首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1995,129(5):1195-1204
The transition from metaphase to anaphase is regulated by a checkpoint system that prevents chromosome segregation in anaphase until all the chromosomes have aligned at the metaphase plate. We provide evidence indicating that a kinetochore phosphoepitope plays a role in this checkpoint pathway. The 3F3/2 monoclonal antibody recognizes a kinetochore phosphoepitope in mammalian cells that is expressed on chromosomes before their congression to the metaphase plate. Once chromosomes are aligned, expression is lost and cells enter anaphase shortly thereafter. When microinjected into prophase cells, the 3F3/2 antibody caused a concentration-dependent delay in the onset of anaphase. Injected antibody inhibited the normal dephosphorylation of the 3F3/2 phosphoepitope at kinetochores. Microinjection of the antibody eliminated the asymmetric expression of the phosphoepitope normally seen on sister kinetochores of chromosomes during their movement to the metaphase plate. Chromosome movement to the metaphase plate appeared unaffected in cells injected with the antibody suggesting that asymmetric expression of the phosphoepitope on sister kinetochores is not required for chromosome congression to the metaphase plate. In antibody-injected cells, the epitope remained expressed at kinetochores throughout the prolonged metaphase, but had disappeared by the onset of anaphase. When normal cells in metaphase, lacking the epitope at kinetochores, were treated with agents that perturb microtubules, the 3F3/2 phosphoepitope quickly reappeared at kinetochores. Immunoelectron microscopy revealed that the 3F3/2 epitope is concentrated in the middle electronlucent layer of the trilaminar kinetochore structure. We propose that the 3F3/2 kinetochore phosphoepitope is involved in detecting stable kinetochore-microtubule attachment or is a signaling component of the checkpoint pathway regulating the metaphase to anaphase transition.  相似文献   

2.
We have quantitatively studied the dynamic behavior of kinetochore fiber microtubules (kMTs); both turnover and poleward transport (flux) in metaphase and anaphase mammalian cells by fluorescence photoactivation. Tubulin derivatized with photoactivatable fluorescein was microinjected into prometaphase LLC-PK and PtK1 cells and allowed to incorporate to steady-state. A fluorescent bar was generated across the MTs in a half-spindle of the mitotic cells using laser irradiation and the kinetics of fluorescence redistribution were determined in terms of a double exponential decay process. The movement of the activated zone was also measured along with chromosome movement and spindle elongation. To investigate the possible regulation of MT transport at the metaphase-anaphase transition, we performed double photoactivation analyses on the same spindles as the cell advanced from metaphase to anaphase. We determined values for the turnover of kMTs (t1/2 = 7.1 +/- 2.4 min at 30 degrees C) and demonstrated that the turnover of kMTs in metaphase is approximately an order of magnitude slower than that for non-kMTs. In anaphase, kMTs become dramatically more stable as evidenced by a fivefold increase in the fluorescence redistribution half-time (t1/2 = 37.5 +/- 8.5 min at 30 degrees C). Our results also indicate that MT transport slows abruptly at anaphase onset to one-half the metaphase value. In early anaphase, MT depolymerization at the kinetochore accounted, on average, for 84% of the rate of chromosome movement toward the pole whereas the relative contribution of MT transport and depolymerization at the pole contributed 16%. These properties reflect a dramatic shift in the dynamic behavior of kMTs at the metaphase-anaphase transition. A release-capture model is presented in which the stability of kMTs is increased at the onset of anaphase through a reduction in the probability of MT release from the kinetochore. The reduction in MT transport at the metaphase-anaphase transition suggests that motor activity and/or subunit dynamics at the centrosome are subject to modulation at this key cell cycle point.  相似文献   

3.
Summary Treatment of metaphase PtK1 cells with 0.2 M to 0.5 M sucrose and anaphase cells with 0.5 M sucrose has previously been shown to stop chromosome motion probably due to a significant alteration in the functional attachment of kinetochore microtubules (kMTs) with the kinetochore lamina. The work presented here examines the effects of 0.15 M to 0.25 M sucrose on PtK1 metaphase and anaphase cells with a focus on the ultrastructural changes in the kinetochore and rates of chromosome motion. Metaphase PtK1 cells treated with 0.15 M and 0.20 M sucrose from 5 to 15 min showed spindle elongation with sister chromatids remaining at the metaphase plate; these cells failed to enter anaphase. Ultrastructural analysis revealed MTs did not insert directly into the kinetochore lamina but rather associated tangentially with an amorphous material proximal to the kinetochore region much like that described previously with higher concentrations of osmotica. Treatment of metaphase cells with 0.25 M sucrose arrested the cell in metaphase and ultrastructural analysis revealed novel osmiophilic spherical structures approximately 0.50 m in diameter located proximal to kinetochores. MTs appeared to stop just short of. or associate laterally with, these spherical structures. Anaphase PtK1 cells treated with 0.15 M and 0.20 M sucrose showed reduced rates of chromosome segregation during 5 min treatments, suggesting they retained functional kinetochore/kMT interactions. However, treatment of anaphase cells with 0.25 M sucrose blocked anaphase A chromosome motion and produced electron dense spherical structures approximately 0.50 m in diameter, identical to those observed in similarly treated metaphase cells. Removal of 0.25 M sucrose in treated anaphase cells resulted in normal chromosome segregation within 1 min. Cells released from sucrose treatment showed the absence of spherical structures and reformation of normal kinetochore/MT interactions which was temporally correlated with the resumption of chromosome motion.Abbreviations DIC differential interference contrast - kMT(s) kinetochore microtubule(s) - MT(s) microtubule(s) - nkMT(s) non-kinetochore microtubule(s)  相似文献   

4.
Organization of kinetochore fiber microtubules (MTs) throughout mitosis in the endosperm of Haemanthus katherinae Bak. has been analysed using serial section reconstruction from electron micrographs. Accurate and complete studies have required careful analysis of individual MTs in precisely oriented serial sections through many (45) preselected cells. Kinetochore MTs (kMTs) and non-kinetochore MTs (nkMTs) intermingle within the fiber throughout division, undergoing characteristic, time- dependent, organizational changes. The number of kMTs increases progressively throughout the kinetochore during prometaphase-metaphase. Prometaphase chromosomes which were probably moving toward the pole at the time of fixation have unequally developed kinetochores associated with many nkMTs. The greatest numbers of kMTs (74-109/kinetochore), kinetochore cross-sectional area, and kMT central density all occur at metaphase. Throughout anaphase and telophase there is a decrease in the number of kMTs and, in the kinetochore cross-sectional area, an increased obliquity of kMTs and increased numbers of short MTs near the kinetochore. Delayed kinetochores possess more kMTs than do kinetochores near the poles, but fewer kMTs than chromosomes which have moved equivalent distances in other cells. The frequency of C-shaped proximal MT terminations within kinetochores is highest at early prometaphase and midtelophase, falling to zero at midanaphase. Therefore, in Haemanthus, MTs are probably lost from the periphery of the kinetochore during anaphase in a manner which is related to both time and position of the chromosome along the spindle axis. The complex, time-dependent organization of MTs in the kinetochore region strongly suggests that chromosome movement is accompanied by continual MT rearrangement and/or assembly/disassembly.  相似文献   

5.
Spindle dynamics and arrangement of microtubules   总被引:2,自引:1,他引:1  
Changes in microtubule (MT) arrangement were studied in endosperm of Haemanthus katherinae. Individual cells were selected in the light microscope and sectioned perpendicular or parallel to the long axis of the spindle. The following data and conclusions were drawn: During anaphase kinetochore fibers (bundles of kinetochore MTs) always intermingle with non-kinetochore (continuous) fibers (bundles of non-kinetochore MTs). The latter often branch and some free ends are present. Often one non-kinetochore fiber is connected with more than one kinetochore fiber, explaining why chromosomes may lose their ability for independent movement. During anaphase kinetochore fibers move to the poles, the number of kinetochore MTs decreases by one-half and the MTs tend to become more splayed out. At the same time the number of MTs between trailing chromosome arms increases, probably representing segments of kinetochore MTs which break during anaphase. The number of non-kinetochore MTs in the equatorial region at anaphase is twice the number of non-kinetochore MTs in metaphase. The above data agree perfectly with those in polarized light and indicate that a simple sliding system does not exist in the spindle of Haemanthus.  相似文献   

6.
《The Journal of cell biology》1993,122(6):1311-1321
A phosphorylated epitope is differentially expressed at the kinetochores of chromosomes in mitotic cells and may be involved in regulating chromosome movement and cell cycle progression. During prophase and early prometaphase, the phosphoepitope is expressed equally among all the kinetochores. In mid-prometaphase, some chromosomes show strong labeling on both kinetochores; others exhibit weak or no labeling; while in other chromosomes, one kinetochore is intensely labeled while its sister kinetochore is unlabeled. Chromosomes moving toward the metaphase plate express the phosphoepitope strongly on the leading kinetochore but weakly on the trailing kinetochore. This is the first demonstration of a biochemical difference between the two kinetochores of a single chromosome. During metaphase and anaphase, the kinetochores are unlabeled. At metaphase, a single misaligned chromosome can inhibit further progression into anaphase. Misaligned chromosomes express the phosphoepitope strongly on both kinetochores, even when all the other chromosomes of a cell are assembled at the metaphase plate and lack expression. This phosphoepitope may be involved in regulating chromosome movement to the metaphase plate during prometaphase and may be part of a cell cycle checkpoint by which the onset of anaphase is inhibited until complete metaphase alignment is achieved.  相似文献   

7.
Summary The Pac-Man hypothesis suggests that poleward movement of chromosomes during anaphase A is brought about by: disassembly of kinetochore microtubules (MTs) at the kinetochore; generation of the poleward force exclusively at or very close to the kinetochore; and the required energy coming from coupled disassembly of these MTs. This model has become widely accepted and cited as the sole or major mechanism of anaphase A. Rarely acknowledged are several significant phenomena that refute some or all of these postulates. We summarise these anomalies as follows: poleward movement of chromosomes occurring without insertion of any MTs at the kinetochore; anaphase shortening of kinetochore fibres in spindles entirely devoid of chromosomes and, presumably, kinetochores; continued movement of chromosomes while their severed kinetochore stub elongated poleward after treatment with UV microbeams; and fluxing of tubulin subunits through kinetochore MTs during anaphase A, indicating that during anaphase, kinetochore MTs disassemble partly or solely at the poles.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

8.
As anaphase began, mitotic PtK1 and newt lung epithelial cells were permeabilized with digitonin in permeabilization medium (PM). Permeabilization stopped cytoplasmic activity, chromosome movement, and cytokinesis within about 3 min, presumably due to the loss of endogenous ATP. ATP, GTP, or ATP-gamma-S added in the PM 4-7 min later restarted anaphase A while kinetochore fibers shortened. AMPPNP could not restart anaphase A; ATP was ineffective if the spindle was stabilized in PM + DMSO. Cells permeabilized in PM + taxol varied in their response to ATP depending on the stage of anaphase reached: one mid-anaphase cell showed initial movement of chromosomes back to the metaphase plate upon permeabilization but later, anaphase A resumed when ATP was added. Anaphase A was also reactivated by cold PM (approximately 16 degrees C) or PM containing calcium (1-10 mM). Staining of fixed cells with antitubulin showed that microtubules (MTs) were relatively stable after permeabilization and MT assembly was usually promoted in asters. Astral and kinetochore MTs were sensitive to MT disassembly conditions, and shortening of kinetochore MTs always accompanied reactivation of anaphase A. Interphase and interzonal spindle MTs were relatively stable to cold and calcium until extraction of cells was promoted by longer periods in the PM, or by higher concentrations of detergent. Since we cannot envisage how both cold treatment or relatively high calcium levels can reactivate spindle motility in quiescent, permeabilized, and presumably energy-depleted cells, we conclude that anaphase A is powered by energy stored in the spindle. The nucleotide triphosphates effective in reactivating anaphase A could be necessary for the kinetochore MT disassembly without which anaphase movement cannot proceed.  相似文献   

9.
Microtubules in the mitotic spindles of newt lung cells were marked using local photoactivation of fluorescence. The movement of marked segments on kinetochore fibers was tracked by digital fluorescence microscopy in metaphase and anaphase and compared to the rate of chromosome movement. In metaphase, kinetochore oscillations toward and away from the poles were coupled to kinetochore fiber shortening and growth. Marked zones on the kinetochore microtubules, meanwhile, moved slowly polewards at a rate of approximately 0.5 micron/min, which identifies a slow polewards movement, or "flux," of kinetochore microtubules accompanied by depolymerization at the pole, as previously found in PtK2 cells (Mitchison, 1989b). Marks were never seen moving away from the pole, indicating that growth of the kinetochore microtubules occurs only at their kinetochore ends. In anaphase, marked zones on kinetochore microtubules also moved polewards, though at a rate slower than overall kinetochore-to-pole movement. Early in anaphase-A, microtubule depolymerization at kinetochores accounted on average for 75% of the rate of chromosome-to-pole movement, and depolymerization at the pole accounted for 25%. When chromosome-to-pole movement slowed in late anaphase, the contribution of depolymerization at the kinetochores lessened, and flux became the dominant component in some cells. Over the whole course of anaphase-A, depolymerization at kinetochores accounted on average for 63% of kinetochore fiber shortening, and flux for 37%. In some anaphase cells up to 45% of shortening resulted from the action of flux. We conclude that kinetochore microtubules change length predominantly through polymerization and depolymerization at the kinetochores during both metaphase and anaphase as the kinetochores move away from and towards the poles. Depolymerization, though not polymerization, also occurs at the pole during metaphase and anaphase, so that flux contributes to polewards chromosome movements throughout mitosis. Poleward force production for chromosome movements is thus likely to be generated by at least two distinct molecular mechanisms.  相似文献   

10.
Mitotic dynamics     
A new model for mitotic dynamics of eukaryotic cells is proposed. In the kinetochore mo-tor-midzone motor model two kinds of motors, the kinetochore motors and the midzone motors, play important roles in chromosome movement. Using this model the chromosome congression during prometaphase, the chromosome oscillation during metaphase and the chromatid segregation during anaphase are described in a unified way.  相似文献   

11.
During mitosis, ensembles of dynamic MTs and motors exert forces that coordinate chromosome segregation. Typically, chromosomes align at the metaphase spindle equator where they oscillate along the pole-pole axis before disjoining and moving poleward during anaphase A, but spindles in different cell types display differences in MT dynamicity, in the amplitude of chromosome oscillations and in rates of chromatid-to-pole motion. Drosophila embryonic mitotic spindles, for example, display remarkably dynamic MTs, barely detectable metaphase chromosome oscillations, and a rapid rate of "flux-pacman-dependent" anaphase chromatid-to-pole motility. Here we develop a force-balance model that describes Drosophila embryo chromosome motility in terms of a balance of forces acting on kinetochores and kMTs that is generated by multiple polymer ratchets and mitotic motors coupled to tension-dependent kMT dynamics. The model shows that i), multiple MTs displaying high dynamic instability can drive steady and rapid chromosome motion; ii), chromosome motility during metaphase and anaphase A can be described by a single mechanism; iii), high kinetochore dynein activity is deployed to dampen metaphase oscillations, to augment the basic flux-pacman mechanism, and to drive rapid anaphase A; iv), modulation of the MT rescue frequency by the kinetochore-associated kinesin-13 depolymerase promotes metaphase chromosome oscillations; and v), this basic mechanism can be adapted to a broad range of spindles.  相似文献   

12.
During prometaphase and metaphase of mitosis, tubulin subunit incorporation into kinetochore microtubules occurs proximal to the kinetochore, at the plus-ends of kinetochore microtubules. During anaphase, subunit loss from kinetochore fiber microtubules is also thought to occur mainly from microtubule plus-ends, proximal to the kinetochore. Thus, the kinetochore can mediate both subunit addition and loss while maintaining an attachment to kinetochore microtubules. To examine the relationship between chromosome motion and tubulin subunit assembly in anaphase, we have injected anaphase cells with biotin-labeled tubulin subunits. The pattern of biotin-tubulin incorporation was revealed using immunoelectron and confocal fluorescence microscopy of cells fixed after injection; chromosome motion was analyzed using video records of living injected cells. When anaphase cells are examined approximately 30 s after injection with biotin-tubulin, bright "tufts" of fluorescence are detected proximal to the kinetochores. Electron microscopic immunocytochemistry further reveals that these tufts of biotin-tubulin-containing microtubules are continuous with unlabeled kinetochore fiber microtubules. Biotin-tubulin incorporation proximal to the kinetochore in anaphase cells is detected after injection of 3-30 mg/ml biotin-tubulin, but not in cells injected with 0.3 mg/ml biotin-tubulin. At intermediate concentrations of biotin-tubulin (3-5 mg/ml), incorporation at the kinetochore can be detected within 15 s after injection; by approximately 1 min after injection discrete tufts of fluorescence are no longer detected, although some incorporation throughout the kinetochore fiber and into nonkinetochore microtubules is observed. At higher concentrations of injected biotin-tubulin (13 mg/ml), incorporation at the kinetochore is more extensive and occurs for longer periods of time than at intermediate concentrations. Incorporation of biotin-tubulin proximal to the kinetochore can be detected in cells injected during anaphase A, but not during anaphase B. Analysis of video records of microinjection experiments reveals that kinetochore proximal incorporation of biotin-tubulin is accompanied by a transient reversal of chromosome-to-pole motion. Chromosome motion is not altered after injection of 0.3 mg/ml biotin-tubulin or 5 mg/ml BSA. These results demonstrate that kinetochore microtubules in anaphase cells can elongate in response to the elevation of the tubulin concentration and that kinetochores retain the ability to mediate plus-end-dependent assembly of KMTs and plus-end-directed chromosome motion after anaphase onset.  相似文献   

13.
Summary We have found that a brief treatment of either PtK2 cells or stamen hair cells ofTradescantia virginiana during metaphase with okadaic acid, a potent protein phosphatase inhibitor, results in asynchronous entry into anaphase. After this treatment, the interval for the separation of sister chromatids can be expanded from a few seconds to approximately 5 min. We have performed a series of immunolocalizations of cells with anti-tubulin antibodies and CREST serum, asking whether okadaic acid induces asynchronous entry into anaphase through changes in the organization of the spindle microtubules or through a loss in the attachment of spindle microtubules to the kinetochores. Our experiments clearly indicate that asynchronous entry into anaphase after phosphatase inhibitor treatment is not the result of either altered spindle microtubule organization or the long-term loss of microtubule attachment to kinetochores. The kinetochore fiber bundles for all of the separating chromosomes are normally of uniform length throughout anaphase, but after asynchronous entry into anaphase, different groups of kinetochore fiber bundles have distinctly different lengths. The reason for this difference in length is that once split apart, the daughter chromosomes begin their movement toward the spindle poles, with normal shortening of the kinetochore fiber bundle microtubules. Thus, okadaic acid treatment during metaphase does not affect anaphase chromosome movement once it has begun. Our results suggest that one or more protein phosphatases appear to play an important role during metaphase in the regulatory cascade that culminates in synchronous sister chromatid separation.  相似文献   

14.
Harald Fuge 《Chromosoma》1973,43(2):109-143
One metaphase I spindle, seven anaphase I spindles of different stages, and one metaphase II spindle were sectioned in series. The ultrastructure of chromosomes was examined and microtubules (MTs) were counted. The main results of the study are summarized as follows: 1. The autosomes move at the periphery of the continuous MTs during anaphase while the sex chromosomes move more or less within this group of MTs. 2. In metaphase the antosomes have few coarse surface projections, in anaphase many, but more delicate projections of irregular shape which seem to transform into regular radial lamellae at the end of movement. 3. In metaphase continuous MTs have no contact with the chromosomal surface, while during anaphase movement continuous MTs lie closer to the chromosomes, and finally arrange themselves between the radial surface lamellae. There they show lateral filamentous connections with the chromosomal surface. 4. The MT distribution profiles of metaphase and anaphase are different. While the highest density of MTs is observed in the middle region of the spindle in metaphase, there are two density zones during autosomal movement, each in one half spindle in front of the autosomes. After the autosomes have reached the poles the distribution profile is again similar to the metaphase condition. The MT distribution in metaphase II is the same as in metaphase I. Possible explanations for these observations are discussed in detail. 5. There is an overall decrease in MT content during anaphase. 6. With the onset of anaphase MTs are seen within the spindle mantle, closely associated with mitochondria. — Several theoretical aspects of anaphase mechanism are briefly discussed.  相似文献   

15.
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward through each half-spindle and then were lost from microtubule minus ends at the spindle poles. The average poleward velocity of approximately 0.7 microm/min for speckles within kinetochore microtubules at metaphase increased during anaphase to approximately 0.9 microm/min. Segregating half-bivalents had an average poleward velocity of approximately 0.5 microm/min, about half that of speckles within shortening kinetochore fibers. When injected during anaphase, rhtubulin was incorporated at kinetochores, and kinetochore fiber fluorescence spread poleward as anaphase progressed. The results show that tubulin subunits are added to the plus end of kinetochore microtubules and are removed from their minus ends at the poles, all while attached chromosomes move poleward during anaphase A. The results cannot be explained by a Pac-man model, in which 1) kinetochore-based, minus end-directed motors generate poleward forces for anaphase A and 2) kinetochore microtubules shorten at their plus ends. Rather, in these cells, kinetochore fiber shortening during anaphase A occurs exclusively at the minus ends of kinetochore microtubules.  相似文献   

16.
Chromosome segregation in most animal cells is brought about through two events: the movement of the chromosomes to the poles (anaphase A) and the movement of the poles away from each other (anaphase B). Essential to an understanding of the mechanism of mitosis is information on the relative movements of components of the spindle and identification of sites of subunit loss from shortening microtubules. Through use of tubulin derivatized with X-rhodamine, photobleaching, and digital imaging microscopy of living cells, we directly determined the relative movements of poles, chromosomes, and a marked domain on kinetochore fibers during anaphase. During chromosome movement and pole-pole separation, the marked domain did not move significantly with respect to the near pole. Therefore, the kinetochore microtubules were shortened by the loss of subunits at the kinetochore, although a small amount of subunit loss elsewhere was not excluded. In anaphase A, chromosomes moved on kinetochore microtubules that remained stationary with respect to the near pole. In anaphase B, the kinetochore fiber microtubules accompanied the near pole in its movement away from the opposite pole. These results eliminate models of anaphase in which microtubules are thought to be traction elements that are drawn to and depolymerized at the pole. Our results are compatible with models of anaphase in which the kinetochore fiber microtubules remain anchored at the pole and in which microtubule dynamics are centered at the kinetochore.  相似文献   

17.
The polarity of kinetochore microtubules (MTs) has been studied in lysed PtK1 cells by polymerizing hook-shaped sheets of neurotubulin onto walls of preexisting cellular MTs in a fashion that reveals their structural polarity. Three different approaches are presented here: (a) we have screened the polarity of all MTs in a given spindle cross section taken from the region between the kinetochores and the poles, (b) we have determined the polarity of kinetochore MTs are more stable to cold-treated spindles; this approach takes advantage of the fact that kinetochore MTs are more stable to cold treatment than other spindle MTs; and (c) we have tracked bundles of kinetochore MTs from the vicinity of the pole to the outer layer of the kinetochore in cold- treated cells. In an anaphase cell, 90-95% of all MTs in an area between the kinetochores and the poles are of uniform polarity with their plus ends (i.e., fast growing ends) distal to the pole. In cold- treated cells, all bundles of kinetochore MTs show the same polarity; the plus ends of the MTs are located at the kinetochores. We therefore conclude that kinetochore MTs in both metaphase and anaphase cells have the same polarity as the aster MTs in each half-spindle. These results can be interpreted in two ways: (a) virtually all MTs are initiated at the spindle poles and some of the are "captured" by matured kinetochores using an as yet unknown mechanism to bind the plus ends of existing MTs; (b) the growth of kinetochore MTs is initiated at the kinetochore in such a way that the fast growing MT end is proximal to the kinetochore. Our data are inconsistent with previous kinetochore MT polarity determinations based on growth rate measurements in vitro. These studies used drug-treated cells from which chromosomes were isolated to serve as seeds for initiation of neurotubule polymerization. It is possible that under these conditions kinetochores will initiate MTs with a polarity opposite to the one described here.  相似文献   

18.
We have identified a novel human centromere-associated protein by preparing monoclonal antibodies against a fraction of HeLa chromosome scaffold proteins enriched for centromere/kinetochore components. One monoclonal antibody (mAb177) specifically stains the centromere region of mitotic human chromosomes and binds to a novel, approximately 250-300 kd chromosome scaffold associated protein named CENP-E. In cells progressing through different parts of the cell cycle, the localization of CENP-E differed markedly from that observed for the previously identified centromere proteins CENP-A, CENP-B, CENP-C and CENP-D. In contrast to these antigens, no mAb177 staining is detected during interphase, and staining first appears at the centromere region of chromosomes during prometaphase. This association with chromosomes remains throughout metaphase but is redistributed to the midplate at or just after the onset of anaphase. By telophase, the staining is localized exclusively to the midbody. Microinjection of the mAb177 into metaphase cells blocks or significantly delays progression into anaphase, although the morphology of the spindle and the configuration of the metaphase chromosomes appear normal in these metaphase arrested cells. This demonstrates that CENP-E function is required for the transition from metaphase to anaphase.  相似文献   

19.
T. M. Butt  R. A. Humber 《Protoplasma》1989,151(2-3):115-123
Summary Mitosis in a mite-pathogenic species ofNeozygites (Zygomycetes: Entomophthorales) was investigated by indirect immunofluorescence microscopy using an antibody against -tubulin for visualization of microtubules (MTs). DAPI and rhodamine-conjugated phalloidin were used to stain chromatin and actin, respectively. Salient features of mitosis inNeozygites sp. are (1) a strong tendency for mitotic synchrony in any given cell, (2) conical protrusions at the poles of metaphase and anaphase nuclei revealed by actin staining, (3) absence of astral and other cytoplasmic MTs, (4) a spindle that occupies most of the nuclear volume at metaphase, (5) a spindle that remains symmetrical throughout most of mitosis, (6) kinetochore MTs that shorten during anaphase A, (7) a central spindle that elongates during anaphase B, pushing the daughter nuclei into the cell apices, and (8) interpolar MTs that continue to elongate even after separation of the daughter nuclei. Cortical cytoplasmic MTs are present in a few interphasic and post-cytokinetic cells. The data presented show thatNeozygites possesses features unique to this genus and support the erection of theNeozygitaceae as a separate family in theEntomophthorales.Abbreviations DAPI 4,6-diamidino-2-phenylindole - MT microtubule - SPB spindle pole body  相似文献   

20.
Kinetochore microtubules in PTK cells.   总被引:15,自引:7,他引:8       下载免费PDF全文
We have analyzed the fine structure of 10 chromosomal fibers from mitotic spindles of PtK1 cells in metaphase and anaphase, using electron microscopy of serial thin sections and computer image processing to follow the trajectories of the component microtubules (MTs) in three dimensions. Most of the kinetochore MTs ran from their kinetochore to the vicinity of the pole, retaining a clustered arrangement over their entire length. This MT bundle was invaded by large numbers of other MTs that were not associated with kinetochores. The invading MTs frequently came close to the kinetochore MTs, but a two-dimensional analysis of neighbor density failed to identify any characteristic spacing between the two MT classes. Unlike the results from neighbor density analyses of interzone MTs, the distributions of spacings between kinetochore MTs and other spindle MTs revealed no evidence for strong MT-MT interactions. A three-dimensional analysis of distances of closest approach between kinetochore MTs and other spindle MTs has, however, shown that the most common distances of closest approach were 30-50 nm, suggesting a weak interaction between kinetochore MTs and their neighbors. The data support the ideas that kinetochore MTs form a mechanical connection between the kinetochore and the pericentriolar material that defines the pole, but that the mechanical interactions between kinetochore MTs and other spindle MTs are weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号