首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
采用扫描电镜观察了国产蹄盖蕨科3属5种植物的管状分子,发现安蕨属、拟鳞毛蕨属和蹄盖蕨属管状分子结构类似,具体可分为3种类型:(1)梯状穿孔板,无穿孔板二型性现象;(2)梯状穿孔板,有穿孔板二型性现象;(3)梯状-网状混合穿孔板.除长江蹄盖蕨不具有梯状穿孔板,有穿孔板二型性现象外,其余4种均具有上述3种类型.该结果支持安蕨属、拟鳞毛蕨属和蹄盖蕨属三者之间有亲密关系的观点,并在前人基础上提出了新的管胞定义:管胞是指维管植物木质部中存在的一类狭长中空,端部圆凸或尖削,不具有明显端壁,侧壁具有多个侧壁穿孔板,纹孔膜从缺失到不同程度存在的死细胞.  相似文献   

2.
郑玲    徐皓    王玛丽 《植物学报》2008,25(2):203-211
利用扫描电镜观察了国产蹄盖蕨科(Athyriaceae)对囊蕨亚科(Deparioideae)10种植物及双盖蕨属(Diplazium Sw.)3种植物根状茎的管状分子。结果显示, 这些管状分子端壁和侧壁的形态及结构分别相同且侧壁具有穿孔板(多穿孔板)。根据穿孔板的形态特征, 将该亚科的管状分子分为5种类型: (1)梯状穿孔板, 无穿孔的二型性现象; (2)梯状穿孔板, 有穿孔的二型性现象; (3)网状穿孔板; (4)梯状-网状混合的穿孔板; (5)大孔状穿孔板。按照纹孔膜残留的程度又可分为3种: 部分区域有完整的纹孔膜、残留呈网状或线状以及很少或无纹孔膜残留。结合前人的研究资料, 发现蕨类植物的管状分子与被子植物的导管分子在形态和输导机理上存在明显差异, 管胞和导管分子不能仅仅根据纹孔膜的存在与否来确定, 而应根据穿孔板存在于端壁还是侧壁进行判断, 即穿孔板仅存在于端壁的管状分子为导管分子; 端壁和侧壁形态及结构分别相同, 有或无穿孔板的管状分子为管胞。由此可以推测蕨类植物和裸子植物中输导水分和矿物质的管状分子主要为管胞。单叶双盖蕨属(Triblemma(J. Sm.) Ching)与双盖蕨属管状分子的特征并不相似, 显示了将单叶双盖蕨属从双盖蕨属独立出来归入对囊蕨亚科的合理性。根据管状分子的特征, 推测假蹄盖蕨属(Athyriopsis Ching)和蛾眉蕨属(Lunathyrium Koidz.)可能是比较进化的属, 而介蕨属 (Dryoathyrium Ching)相对比较原始, 单叶双盖蕨属的系统位置应介于假蹄盖蕨属与介蕨属之间。  相似文献   

3.
国产对囊蕨亚科(蹄盖蕨科)植物的管状分子   总被引:2,自引:0,他引:2  
郑玲  徐皓  王玛丽 《植物学通报》2008,25(2):203-211
利用扫描电镜观察了国产蹄盖蕨科(Athyriaceae)对囊蕨亚科(Deparioideae)10种植物及双盖蕨属(Diplazium Sw.)3种植物根状茎的管状分子。结果显示,这些管状分子端壁和侧壁的形态及结构分别相同且侧壁具有穿孔板(多穿孔板)。根据穿孔板的形态特征,将该亚科的管状分子分为5种类型:(1)梯状穿孔板,无穿孔的二型性现象:(2)梯状穿孔板,有穿孔的二型性现象:(3)网状穿孔板:(4)梯状-网状混合的穿孔板:(5)大孔状穿孔板。按照纹孔膜残留的程度又可分为3种:部分区域有完整的纹孔膜、残留呈网状或线状以及很少或无纹孔膜残留。结合前人的研究资料,发现蕨类植物的管状分子与被子植物的导管分子在形态和输导机理上存在明显差异,管胞和导管分子不能仅仅根据纹孔膜的存在与否来确定,而应根据穿孔板存在于端壁还是侧壁进行判断,即穿孔板仅存在于端壁的管状分子为导管分子:端壁和侧壁形态及结构分别相同,有或无穿孔板的管状分子为管胞。由此可以推测蕨类植物和裸子植物中输导水分和矿物质的管状分子主要为管胞。单叶双盖蕨属(Triblemma(J.Sm.)Ching)与双盖蕨属管状分子的特征并不相似,显示了将单叶双盖蕨属从双盖蕨属独立出来归人对囊蕨亚科的合理性。根据管状分子的特征,推测假蹄盖蕨属(Athyriopsis Ching)和蛾眉蕨属(Lunathyrium Koidz.)可能是比较进化的属,而介蕨属(Dryoathyrium Ching)相对比较原始,单叶双盖蕨属的系统位置应介于假蹄盖蕨属与介蕨属之间。  相似文献   

4.
蹄盖蕨科三属植物管状分子的研究   总被引:1,自引:0,他引:1  
徐皓  王玛丽 《广西植物》2009,29(3):300-303
扫描电镜观察假冷蕨属4种、冷蕨属3种、蹄盖蕨属3种植物根状茎中的管状分子,结果显示:这些管状分子端壁和侧壁的形态、结构相同且侧壁具有穿孔板(多穿孔板)。根据穿孔板的类型和穿孔的纹孔膜残留程度,我们发现假冷蕨属与蹄盖蕨属亲缘关系较近,进化地位较高,冷蕨属的进化地位相对原始。  相似文献   

5.
张小卉 《植物研究》2011,(3):277-283
运用扫描电子显微镜法(SEM)对木通科(Lardizabalaceae)4属植物茎的次生木质部导管分子进行观察,结果表明:(1)端壁均具有单穿孔板;(2)串果藤属的导管分子具有丰富的穿孔板类型,包括网状、梯状、单穿孔及过渡类型,穿孔具有网状、丝状、片状的纹孔膜残余;大血藤属和八月瓜属的导管分子具有相似的特征,端壁具有梯状、单穿孔及梯—单混合穿孔板;野木瓜属只具有单穿孔板;(3)侧壁上具有穿孔板,多为梯状或梯—网混合类型(除了野木瓜属);(4)野木瓜属的导管侧壁具有独特的螺旋状加厚。各属导管的不同特征为木通科的系统演化提供比较可靠的依据。  相似文献   

6.
类叶升麻(毛茛科)次生木质部管状分子的研究   总被引:2,自引:2,他引:0  
利用扫描电子显微镜对毛良科类叶升麻(Artaea asiaticaHara)根和根状茎次生木质部中的管状分子进行观察.发观其管状分子类型丰富,主要有:管胞、管胞状导管、纤维导管和典型的导管分子,其中管胞、管胞状导管和纤维导管为在该类群中首次报道;在导管分子中.存在着梯状穿孔板、网状穿孔板、混合型穿孔板和单穿孔板.其中网状穿孔板和混合型穿孔板为在陔类群中的首次报道;对其导管分子上的侧壁穿孔板、多穿孔板和纹孔膜残余也进行了描述。根据类叶升麻次生木质部中多变的管状分子类型,认为以往积累的有关毛茛科植物管状分子类型及导管穿孔板类型是小个面的,因此以该性状为参考作出的有关某一个类群的原始性和进化性的推论也是不可靠的。同时探讨了不同类型管状分子作类叶升麻不同器官的分布与其生理功能和生态环境的关系,同时将该植物作为毛莨科的代表类群.与其它基邴类群植物导管分子进行了比较。  相似文献   

7.
本文报道连香树木材解剖和扫描电镜研究结果,连香树木材特征较为原始,具导管和管胞,导管端壁斜、梯状穿孔板、具有超出穿孔板的三生螺旋加厚,管胞为原始的梯纹管胞,木纤维壁上具裂隙状纹孔,木薄壁组织离管型,星散状分布,木射线异型。  相似文献   

8.
猫儿屎导管分子穿孔板新类型的发现   总被引:2,自引:0,他引:2  
运用扫描电镜(SEM)对木通科(Lardizabalaceae)猫儿屎属(Decaisnea Hook.f. & Thoms.)植物猫儿屎[Decaisnea insignis (Griff.) Hook.f.et Thoms.]茎的次生木质部导管分子进行观察,以期为该属的系统演化提供依据.结果表明,猫儿屎的导管分子具有多个穿孔板,端壁穿孔板除了梯状以外,还有梯-网、梯-网-单、梯-单混合穿孔板等类型;侧壁穿孔板包括梯状、网状、梯-网混合状穿孔板;穿孔板上纹孔膜的残余有丝状、网状和片状.同时对导管分子的长度、宽度及端壁倾斜度等特征进行统计,并讨论了木通科各类群的穿孔板特征.  相似文献   

9.
鳞毛蕨科植物的系统发育: 叶绿体rbcL序列的证据   总被引:10,自引:1,他引:9  
运用MEGA2和MrBayes 3.0b4软件包对105种鳞毛蕨类及近缘植物(其中新测定36种)的叶绿体DNA rbcL基因序列进行系统发育分析, 探讨了其主要分类群(属级水平)的系统演化关系。用最大简约法、邻接法和贝叶斯分析方法构建的系统树基本一致, 结果显示: (1)秦仁昌系统所定义的鳞毛蕨科Dryopteridaceae, 除了拟贯众属Cyclopeltis外, 均包含在两个单系群之中, 支持鳞毛蕨族Dryopterideae和耳蕨族Polysticheae的成立; 但是鳞毛蕨族还包含秦仁昌系统所定义的球盖蕨科Peranemaceae和三叉蕨科Tectariaceae肋毛蕨属Ctenitis的部分种类; 耳蕨族还包含产于美洲的Phanerophlebia属和Polystichopsis属; 确认石盖蕨属Lithostegia属鳞毛蕨族的成员, 且与复叶耳蕨属Arachniodes具有较近的亲缘关系。(2)拟贯众属与所分析的其他任何鳞毛蕨类植物的关系都比较疏远, 单独为一支。(3)秦仁昌系统所定义的球盖蕨科与肉刺蕨属Nothoperanema聚成一个分支, 属于鳞毛蕨族的成员。(4)鳞毛蕨属Dryopteris为多系类群, 耳蕨属Polystichum和贯众属Cyrtomium均为并系类群。(5)黔蕨属Phanerophlebiopsis、毛枝蕨属Leptorumohra和石盖蕨属与复叶耳蕨属构成一支; 柳叶蕨属Cyrtogonellum与Polystichum属和Cyrtomium属的部分种类聚成一支; 肉刺蕨属与球盖蕨科及鳞毛蕨属的部分种类聚成一支。对鳞毛蕨科的系统关系、球盖蕨科与鳞毛蕨科的系统关系、肋毛蕨属与鳞毛蕨科的系统关系以及中国或亚洲特有属(拟贯众属、肉刺蕨属、黔蕨属、毛枝蕨属、石盖蕨属和柳叶蕨属)的系统位置进行了讨论。  相似文献   

10.
利用扫描电子显微镜对东亚特有植物黄三七(Souliea vaginata(Maxim.) Franch.)茎的次生木质部离析材料进行了观察,结果表明,黄三七茎次生木质部中的导管分子端壁上具网状穿孔板(麻黄式穿孔板)、梯状穿孔板、网状-梯状混合穿孔板、网状-梯状-单穿孔混合型穿孔板、梯状-单穿孔混合型穿孔板及单穿孔板,同时也观察到了端壁多穿孔板和侧壁穿孔板,并对不同类型穿孔板中纹孔膜的残留也进行了观察。其中,网状穿孔板、各种过渡类型的穿孔板均为毛茛科植物中首次报道。根据观察结果,对导管分子穿孔板的演化及黄三七属植物的系统位置进行了分析。  相似文献   

11.
12.
Hong-Fang Li  Shu-Miaw Chaw 《Flora》2011,206(6):595-600
For almost 150 years, the two monotypic genera Trochodendron and Tetracentron (Trochodendraceae) have been considered to share an unusual and primitive feature in angiosperms - the lack of vessels in their wood. Therefore, they have been classified in a basal position in the angiosperms. Our observations by light microscopy, low-vacuum environmental scanning electron microscopy (ESEM) and high-vacuum scanning electron microscopy (SEM) both in fresh and FAA-fixed materials consistently showed the presence of tracheary elements differentiated into two types in both genera. In Trochodendron, the tracheary elements can be divided into perforate vessel elements and imperforate fiber-tracheids and tracheids. The vessel elements show end and lateral walls. The pits on the end walls are elongate- broadened and do not have membranes or only a few remnants of them forming the perforation plates. The fiber-tracheids show crossfield pit pairs and sharp ends, and the tracheids show bordered pits. In Tetracentron, the tracheary elements comprise vessel elements and fibers. The vessel elements are similar to those of Trochodendron, whereas the fibers have no crossfield pit pairs but, rather, elliptical pits and sharp ends. Thus, both Trochodendron and Tetracentron are vessel bearing rather than vesselless, although their vessel elements are primitive.  相似文献   

13.
慈姑导管仅在根中出现。根的后生木质部中央导管由顶端平截、单穿孔的网纹导管分子连接组成;周围较小的导管分子和管胞有从梯纹管胞向导管分子演化的各种过渡类型;有一至多个梯形穿孔或单穿孔发生在导管分子的端壁或侧壁,并有分枝型导管分子存在,特别在根与主茎连接处尤为明显。管胞亦有分枝与不分枝的类型。  相似文献   

14.
Scanning electron microscopy (SEM) of tracheary elements of roots of five species from four genera of Marattiaceae and of the rhizome of one species revealed vessel elements present in all. The secondary wall framework of perforation plates is the same as that of lateral wall pitting for vessel elements in all species. Thus, no specialization is present in perforation plates of Marattiaceae compared to the simplified morphology of perforation plates of some leptosporangiate ferns (e.g., Dryopteridaceae, Polypodiaceae, and Pteridaceae). The difference between lateral wall pitting and perforation plates in tracheary elements of Marattiaceae cannot be seen by light microscopy (in which pit membranes are transparent), but is evident with SEM. Diversity in structure of perforation plates (especially the alternation of wide and narrow perforations within a plate) and presence of web-like pit membrane remnants are evident. Vessels are widespread in both leptosporangiate and eusporangiate ferns, although specialization in perforation plates (e.g., bars few and more widely spaced in lateral wall pitting of a given vessel element) is to be expected only in ferns of habitats with marked fluctuation in water availability. Vessels of Marattiaceae lack such specializations and are thus are correlated with the mesic habitats characteristic for the family.  相似文献   

15.
We have studied macerated xylem of ferns, supplemented by sections, by means of scanning electron microscopy (SEM) in a series of 20 papers, the results of which are summarized and interpreted here. Studies were based mostly on macerations, but also on some sections; these methods should be supplemented by other methods to confirm or modify the findings presented. Guidelines are cited for our interpretations of features of pit membranes. Fern xylem offers many distinctive features: (1) presence of numerous vessels and various numbers of tracheids in most species; (2) presence of vessels in both roots and rhizomes in virtually all species; (3) presence of specialized end walls in vessels of only a few species; (4) multiple end-wall perforation plates in numerous species; (5) lateral-wall perforation plates in numerous species; (6) porose pit membranes associated with perforation plates in all species; and (7) pit dimorphism, yielding wide membrane-free perforations alternating with extremely narrow pits. Multiple end wall perforation plates and lateral wall perforation plates are associated with the packing of tracheary elements in fascicles in ferns: facets of tips of elements contact numerous facets of adjacent elements; all such contacts are potential sites for conduction by means of perforations. This packing differs from that in primary xylem of dicotyledons and monocotyledons. Porosities in pit membranes represent a way of interconnecting vessel elements within a rhizome or root. In addition, these porosities can interconnect rhizome vessel elements with those of roots, a feature of importance because roots are adventitious in ferns as opposed to those of vascular plants with taproots. Fully-formed or incipient (small-to-medium sized porosities in pit membranes) perforation plates are widespread in ferns. These are believed to represent (1) ease of lysis of pit membranes via pectinase and cellulase; (2) numerous potential sites for perforation plate formation because of fasciculate packing of tracheary elements; (3) evolution of ferns over a long period of time, so that lysis pathways have had time to form; (4) lack of disadvantage in perforation plate presence, regardless of whether habitat moisture fluctuates markedly or little, because ferns likely have maintaining integrity of water columns that override the embolism-confining advantage of tracheids. Although all ferns share some common features, the diversity in xylem anatomy discovered thus far in ferns suggests that much remains to be learned.  相似文献   

16.
Sarcandra is the only genus of Chloranthaceae hitherto thought to be vesselless. Study of liquid-preserved material of S. glabra revealed that in root secondary xylem some tracheary elements are wider in diameter and have markedly scalariform end walls combined with circular pits on lateral walls. Examination of these wider tracheary elements with scanning electron microscope (SEM) demonstrated various degrees of pit membrane absence in the end walls. Commonly a few threadlike fibrils traverse the pits (perforations); these as well as intact nature of pit membranes in pits at ends of some perforation plates are evidence that lack of pit membranes does not result from damage during processing. Some perforations lack any remnants of pit membranes. Although perforation plates and therefore vessels are present in Sarcandra roots, no perforations were observed in tracheary elements of stems or lignotubers. Further, stem tracheids do not have the prominently scalariform end walls that the vessel elements in roots do. Presence of vessels in Sarcandra removes at least one (probably several) hypothetical events of vessel origin that must be postulated to account for known patterns of vessel distribution in angiosperms, assuming that they are primitively vesselless. Seven (perhaps fewer) vessel origin events in angiosperms could account for these patterns; two of those events (Nelumbo and monocotyledons) are different from the others in nature. Widely accepted data on trends of vessel specialization in woody dicotyledons yield an unappreciated implication: vessel specialization has happened in a highly polyphyletic manner in dicotyledons, and therefore multiple vessel origins represent a logical extension backward in time. If a group of vesselless dictyoledons ancestral to other angiosperms existed, they can be hypothesized to have had a relatively homogeneous floral plan now that Sarcandra-like plants no longer need be imagined within that group. Sarcandra and other Chloranthaceae show that the borderline between vessel absence and presence is less sharp than generally appreciated.  相似文献   

17.
SEM studies of tracheary elements of subfamily Orontioideae (Lysichiton, Orontium, Symplocarpus) of Araceae show unexpected features. The plants are entirely vesselless. There are small pores in pit membranes of end walls of tracheids in roots and stems, but pit membranes remain intact. End wall pit membranes of stems have a coarse fibrillar texture, somewhat reminiscent of (but different from) those of Nymphaeaceae and Cabombaceae. Acoraceae, which are also vesselless, represent the first branch of the monocot tree, according to phylogenies, and the orontioids form the next branch. Vessellessness is therefore a potentially plesiomorphic feature in monocots, but it may also be related to the highly mesic habitats of Acoraceae and the orontioids. Various other non‐submersed monocots have vesselless or near‐vesselless xylem. Sectioned xylem of Orontioideae is also very suggestive of stages in the development of the pit membranes of both end walls and lateral walls of tracheids: open networks of cellulosic fibrils apparently precede the addition of denser fibrillar meshes, key information in assessing to what extent perforations in scalariform perforation plates of vascular plants may stop formation at the open network stage, and to what extent a thicker pit membrane experiences lysis and disintegration as the vessel element matures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号