首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To assess the relative importance of lake chemistry, morphometry and zoogeography on limnetic zooplankton, we collected zooplankton, water, and morphometric data from 132 headwater Canadian Shield lakes in 6 regions across north-central Ontario. A subset of these lakes (n = 52) were fished with gill nets. We clustered lakes based on their zooplankton species composition (presence/absence). Discriminant analysis was employed to determine how well lake characteristics could predict zooplankton community types. Correct classification of zooplankton communities for three models ranged from 72 to 91%. Lake size, lake location, and buffering capacity were ranked as the most important factors separating lake groups. Fish abundance (CPUE) was not significant in distinguishing between zooplankton communities. Though the range of lake sizes was limited (1–110 ha), larger lakes tended to support more species. Lake location (zoogeography) also influenced species composition patterns. Although Algoma lakes tended to be larger (\-x = 18.0 ha, other lakes \-x = 2.5 ha), they supported relatively depauperate zooplankton communities. Buffering capacity was ranked third in the discriminant analysis models, but pH and alkalinity were not significantly different between lake groups.  相似文献   

2.
The species present within a community result from a combination of local and regional processes. We experimentally tested the importance of these two processes for lake zooplankton communities by examining the ability of additional species to persist when introduced into mesocosms in Little Rock Lake, Wisconsin, from other nearby lakes in the Northern Highland Lake District. We established a control treatment with only Little Rock Lake zooplankton and two treatments that supplemented the Little Rock communities with zooplankton from nearby lakes. Species richness declined during the 3 weeks of the experiment so that, at the end of the third week, the treatments with added zooplankton species had the same number of species as the controls; increasing the initial number of species in the community did not increase its final species richness. A plot of the mean species richness in the local habitat against the mean species richness of the regional pool fell below a 1:1 slope. This suggested that local processes were more important in structuring Little Rock Lake zooplankton communities.   相似文献   

3.
4.
典型高原湖滨带底泥细菌群落结构及多样性特征   总被引:5,自引:1,他引:4  
【背景】高原湖泊的富营养化日趋严重,而湖滨带作为湖泊的保护屏障对外源污染物具有拦截净化等作用,水环境变化则会对底泥细菌产生深刻影响。【目的】探究高原湖滨带底泥细菌群落结构特征及与水体富营养化之间的联系。【方法】基于16S rRNA基因高通量测序技术分析了阳宗海南岸湖滨带8个不同样点的底泥细菌群落结构及多样性,并结合样品水体环境因子,采用主成分分析(PCA)和冗余分析(redundancy analysis,RDA)探讨了水体富营养化对底泥细菌群落结构及丰富度的影响。【结果】湖滨带底泥细菌与水体富营养化程度存在响应关系,在水体富营养化程度高的区域(S3)细菌丰富度较高,操作分类单元(operationaltaxonomicunits,OTU)高达1473。反之,在富营养化程度低的区域(S1)细菌丰富度较低,OTU为730。阳宗海南岸湖滨带底泥中主要优势菌门为变形菌门(Proteobacteria)和绿弯菌门(Chloroflexi),含有少量的放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)和厚壁菌门(Firmicutes);绿弯菌门(Chloroflexi)与水体富营养化程度具有相关性,在中度富营养化区域,绿弯菌门(Chloroflexi)的比重高达44.1%,而在轻度富营养化区域绿弯菌门(Chloroflexi)的比重仅为15.6%。通过环境因子分析发现,阳宗海湖滨底泥细菌受总磷(TP)、叶绿素a (Chla)和总氮(TN)影响较强。【结论】研究结果明确了高原湖泊湖滨带底泥细菌种群的结构、变化特征及其对于水体富营养化的响应,加深了高原湖泊底泥细菌的了解,为高原湖泊水体富营养化的防治提供理论基础。  相似文献   

5.

Current trophic status and trend of Chinese freshwater lakes were investigated in this study. The results showed that all lakes studied were commonly undergoing the eutrophication process, water quality decreased and lake’s ecosystem is being declined. Most of the urban lakes are facing serious eutrophication. Many medium-sized lakes are in metrophic or eutrophic status, some local water are even approaching the hypertrophic level. The famous five freshwater lakes in China have entered into eutrophication in the condition of higher nutrient load. Lake Taihu, Hongze and Caohu are already in eutrophic state. Eutrophic lakes are mainly distributed in the middle and lower reaches of Yangtze River and Yungui plateau. Lake eutrophication developed rapidly. Among the 34 lakes studied in 1970’s, most of lakes were in the mesotrophic status, mesotrophic water area accounted for 91.8%. With the nine year of 1978–1987 the area percentage of oligotrophic lakes decreased from 3.2% to 0.53%, and that of eutrophic lakes increased from 5.0% to 55.01%. Recent data showed 57.5% lakes were in eutrophic and hypertrophic status of the 40 surveyed lakes.

Eutrophic trend of Lake Taihu, Chaohu and Xuanwu in the region of the middle and lower reaches of Yangtze River was predicated using the ecological stress model. The results showed that in 2008 Lake Taihu, Chaohu and Xuanwu might be of eutrophication, eutrophication and hypertrophication, respectively if no control measurement is taken. Provided the pollution water treatment rate is 60% in 2030, approximately 30 billion ton pollution water would still be discharged directly in the lakes. Therefore, in 2030 the urban lakes in China might be eutrophication or hypertrophication, and most of the medium-sized lakes at the urban-rural fringe might be in eutrophication or hypertrophication. The famous five biggest freshwater lakes in China might be eutrophication if control countermeasures are taken as now.

Lake eutrophication has become a serious environmental problem in China. Based on the domestic and foreign experiences of the eutrophic control technologies, both nutrient pollution control and lake ecological restoration should be carried out and this may be the guidance for the eutrophic control of lakes in China.

  相似文献   

6.
Ecology and role of zooplankton in the fishery of Lake Naivasha   总被引:2,自引:2,他引:0  
Taxonomic composition, distribution, community structure and seasonality of Lake Naivasha zooplankton between 1978 and 1980 are described. The ecological status of the zooplankton in relation to prevailing ecological factors and the lakes fishery are discussed. Species composition of the zooplankton community in Lake Naivasha has been remarkably constant since first observations between 1929 and 1931. The community structure and distribution of the zooplankton in the lake varied little from July 1978 to July 1980, however, there was evidence of species succession among the larger zooplankters, especially the cladocerans. In the littoral area zooplankton contribute significantly to the food and production of juvenile fish. There is an absence of fish zooplanktivores in the limnetic area of the lake. Consequently the limnetic zooplankton is not utilised by higher trophic levels.  相似文献   

7.
Fish introduction, eutrophication and disappearance of aquatic vegetation are important disturbances of aquatic ecosystems, especially in plateau lakes, which are generally considered to be very vulnerable. Fish were introduced to Lake Dianchi, a eutrophic plateau lake in southwest China, in the late 1950s and 1970s. After the introduction, invasive fish became the dominant species, and the total fish yield increased. Meanwhile, the trophic level of Lake Dianchi had a tendency to increase in the past decades because of the increases in human activities in the watershed area. In addition, the area of aquatic vegetation decreased from more than 90 to 1.8% of the lake area from the 1950s to 2000. This study investigated the effects of fish introduction, eutrophication and aquatic vegetation on the diatom community of Lake Dianchi by examining the changes of microfossil diatom assemblage and abundance. Results showed that the absolute abundance and diatom assemblages changed after fish were introduced. The endemic species, Cyclotella rohomboideo-elliptica, disappeared with the introduction of fish and increasing trophic levels after 1958. Fragilaria crotonensis entered into the lake with the introduction of fish and gradually thrived in the lake after 1958. Diatom species numbers also decreased gradually from 21 to 9 from the past to present. Epiphytic diatoms disappeared with the decrease of aquatic vegetation after 1985. Our study indicated that eutrophication was the most important process determining diatom abundance, and fish introduction was a secondary process determining diatom abundance, while aquatic vegetation had a more important role in structuring the diatom community in this eutrophic plateau lake.  相似文献   

8.
Detailed zooplankton records from a 26-cm sediment core with a time resolution of approximately 3–10 years were obtained from Lake Biwa, Japan, to examine the historical variations in the zooplankton community during the 20th century. In the sediments, selected zooplankton remains have fluctuated over the years. Daphnia – large zooplankton herbivores – did not occur from 1900 to 1920, and formed a very minor component of the zooplankton community in the following 30 years, while Bosmina – small zooplankton herbivores – were common during this period. In the mid-1960s, however, when eutrophication was noticeable in this lake, Daphnia numbers increased dramatically and became the dominant zooplankton thereafter. In contrast, Difflugia brevicolla and D. biwae, two amoeboid protozoans that live in connection with the lake bottom environment, occurred abundantly until the late 1950s, but gradually decreased after the mid-1960s. In particular, D. biwae, a species peculiar to this lake, was not found in sediment dated after 1980, suggesting its extinction. These results indicate that the zooplankton community structure changed greatly in the 1960s, and suggest that the eutrophication occurring at this time altered the relative strength of top-down and bottom-up forces on the zooplankton community in Lake Biwa.  相似文献   

9.
Duggan  Ian C.  Özkundakci  Deniz  David  Bruno O. 《Aquatic Ecology》2021,55(4):1127-1142

Data collected on zooplankton community composition over longer time periods (>?10 years) are rare. We examined among-lake spatial and temporal trends of zooplankton communities from a monitoring programme undertaken in the Waikato region, New Zealand. A total of 39 lakes were sampled over a period of 12 years, between 2007 and 2019, with varying degrees of temporal effort. We focussed particularly on eight lakes, considered here as ‘long-term lakes’, where samples were collected with greater regularity (including 5 with 12 years of data). Among lakes, suspended sediment concentrations and indicators of lake trophic state were inferred to be important in determining the zooplankton distributions; as this region is dominated by shallow lakes, the relative importance of suspended sediments was high. Among the long-term lakes, the greatest dissimilarities in zooplankton community composition among years were in Lake Waahi, where the Australian Boeckella symmetrica was first detected in 2012. That is, the greatest temporal changes to zooplankton composition during the study period were due to the invasion by non-indigenous species, rather than changes in trophic state or other environmental variables; non-native species commonly dominated the individual counts of species through much of 2014 and 2015, with most samples since 2016 being again dominated by native species. Following this lake, the largest and shallowest lakes in the dataset—Whangape and Waikare—exhibited the greatest variability in community composition among years.

  相似文献   

10.
Selective feeding by baltic herring   总被引:1,自引:3,他引:1  
Lake Lenore is a highly productive alkaline lake in the Lower Grand Coulee, Central Washington. Leakage of freshwater from nearby irrigation projects decreased the lake salinity from about 17 to 1.5 g/l during 1950–75. The initial bottom fauna with mass occurrence of single halobiontic chironomid species was supplanted by more diverse communities at all depths. The species richness increased by 2–8 times. The greatest addition of new species was found in the salinity range of 2–3 g/l. Concurrent increases in abundance and biomass suggest that the carrying capacity of the lake at higher salinities was not fully utilized by the benthos. A comparison with other eutrophic saline lakes indicates that benthic species composition and quantity is correlated with total salinity and ion composition.  相似文献   

11.
The present paper focuses on the biological properties of Lake Chapo prior to the installation of a hydroelectric power station. Most of the biological parameters indicate that the lake is oligotrophic, i.e., it has very low values of chlorophyll a and primary production. The phytoplankton community of 73 species shows a predominance of only a few species in terms of density and biomass. The zooplankton community is poor in species, with one of the lowest densities measured in the North Patagonian lakes. The fish community is dominated by two introduced salmonid species. Comparison with other North Patagonian lakes reveals that Lake Chapo is the most oligotrophic.  相似文献   

12.
A shallow, saline lake (Rookery Lake) close to the sea and surrounded by a penguin rookery was investigated during the austral spring and summer of 1996/1997. The proximity to the sea means that the lake is likely to have been formed recently during isostatic uplift. Inputs of carbon and nutrients from the penguin rookery have rendered Rookery Lake eutrophic compared with other brackish and saline lakes in the Vestfold Hills. Chlorophyll a concentration, bacterioplankton, heterotrophic nanoflagellate and phototrophic nanoflagellate abundances were all significantly higher than in other non-enriched lakes. The high productivity created seasonal anoxia during winter and spring below ice cover. The ciliate community resembled the marine community, and was dissimilar to that seen in older saline lakes within the Vestfold Hills. Thus Rookery Lake provides valuable evidence of the impact of natural eutrophication on an Antarctic lake, as well as of the evolution of the typical microbial community which dominates the older lakes of the Vestfold Hills. Accepted: 2 May 1999  相似文献   

13.
湖北四湖泊营养类型与轮虫群落的关系   总被引:13,自引:1,他引:12  
对湖北梁子湖水系不同营养类型(中营养型、富营养型)4个湖泊中轮虫的群落结构和物种多样性进行了周年研究,分析比较了不同营养类型湖泊的轮虫种类组成、分布、优势种组成、密度、生物量和多样性指数。结果表明:轮虫的种类数、物种多样性与营养水平呈负相关关系,轮虫密度大体上随营养水平提高而增大,富营养化引起轮虫空间异质性降低,受污染湖泊与非污染湖泊轮虫种类数、寡污性种类数及分布差异尤为明显。用多样性指数评价湖泊营养状态与TLIc方法一致。  相似文献   

14.
The fish community in the Loosdrecht lakes is dominated by bream, pikeperch and smelt and is characteristic of shallow eutrophic lakes in The Netherlands. The biomasses of the respective fish species amount to ca. 250, 25 and 10 kg ha–1 and correspond to those in Tjeukemeer, another lake in The Netherlands. The average size of bream, however, is much smaller in the Loosdrecht lakes as a consequence of poorer feeding conditions. The zooplankton community in the Loosdrecht lakes is predominantly composed of relatively small species such as Daphnia cucullata, Bosmina coregoni and cyclopoid copepods, whereas in Tjeukemeer, Daphnia hyalina is permanently present in relatively high densities and the other species show a larger mean length. In the Loosdrecht lakes, the absence of D. hyalina and the smaller sizes of the other zooplankton species could be the consequence of a higher predation pressure, in combination with unfavourable feeding conditions for the zooplankton including the low density of green algae and the high density of filamentous cyanobacteria. A biomanipulation experiment in Lake Breukeleveen, one of the Loosdrecht lakes, indicated that feeding conditions were too unfavourable for large zooplankton to develop in spring, when the reduced fish biomass was not yet supplemented by natural recruitment and immigration.  相似文献   

15.
Non-diazotrophic Microcystis and filamentous N2-fixing Aphanizomenon and Dolichospermum (formerly Anabaena) co-occur or successively dominate freshwaters globally. Previous studies indicate that dual nitrogen (N) and phosphorus (P) reduction is needed to control cyanobacterial blooms; however, N limitation may cause replacement of non-N2-fixing by N2-fixing taxa. To evaluate potentially counterproductive scenarios, the effects of temperature, nutrients, and zooplankton on the spatio-temporal variations of cyanobacteria were investigated in three large, shallow eutrophic lakes in China. The results illustrate that the community composition of cyanobacteria is primarily driven by physical factors and the zooplankton community, and their interactions. Niche differentiation between Microcystis and two N2-fixing taxa in Lake Taihu and Lake Chaohu was observed, whereas small temperature fluctuations in Lake Dianchi supported co-dominance. Through structural equation modelling, predictor variables were aggregated into ‘composites’ representing their combined effects on species-specific biomass. The model results showed that Microcystis biomass was affected by water temperature and P concentrations across the studied lakes. The biomass of two filamentous taxa, by contrast, exhibited lake-specific responses. Understanding of driving forces of the succession and competition among bloom-forming cyanobacteria will help to guide lake restoration in the context of climate warming and N:P stoichiometry imbalances.  相似文献   

16.
Feldberger Haussee provides a classic example of eutrophication history of hardwater lakes in the Baltic Lake District (Germany) and of changes in their algal flora during the 20th century. The lake originally was regarded as slightly eutrophic. A process of drastic eutrophication from the 1950s until the end of the 1970s caused mass developments of blue-green and green algae. A restoration program was started in the 1980s to improve the water quality of the lake using both diversion of sewage outside the catchment area, and biomanipulation by altering the fish community. This restoration program led to positive changes in the lake ecosystem. Direct effects of biomanipulation resulted in an increase of herbivorous zooplankton, a decrease of phytoplankton biomass, and an increase of water transparency. The recovery of Feldberger Haussee also may have been indirectly enhanced by an increase in nutrient sedimentation as a consequence of intensified calcite precipitation, decrease in phosphorus remobilization due to a pH-decrease, increased NIP-ratio, and recolonization of the littoral zone by macrophytes. This paper concentrates on the long term development of the phytoplankton community as a response to changes in the food web structure as well as to alterations in the chemical environment of the algae. Both are reflected in four major stages passed by the algal assemblage between 1980 and 1994: (1) From 1980-summer 1985 dense green algal populations were found indicating similar conditions as in the 1970s during the period of maximum eutrophication. (2) A diverse phytoplankton community during summer 1985–1989 showed the first effects of a recovery. (3) From 1990–1992 the phytoplankton was characterized by ungrazeable filamentous blue-green algae first of all as a response to increased herbivory of zooplankton on edible species and to increasing N/P-ratios. (4) Finally, the algal species diversity increased in 1993 and 1994 whereas the phytoplankton biomass decreased showing the success of the combined restoration measures.  相似文献   

17.
Zooplankton community composition can be related to natural environmental factors such as lake morphology, lake landscape position, and water chemistry as well as anthropogenic factors such as agricultural and urban land-use. We hypothesized that within-lake factors, such as water chemistry, lake morphology, and human land-use would each be related to zooplankton community structure, but that watershed land-use would be the strongest correlate in southeast Wisconsin lakes. Zooplankton samples, collected every 3 months over a year, from 29 lakes were used to determine how lake and watershed morphology, water quality, and land-use were related to zooplankton community structure in the heavily developed Southeast Wisconsin Till Plain Ecoregion. Forward selection and a variation partitioning procedure were used to determine relative and shared contributions of each suite of variables in predicting zooplankton community structure. Redundancy analysis was used to characterize dominant gradients in pelagic zooplankton communities and related environmental factors and land-use. The major correlates of community structure included summer phosphorus, lake depth and surface area and urban and natural land. Variation partitioning illustrated that phosphorus alone accounts for the greatest part (12%) of community structure. Urban land-uses (residential, commercial and paved land) and lake morphology partially explain zooplankton community variation through combined effects with phosphorus. Small cladocerans and Skistodiaptomus pallidus were associated with higher phosphorus, shallow depth and higher urban land-use, while Daphnia pulicaria dominates in deep lakes with lower phosphorus and less urban land-use. This study contributes to the understanding of factors affecting zooplankton community structure in a largely human developed region and illustrates the importance of eutrophication in structuring zooplankton community composition.  相似文献   

18.
Biomanipulation development in Norway   总被引:2,自引:2,他引:0  
Since 1974 several studies have been carried out in Norway to investigate the interactions between planktivorous fish, zooplankton, phytoplankton and water chemistry. Since 1978 a long-term national research program has been conducted by the Norwegian Council for Scientific and Industrial Research (NTNF). In this program several whole lake manipulations of the fish stocks have been performed to test hypotheses about trophic interactions. It was predicted that manipulations of planktivorous fish populations, might also improve water quality in lakes undergoing eutrophication. Two examples are given to illustrate the achieved results. I: Whole lake fertilization experiment (1974–1978) carried out by Langeland and Reinertsen. The results revealed the importance of top-down effects in the lake ecosystem. When cladocerans dominated, the zooplankton community was able to maintain a more or less constant phytoplankton biomass and a rather low phytoplankton production even when nutrient levels were increased. During years with rotifer dominance, algal biomass and productivity increased, despite the low amounts of added nutrients. II: Experiment performed by Reinertsen, Jensen, Koksvik, Langeland and Olsen in the eutrophic Lake Haugatjern, total elimination of the fish populations by rotenone in late 1980, resulted in a 4-fold decrease in the algal biomass. The species composition changed from the dominance of large-sizedAnabaena flos-aquae andStaurastrum luetkemuelleri to smaller, fastgrowing species and gelatinous green algae. The results are discussed in relation to management of inland waters by combined techniques of biomanipulation and reduced external nutrient supply which increase food-chain efficiency.  相似文献   

19.
1. Small cladocerans, copepod nauplii and rotifers often dominate the zooplankton community in tropical and subtropical lakes. This is probably because of high predation pressure by small omnivorous–planktivorous fish, but experimental evidence is scarce.
2. This study used two approaches to test the effect of the small omnivorous–planktivorous fish species Jenynsia multidentata , which is frequently abundant in (sub)tropical eutrophic lakes in South America, on the size distribution of zooplankton. In Lake Blanca (Uruguay), which lacks any piscivores, we sampled seasonally for both fish and zooplankton. We also conducted an outdoor mesocosm experiment with treatments containing or lacking J. multidentata .
3. Together, the empirical and experimental data suggest that J. multidentata predation plays an important role in modulating the size structure of the zooplankton community in subtropical lakes. In the absence of J. multidentata , stocked large-sized zooplankters like Daphnia obtusa were abundant in the experiments, while small-sized zooplankton dominated in the presence of fish, as they did in the lake itself from spring to the end of the season.  相似文献   

20.
Environmental controls on cladoceran community structure in lake ecosystems are complex and may involve many environmental parameters including trophic state and fish populations. In Lake Erhai, a plateau lake located in southwest China, it was hypothesized that a combination of lake eutrophication and planktivorous fish introduction would increase the abundance of cladoceran, while also decreasing cladoceran size. To test this hypothesis, we examined temporal changes in cladoceran microfossils in the sediments of Lake Erhai over the past century. The influence of changing macrophyte coverage within the littoral region of the lake was also considered. Results demonstrated that cladoceran abundance (measured as flux of cladoceran fossils in the sediments) increased markedly accompanying eutrophication of the lake. In addition, there was a shift in the dominant cladoceran species from those species that prefer oligotrophic conditions to those that prefer mesotrophic and eutrophic conditions. A reduction in the ephippium length of Daphnia spp. was observed and attributed to the introduction of the planktivorous fish Neosalanx taihuensis. Our findings indicated that eutrophication and fish introduction were the main controls affecting cladoceran community structure during the recent decades, and predation by planktivorous fish had an important impact on Daphnia body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号