首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells   总被引:1,自引:0,他引:1  
Conly L. Rieder 《Chromosoma》1981,84(1):145-158
When metaphase PtK1 cells are cooled to 6–8 ° C for 4–6 h the free, polar, and astral spindle microtubules (MTs) disassemble while the MTs of each kinetochore fiber cluster together and persist as bundles of cold-stable MTs. These cold-stable kinetochore fibers are similar to untreated kinetochore fibers in both their length (i.e., 5–6 m) and in the number of kinetochore-associated MTs (i.e., 20–45) of which they are comprised. Quantitative information concerning the lengths of MTs within these fibers was obtained by tracking individual MTs between serial transverse sections. Approximately 1/2 of the kinetochore MTs in each fiber were found to run uninterrupted into the polar region of the spindle. It can be inferred from this and other data that a substantial number of MTs run uninterrupted between the kinetochore and the polar region in untreated metaphase PtK1 cells.  相似文献   

2.
K. W. Wolf 《Protoplasma》1996,191(3-4):148-157
Summary Kinetochore structure was examined in metaphase spermatogonia and primary spermatocytes of the red firebug,Pyrrhocoris apterus (Pyrrhocoridae, Hemiptera). Chromosome spreads were analysed using light microscopy and serial sections through spindles were studied using electron microscopy. Mitotic chromosomes were rod-shaped bodies and did not possess primary constrictions. Trilaminar kinetochores occurred throughout about 72% of the chromosomal length. Numerous microtubules (MTs) were connected with the outer plates of the kinetochores and interactions between MTs and the remainder of the chromosomal surface were rare. The bivalents formed dumbbell-shaped bodies in metaphase I spermatocytes. At that stage, MTs were found in contact with the entire poleward surface of the chromosomes. Distinct kinetochore material was, however, not detectable and some MTs penetrated deeply into the chromatin. Mitotic and meiotic chromosomes ofP. apterus are holokinetic and consequently the number of kinetochore MTs is expected to be relatively high. In the second part of the study, the question whether holokinetic chromosomes affect spindle MT dynamics is addressed. To this end, primary spermatocytes ofP. apterus were labelled with a widely used antibody, 6-11B-1, directed against acetylated -tubulin. The acetylation of -tubulin is believed to indicate the presence of long-lived MTs. MT bundles were labelled in metaphase and anaphase I spindles, while prophase and prometaphase I spermatocytes did not contain acetylated MTs. MTs in early and mid telophase spindles were not acetylated. Only late telophase I spindles possessed small amounts of acetylated -tubulin. The acetylated MT bundles of metaphase and anaphase I spindles probably represent kinetochore MTs stabilized by their association with the holokinetic chromosomes at one end and the spindle poles at the opposite end.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidino-2-phenylindole · 2HCl - EGTA ethylene glycol-bis (-aminoethyl ether)-N,N-tetraacetic acid - FITC fluorescein-isothiocyanate - PBS phosphate-buffered saline - PIPES piperazine-N,N bis(2-ethane sulfonic acid) - MT microtubule  相似文献   

3.
H. Fuge  D. Falke 《Protoplasma》1991,160(2-3):39-48
Summary Bipolarly oriented bivalents in spermatocytes of the turbellarianMesostoma ehrenbergii, displaying fast oscillatory movements in metaphase, were studied with the electron microscope. Kinetochores and chromosome fibres were reconstructed using serial sections cut perpendicular to the spindle axis. Only a small proportion of kinetochore microtubules (kMT) is continuous between the kinetochore and the centrosome. kMTs intermingle with non-kinetochore microtubules (non-kMTs), partly inclined with regard to the kMTs, thus forming a chromosome fibre MT lattice. This resembles the microtubular fir-tree structures (MTFT) described by Bajer and Molè-Bajer inHaemanthus endosperm mitosis. A minimal function of the MTFT may be the anchorage of kMTs in the polar region. Regarding the association of MTs with the chromosome, three types of attachment can be discriminated: (1) normal insertion of kMT plus ends in the kinetochore, (2) penetration of kinetochores and deep insertion in the chromatin, and (3) lateral attachment with kinetochore and chromatin. Lateral association of MTs seems to be mediated by filamentous crossbridges. The observations are discussed in connection with possible behaviour of kMTs during kinetochore movement.Abbreviations kMT kinetochore microtubules - MAP microtubule-associated protein - non-kMT non-kinetochore microtubules - MTFT microtubular fir-tree - PCM pericentriolar material  相似文献   

4.
The formation of kinetochore (chromosomal) and continuous fibers, and the behavior of the nuclear envelope (NE) was described in studies combining light and electron microscopy. Microtubules (MTs) push and pull the NE which becomes progressively weaker before breaking. It breaks to a certain extent due to mechanical pressure. Clear zone MTs penetrate into the nuclear area as dense bundles and form continuous fibers. These MTs also attach to some kinetochores during this process. Some kinetochore fibers seem to be formed by the kinetochores themselves which are also responsible for further development and changes of kinetochore fibers. Formation of kinetochore fibers is asynchronous for different chromosomes and even for two sister kinetochores. Often temporary faulty connections between different kinetochores or the polar regions are formed which usually break in later stages. This results in movements of chromosomes toward the poles and across the spindle during prometaphase. The NE, whose fine structure has been described, breaks into small pieces which often persist to the next mitosis. Old pieces of NE are utilized in the formation of new NE at telophase. Several problems concerning the mechanism of chromosome movements, visibility of the NE, etc., have also been discussed.  相似文献   

5.
Summary Aspects of mitosis in the dinoflagellateAmphidinium carterae have been examined using TEM, SEM and fluorescence immunochemistry. The extranuclear spindle is composed of 2–4 bundles of microtubules arranged into two interdigitated half-spindles. Unlike previous reports of dinomitosis, the spindle bundles converge at the poles. These bundles of microtubules are inserted into a multilobed, vesiculate body containing electron opaque, amorphous material. This spindle pole body has ribosomes associated with it and is continuous with the endoplasmic reticulum. Chromosomes are attached to the nuclear envelope, which is persistent throughout mitosis. Kinetochore microtubules attach to the nuclear envelope via elongate electron dense kinetochores (one microtubule per daughter kinetochore). Several microtubules pass alongside the kinetochore, forming a halo of 3–4 spindle microtubules. Electron dense connections can be seen between some of these microtubules and the kinetochore. Chromosome segregation appears to be a function of spindle elongation (anaphase B), since chromosome-to-pole distance (anaphase A) remains relatively unchanged throughout mitosis.Abbreviations DABCO 1,4 diazabicyclo(2,2,2)octane - EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,NN-tetraacetic acid - PIPES piperazine-N,N-bis(2-thanesulfonic acid) Supported by a Charles and Johanna Bush Predoctoral Fellowship to S. B. B.  相似文献   

6.
Summary The Pac-Man hypothesis suggests that poleward movement of chromosomes during anaphase A is brought about by: disassembly of kinetochore microtubules (MTs) at the kinetochore; generation of the poleward force exclusively at or very close to the kinetochore; and the required energy coming from coupled disassembly of these MTs. This model has become widely accepted and cited as the sole or major mechanism of anaphase A. Rarely acknowledged are several significant phenomena that refute some or all of these postulates. We summarise these anomalies as follows: poleward movement of chromosomes occurring without insertion of any MTs at the kinetochore; anaphase shortening of kinetochore fibres in spindles entirely devoid of chromosomes and, presumably, kinetochores; continued movement of chromosomes while their severed kinetochore stub elongated poleward after treatment with UV microbeams; and fluxing of tubulin subunits through kinetochore MTs during anaphase A, indicating that during anaphase, kinetochore MTs disassemble partly or solely at the poles.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

7.
Summary Chinese hamster ovary (CHO) cells are treated with hydroxurea followed by a caffeine treatment to form detached kinetochore fragments in the absence of sister chromatids. Detached kinetochores in mitotic CHO cells display a functional association with MTs initiated from one or both centrosomes such that these association(s) have a significant influence on the location and orientation of detached kinetochores and/or their fragments. Kinetochore fragments which are amphitelically oriented are positioned approximately midway between the two centrosomes. Thus, a kinetochore isolated from a single chromatid can capture MTs from both poles. Monotelic orientation of these fragments is more frequently observed with kinetochore fragments located an average distance of 2.5 m from the nearest centrosome, compared to an average distance of 4.4 m in amphitelically oriented fragments. In cells treated with the potent MT poison, nocodazole, kinetochore isolation also occurs and therefore is not dependent on the presence of MTs. CHO cells treated to produce isolated kinetochores or kinetochore fragments then subsequently hyperosmotically shocked show no MTs directly inserted into kinetochore lamina, similar to the response of sucrose-treated metapbase PtK1 cells. This treatment shows circular kinetochores tangentially associated with bundles of MTs that are located an average of 1.5 m from the centrosome. Our results suggest that a single kinetochore fragment can attach to MTs initiated from one or both centrosomes and that their specific association to MT fibers defines orientation of detached kinetochores within the spindle domain.  相似文献   

8.
Summary Treatment of metaphase PtK1 cells with 0.2 M to 0.5 M sucrose and anaphase cells with 0.5 M sucrose has previously been shown to stop chromosome motion probably due to a significant alteration in the functional attachment of kinetochore microtubules (kMTs) with the kinetochore lamina. The work presented here examines the effects of 0.15 M to 0.25 M sucrose on PtK1 metaphase and anaphase cells with a focus on the ultrastructural changes in the kinetochore and rates of chromosome motion. Metaphase PtK1 cells treated with 0.15 M and 0.20 M sucrose from 5 to 15 min showed spindle elongation with sister chromatids remaining at the metaphase plate; these cells failed to enter anaphase. Ultrastructural analysis revealed MTs did not insert directly into the kinetochore lamina but rather associated tangentially with an amorphous material proximal to the kinetochore region much like that described previously with higher concentrations of osmotica. Treatment of metaphase cells with 0.25 M sucrose arrested the cell in metaphase and ultrastructural analysis revealed novel osmiophilic spherical structures approximately 0.50 m in diameter located proximal to kinetochores. MTs appeared to stop just short of. or associate laterally with, these spherical structures. Anaphase PtK1 cells treated with 0.15 M and 0.20 M sucrose showed reduced rates of chromosome segregation during 5 min treatments, suggesting they retained functional kinetochore/kMT interactions. However, treatment of anaphase cells with 0.25 M sucrose blocked anaphase A chromosome motion and produced electron dense spherical structures approximately 0.50 m in diameter, identical to those observed in similarly treated metaphase cells. Removal of 0.25 M sucrose in treated anaphase cells resulted in normal chromosome segregation within 1 min. Cells released from sucrose treatment showed the absence of spherical structures and reformation of normal kinetochore/MT interactions which was temporally correlated with the resumption of chromosome motion.Abbreviations DIC differential interference contrast - kMT(s) kinetochore microtubule(s) - MT(s) microtubule(s) - nkMT(s) non-kinetochore microtubule(s)  相似文献   

9.
Summary Quinacrine, an acridine derivative, has previously been shown to disrupt lateral associations between non-kinetochore microtubules (nkMTs) of opposite polarity in PtK1 metaphase spindles such that the balance of spindle forces is significantly altered. We extended the analysis of the spatial relationship of spindle microtubules (MTs) in this study by using quinacrine to compare ATP-dependent requirements for early prometaphase centrosome separation and spindle formation. The route used for centrosome migration can take a variety of pathways in PtK1 cells, depending on the location of the centrosomes at the time of nuclear envelope breakdown. Following quinacrine treatment centrosome separation decresased by 1.9 to 14.0 m depending on the pathway utilized. However, birefringence of the centrosomal region increased approximately 50% after quinacrine treatment. Quinacrine-treated mid-prometaphase cells, where chromosome attachment to MTs had occurred, showed a decrease in spindle length of approximately 6.0 m with only a slight increase in astral birefringence. Computer-generated reconstructions of quinacrine-treated prometaphase cells were used to confirm changes in MT reorganization. Early-prometaphase cells showed more astral MTs (aMTs) of varied length while mid-prometaphase cells showed only a few short aMTs. Late prometaphase cells again showed a large number of aMTs. Our results suggest that: (1) quinacrine treatment affects centrosome separation, (2) recruitment of nkMTs by kinetochores is quinacrine-sensitive, and (3) development of the prometaphase spindle is dependent on quinacrine-sensitive lateral interactions between nkMTs of opposite polarity. These data also suggest that lateral interactions between MTs formed during prometaphase are necessary for centrosome separation and normal spindle formation but not necessarily chromosome motion.Abbreviations aMT(s) astral microtubule(s) - DIC differential interference contrast - MT(s) microtubule(s) - kMT(s) kinetochore microtubule(s) - NEB nuclear envelope breakdown - nkMT(s) non-kinetochore microtubule(s)  相似文献   

10.
K. W. Wolf 《Protoplasma》1996,190(1-2):88-98
Summary The microtubular spindle in spermatocytes of Lepidoptera is unconventional in that the bulk of the microtubules (MTs) ends relatively abrupt about halfway between the spindle equator and the centrosomes from late prometaphase through early anaphase. Membranous elements separate the MT ends from the centrosomes. In the present study, the question is addressed whether MTs in meiotic spindles of male Lepidoptera are — as typical of spindle MTs in other systems — highly dynamic or whether they represent a more stable MT population. To this end, primary spermatocytes of two Lepidoptera species,Ephestia kuehniella (Pyralidae) andPieris brassicae (Pieridae), were probed with a widely used antibody, 6–11B-1, directed against acetylated -tubulin. Tubulin acetylation is believed to indicate the presence of long-lived MTs. In late telophase spermatocytes of both species, spindle MTs were highly acetylated. This is in keeping with observations in other systems: MT dynamics decreases towards telophase. The labeling intensity in younger spermatocytes differed, however, between both species. InE. kuehniella only flagella were labeled, whereas inP. brassicae also the kinetochore MTs and small MT arrays around the centrosomes were detected by the antibody against acetylated -tubullin. The findings are compatible with the suggestion that spindle MTs are dynamic in prometaphase to anaphase spermatocytes ofE. kuehniella. In fact, treatment with taxol, a MT-stabilizing drug, leads to high acetylation of -tubulin throughout spindle MTs ofE. kuehniella in this period. Meiotic spindles inP. brassicae are longer by a factor of 1.3 than those ofE. kuehniella. The shorter MTs inE. kuehniella may turnover completely and cannot accumulate acetylated portions, whereas segments of MTs in the longer spindles ofP. brassicae persist and become post-translationally acetylated. Spermatogonial mitosis was also studied in both species and spindle MTs were found highly acetylated throughout mitosis. Thus, mitotic and meiotic spindles in males of Lepidoptera differ with respect to MT turnover.Abbreviations BSA bovine serum albumin - DAPI 4,6-Diamidino-2-phenylindole-2 HC1 - EGTA ethylene glycol-bis (-aminoethyl ether)-N,N-tetraacetic acid - PBS phosphate-buffered saline - PIPES piperazine-N,N-bis (2-ethane sulfonic acid) - MT microtubule  相似文献   

11.
To understand how microtubules interact in forming the mitotic apparatus and orienting and moving chromosomes, the precise arrangement of microtubules in kinetochore fibers in Chinese hamster ovary cells was examined. Individual microtubules were traced, using high voltage electron microscopy of serial 0.25 m sections, from the kinetochore toward the pole. Microtubule arrangement in kinetochore fibers in untreated mitotic cells and in cells recovering from Colcemid arrest were similar in two respects: the number of microtubules per kinetochore (mean 14 and 12, respectively) and the nearest neighbor intermicrotubule distance (mean90 nm). In Colcemid recovered cells, over 90% of the microtubules in kinetochore fibers were attached to the kinetochore (i.e. kinetochore microtubules) and extended most or all of the distance to the pole. Few free microtubules were present in the kinetochore fibers; most non-kinetochore microtubles terminated in the pole. Since kinetochores in this Colcemid-recovered system have been demonstrated to nucleate microtubules (Witt et al., 1980), it seems likely that most if not all of these kinetochore microtubules originated at the kinetochore. Some of the reconstructed kinetochore fibers were attached to chromosomes with bipolar orientation, suggesting that kinetochore microtubules need not interact with many polar microtubules for orientation to occur. In Colcemid recovered cells lysed to reduce cytoplasmic background, microtubules in kinetochore fibers were preferentially preserved. The parallel and near-hexagonal order typical of microtubules in kinetochore fibers was maintained, as was the number of kinetochore microtubules (mean, 13). The intermicrotubule distance was slightly reduced in lysed cells (mean, 60 nm). Crossbridges about 5 nm wide and 30–40 nm long were visible in kinetochore fibers of lysed cells. Such crossbridges probably contribute to the stabilization and parallel order of microtubules in kinetochore fibers, and may have a functional role as well.  相似文献   

12.
Summary The Pac-Man model for explaining chromosome movement is based on three main tenets: (i) the force that moves chromosomes is generated at the kinetochore; (ii) disassembly of the microtubules (MTs) of the kinetochore fibre generates poleward movement; and (iii) the energy required for this movement comes from MT disassembly. We show that these tenets are not valid in some and perhaps many situations. Thus, the Pac-Man model is inadequate and misleading as the central basis for explaining chromosomal motion generally. We argue that multiple mechanisms are involved in mitotic function and that a contractile/elastic spindle matrix is likely involved not only in anchoring kinetochore fibres, but also by exerting force on them. This view of the spindle matrix shares some features with the tensegrity model already formulated as a basis for understanding interphase cell behaviour.  相似文献   

13.
Summary Effects of cycloheximide (CHM) on preprophase bands (PPBs) of microtubules (MTs) and on prophase spindle MTs in root tip cells of onion (Allium cepa L.) were examined. When root tip cells were treated with 36 M CHM for 0.5–4 h, the population of cells with a PPB did not decrease markedly although the population of mitotic cells and that of prophase cells with a PPB gradually decreased to half of the control root tips. In prophase cells treated with 11 and 36 M CHM for 2 h, the width of the PPB was 1.4 times broader than that in the prophase PPB without CHM. Electron microscopic observation on the cross section of the PPB showed that the number of MTs and the distance between adjacent MTs in prophase PPBs treated with CHM were similar to those in the early developmental stage of PPBs without CHM. The bipolar spindle, that appeared in late prophase was not seen in prophase cells treated with 11 M or higher concentrations of CHM for 2 h. In order to examine differences of perinuclear MT arrangement between CHM treated and non-treated prophase cells, arrangement of perinuclear MTs was examined by confocal laser scanning microscopy. In control cells without CHM, MTs appeared on the nuclear surface with several branched or cross over type MT foci in the cytoplasm when broad PPB formation started. These MT foci were replaced by the aster type MT foci, from which several MTs radiated along the nuclear surface. The aster type MT foci gradually gathered to form a bipolar spindle. MTs connecting the spindle pole region and the PPB were seen in late prophase. In CHM-treated cells (11-360 M for 2 h), branched and cross over type MT foci were prominent, even in prophase cells with well condensed chromosomes. Neither linkages of MTs between the spindle pole region and the PPB nor aster type MT foci were seen. These observations showed that CHM prevents the bundling of MTs in the PPB and also inhibits the formation of aster type MT foci that is essential for bipolar spindle development.  相似文献   

14.
Summary Microtubule (MT) distribution during the cell cycle, especially spindle organization, has been investigated using immunofluorescence light microscopy in cultured cells of two higher plant species, soybean (angiosperm) and black spruce (gymnosperm). In soybean, the prophase and metaphase spindles were different in morphology and structure. The prophase spindle covering the nucleus was barrel-shaped and MTs extended between poles. The metaphase spindle consisted mainly of short MT bundles on either side of the chromosome mass. During prometaphase, the polarity and shape of the prophase spindle disappeared, suggesting that the metaphase spindle is newly formed in prometaphase and not derived from the prophase spindle. A striking feature of MT organization in black spruce was sharply defined poles during prometaphase and anaphase. They were located close to the cell edge, suggesting that a structure in the cytoplasm or associated with the plasma membrane is responsible for their formation. In black spruce the metaphase spindle was long with pointed poles and MT fir tree structures. In contrast, the metaphase spindle of soybean was short with very broad poles and lacked MT fir trees. These results suggest that MT fir tree structure may not be necessary for a functional spindle.  相似文献   

15.
Summary Microtubules (MTs) in the mitotic asters of the fungusNectria haematococca (teleomorph ofFusarium solani f. sp.pisi) pull on the spindle pole bodies (SPBs) during anaphase. To elucidate the structural basis of astral forces, we conducted an ultrastructural study using primarily freeze-substitution, three-dimensional reconstruction, and computerized numerical data acquisition and analysis. The asters were composed of numerous (68–171), mostly short (<0.5 m) MTs and varied widely in total MT length (34–83 m). Both the number and total length of MTs varied up to twofold or more among asters, even between the two asters of the same mitotic apparatus (MA). Surprisingly, less than one half (38%) of the MTs in each aster were attached to the SPB. Both the number and total length of these polar MTs varied up to twofold between the two asters of the same MA. Some asters included MTs oriented back toward the opposite SPB, whereas others did not, and the number and total length of such MTs varied among asters. These results are best interpreted by assuming that astral MTs inN. haematococca have a rapid rate of turnover and exhibit dynamic instability. Any of these parameters of astral architecture could vary during mitosis and thereby give rise to the oscillations of the mitotic apparatus that occur during anaphase B by generating unequal and fluctuating forces in the two sister asters. Astral MTs were arranged asymmetrically around the astral axis, and this asymmetry could produce the lateral movements of the SPB that occur during anaphase B. An apparently extensive system of 10nm filaments occurred in these cells, and some astral MTs were associated either terminally (at the plasma membrane) or laterally with these filaments. Such associations could be involved in the development and maintenance of astral forces.Abbreviations fMT free microtubule - MA mitotic apparatus - MT microtubule - pMT polar microtubule - SPB spindle pole body  相似文献   

16.
Summary Mitosis in living cells ofOedogonium observed by time-lapse, was blocked by cytochalasin D (CD; 25–100 g/ml). Normal prometaphase to anaphase takes 10–15 min; blockage of entry into anaphase by CD was reversible up to 2–2.5 h in CD and washout was followed within 10–20 min by normal anaphase and cytokinesis. After 3–6 h in CD, unseparated chromatids segregated randomly into two groups as the spindle slowly elongated considerably, becoming distorted and twisted. During this pseudoanaphase, chromatids sometimes split irregularly and this was stimulated by late washout of CD. CD affected chromosomal attachment to the spindle. If applied at prophase and prometaphase, spindle fibres entered the nucleus; chromosomes moved vigorously and irregularly. A few achieved metaphase only briefly. Treatment at metaphase caused chromosomes to irregularly release and after random movement, all slowly gathered at either pole. Upon removal of CD, chromosomes rapidly achieved metaphase and anaphase A and B soon followed. If CD took effect during anaphase, chromatids detaching from the spindle oscillated rapidly along it; anaphase and cytokinesis (phycoplast formation) were delayed as the cell attempted to correct for abnormal chromosomal behaviour. Thus, CD prevents normal kinetochore attachment to the spindle and actin may be the target for this response.Abbreviations A-LP anaphase-like prometaphase - CD cytochalasin D - MT microtubule  相似文献   

17.
During micronuclear mitosis of the heterotrichous ciliate Nyctotherus ovalis Leidy rod-shaped composite chromosomes are formed by lateral association of telokinetic chromosomes. The formation of these composite chromosomes seems to be a highly ordered process since only nuclei with either 18 or 24 such chromosomes can be observed, and nuclei with the same chromosome number show a similar length distribution of their chromosomes. Further, these data indicate that we examined two otherwise indistinguishable races. During metaphase the composite chromosomes become arranged in the spindle equator in a holokinetic fashion, their entire poleward surfaces being covered by kinetochore material. These diffuse kinetochores have a trilaminar appearance comparable to those of monokinetic chromosomes. Their electron density after employing Bernhard's procedure revealed the same ribonucleoprotein distribution as reported for the localized kinetochores formed during the extranuclear mitosis in other cells. During early anaphase the outer kinetochore layer remains continuous while the individual chromosomes in the composite group show a tendency to separate leaving chromatin-free spaces of about 40 nm diameter. Kinetochore microtubules which are still anchored in the outer kinetochore layer seem to elongate and to extend into the interpolar spindle region predominantly through these holes in the chromatin. These observations suggest a like polarity of kinetochore and interpolar microtubules in the polar spindle region while microtubules in the interpolar space seem to interdigitate in an antiparallel fashion. The activity of the kinetochore to act as a microtubule-organizing center (MTOC) seems to be modulated by the chromatin underlying the outer kinetochore layer which may prevent further outgrowth of kinetochore microtubules.  相似文献   

18.
Summary Organizational changes in the microtubules of isolated generative cells of Allemanda neriifolia during mitosis were examined using anti--tubulin and confocal laser scanning microscopy. Due to an improved resolution and a lack of out-of-focus interference, the images of the mitotic cytoskeleton obtained using the confocal microscope are much clearer than those obtained using the non-confocal fluorescence systems. In the confocal microscope one can see clearly that the spindle-shaped interphase cells contain a cage-like cytoskeleton consisting of numerous longitudinally oriented microtubule bundles and some associated smaller bundles. At prophase, the shape of the cells invariably becomes spherical. The microtubule cytoskeleton inside the cells concomitantly changes into a less organized form — consisting of thick bundles, patches, and dots. This structural form is not very stable, and soon afterwards the cytoskeleton changes into a reticulate network. Then the nuclear envelope breaks down, and the microtubules become randomly dispersed throughout the cell. Afterwards, the microtubules reorganize themselves into a number of half-spindle-like structures, each possessing a microtubule-nucleating center. The locations of these centres mark out the positions of the presumptive spindle poles. Numerous microtubules radiate from these centres toward the opposite pole. At metaphase, the microtubules form a number of bipolar spindles. Each spindle has two half-spindles, and each half-spindle has a sharply focused microtubule centre at the pole region. From the centres, kinetochore and non-kinetochore microtubules radiate toward the opposite half-spindle. At anaphase A, sister chromatids separate, the cells elongate, and the kinetochore microtubules disappear; the non-kinetochore microtubules, however, remain, and a new array of microtubules, in the form of a cage, appears. The peripheral cage bundles and the non-kinetochore bundles coverge into a sharp point at the pole region. Later, at anaphase B the microtubule cytoskeleton undergoes reorganization giving rise to a new array of longitudinally oriented microtubule bundles in the cell centre and a cage-like cytoskeleton in the periphery. At telophase, some of the cells elongate further, but some become spherical. The microtubules in the central region of the elongated cell become partially disrupted due to the formation of a phragmoplast-junction-like structure in the mid-interzone region. The microtubule bundles at the periphery are spirally organized, and they appear not to be disrupted by the phragmoplast-like junction. The microtubules in the spherical telophase cells (unlike those seen in the elongated telophase cells) are arranged differently, and no phragmoplast-junction-like structure forms in the spherical cells. The structural and functional significances of some of these new features of the organization of the microtubule cytoskeleton as revealed by the confocal microscope are discussed.  相似文献   

19.
Organization of kinetochore fiber microtubules (MTs) throughout mitosis in the endosperm of Haemanthus katherinae Bak. has been analysed using serial section reconstruction from electron micrographs. Accurate and complete studies have required careful analysis of individual MTs in precisely oriented serial sections through many (45) preselected cells. Kinetochore MTs (kMTs) and non-kinetochore MTs (nkMTs) intermingle within the fiber throughout division, undergoing characteristic, time- dependent, organizational changes. The number of kMTs increases progressively throughout the kinetochore during prometaphase-metaphase. Prometaphase chromosomes which were probably moving toward the pole at the time of fixation have unequally developed kinetochores associated with many nkMTs. The greatest numbers of kMTs (74-109/kinetochore), kinetochore cross-sectional area, and kMT central density all occur at metaphase. Throughout anaphase and telophase there is a decrease in the number of kMTs and, in the kinetochore cross-sectional area, an increased obliquity of kMTs and increased numbers of short MTs near the kinetochore. Delayed kinetochores possess more kMTs than do kinetochores near the poles, but fewer kMTs than chromosomes which have moved equivalent distances in other cells. The frequency of C-shaped proximal MT terminations within kinetochores is highest at early prometaphase and midtelophase, falling to zero at midanaphase. Therefore, in Haemanthus, MTs are probably lost from the periphery of the kinetochore during anaphase in a manner which is related to both time and position of the chromosome along the spindle axis. The complex, time-dependent organization of MTs in the kinetochore region strongly suggests that chromosome movement is accompanied by continual MT rearrangement and/or assembly/disassembly.  相似文献   

20.
Summary Variable numbers of bivalents and sex chromosomes do not attach to the spindle when prophase or early prometaphase cranefly spermatocytes (2n=8) are treated with cytochalasin D or latrunculin. The unattached bivalents lie in the cytoplasm or at the spindle pole, and they do not delay onset of autosomal anaphase; sometimes they disjoin at the same time as the attached bivalents, so they respond to the global signals that initiate anaphase. Unattached sex chromosomes do not delay autosomal anaphase, either. Of various interpretations of these data, we think the best explanation is that the checkpoint system responds to physical rather than chemical cues; we think that the spindle is a tensegral structure, that chromosomes need to interact with the spindle in order to be recognised by the anaphase-onset checkpoint control, and that the physical interaction of chromosomes with spindle acts as a signalling network. Cytochalasin D and latrunculin treatments delay onset of sex chromosome anaphase (which normally occurs about 15 min after autosomal anaphase) and cause altered patterns of sex-chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号