groups. This is in support of the ecological constraints hypothesis. 7.?During the non-breeding season, striped mice remained group-living despite the availability of free territories. Significantly, more striped mice became solitary-living during the breeding than during the non-breeding season. This is the first experimental support for the reproductive competition hypothesis explaining solitary-living. 8.?Analysis of the sexual maturity of males showed that males which became solitary had a higher reproductive potential than males that remained group-living. Analysis of the body mass data of females showed that more solitary females reproduced than group-living females. These results indicate that by becoming solitary individuals of both sexes avoided costs of reproductive competition within groups. 9.?Our study provides experimental evidence that reproductive competition within groups can lead to dispersal and solitary-living.  相似文献   

19.
Environmental factors strongly affect mangrove crabs, and some factors modulate population structure and habitat partitioning during the crabs’ life cycle. However, the effect of these environmental factors on habitat selection by mangrove crabs is still unknown. We evaluated habitat selection by the mangrove crab Ucides cordatus in mangrove forests with different degrees of predominance of Rhizophora mangle, Laguncularia racemosa or Avicennia schaueriana, two tidal flooding levels (less- and more-flooded), and two biological periods (breeding and non-breeding seasons). Sampling was conducted in four mangrove forests with different influences of these biotic and abiotic parameters. We used the data for sex ratio to explain environmental partitioning by this species. Females predominated in R. mangle mangroves, independently of the biological period (breeding or non-breeding seasons), and males predominated only in the less-flooded L. racemosa mangroves. The flooding level affected the sex ratio of U. cordatus, with a predominance of males in less-flooded mangroves, independently of the biological period; and a gender balance in the more-flooded mangroves only during the breeding season. Outside the breeding season, the largest specimens were recorded in the R. mangle mangroves, but in the breeding season, the largest crabs were recorded in the L. racemosa mangroves with a higher level of flooding. These results suggest that tree-species composition and tidal flooding level can have a significant effect on the habitat partitioning of sexes and sizes of the mangrove crab U. cordatus both during and outside the breeding season.  相似文献   

20.
Despite the fact that migration occurs in a wide variety of taxa worldwide, little is known about the conditions under which migration is expected to evolve from an ancestral resident population. We develop a model that focuses on ecological factors affecting the evolution of migration in a seasonal environment within a genetically explicit framework. We model the evolution of migration for two common types of migration: ‘shared breeding where migrants share a breeding ground with residents and migrate to a separate non-breeding area, versus ‘shared non-breeding’, where migrants share a non-breeding ground with residents and migrate to a separate breeding area. Ecologically, migration is more easily established in the shared-breeding case versus the shared-non-breeding case. Genetically, the additive effect of a migratory allele affects its establishment more in the shared-non-breeding case versus the shared-breeding case, whereas the dominance effect of the allele affects its establishment more in the shared-breeding case versus the shared-non-breeding case. Generally, migratory alleles can invade even when residents are competitively superior to migrants during the shared season. Partial migration occurs when the population is polymorphic for migratory and non-migratory alleles, and is dependent upon which season is shared and the additive and dominance behaviour of the migratory allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号