首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Heterostyly functions as an outcrossing mechanism facilitating accurate pollen transfer from anthers to stigmas of particular heights as a result of the behavior of specialist pollinators. However, heterostylous plants are also visited by generalist pollinators, which may affect the plant–pollinator mutualism. Eichhornia crassipes is a tristylous invasive species, with only the mid- and long-styled morphs (M and L) found in China. We recorded flower-visiting insects in Zhuhai, Zhongshan and Nanning in South China. We hand-pollinated the two morphs to determine their compatibility. In addition, by allowing controlled insect pollination in artificial isoplethically monomorphic and bimorphic populations, we undertook a detailed analysis of pollen deposition between the floral morphs, and fruit and seed set. Ranked by relative abundance, the flower-visiting insects were: Apis mellifera, A. cerana, Lasioglossum sp. and Eristalis arvorum. Hand pollination showed that both the M and L morphs were self-compatible, but the former was probably more so than the latter. Intra-morph pollen transfer by A. mellifera within a population was significantly greater than legitimate pollen transfer between populations, suggesting that the pollen exchange between populations was limited. Seed set of the L morph was significantly greater than that of the M morph in monomorphic populations, indicating intra-morph pollen deposition in the former was higher than in the latter. The results showed that A. mellifera was the major pollinator in South China and able to pollinate E. crassipes legitimately and to promote its fruit and seed set, even though high levels of intra-morph pollination occurred.  相似文献   

2.
In animal-pollinated plants, two factors affecting pollen flow and seed production are changes in floral display and the availability of compatible mates. Changes in floral display may affect the number of pollinator visits and the availability of compatible mates will affect the probability of legitimate pollination and seed production. Distyly is a floral polymorphism where long-styled (pin) and short-styled (thrum) floral morphs occur among different individuals. Distylous plants frequently exhibit self and intra-morph incompatibility. Therefore changes in morph abundance directly affect the arrival of compatible pollen to the stigmas. Floral morph by itself may also affect female reproductive success because floral morphs may display differences in seed production. We explored the effects of floral display, availability of neighboring compatible mates, and floral morph on seed production in the distylous herb ARCYTOPHYLLUM LAVARUM. We found that floral display does not affect the mean number of seeds produced per flower. There is also no effect of the proportion of neighboring legitimate pollen donors on seed production in pin or thrum flowers. However, floral morphs differed in their female reproductive success and the thrum morph produced more seeds. Hand pollination experiments suggest that differences in seed production between morphs are the result of pollen limitation. Future research will elucidate if the higher seed production in thrum flowers is a consequence of higher availability of pollen donors in the population, or higher efficiency of the pin morph as pollen donor.  相似文献   

3.
异型花柱是一种受遗传因素控制的花型多态性现象,其适应意义在于提高不同花型间传粉精确性,从而促进异交。为检验二型花柱植物滇丁香(Luculia pinceana)是如何促进异交并确定有效传粉者的类型,实验统计自然种群中长、短柱型的植株数量,测量花部特征,统计自然种群植株柱头上的型间花粉落置的数量和比例,比较型内、型间花粉的萌发率以及花粉管长度,比较不同人工授粉处理结实情况,观察传粉昆虫类型并测量虫体特征。结果表明(1)滇丁香自然居群中长、短柱型植株的数量没有显著性差异。长柱型的筒深、筒直径、开口直径、雄蕊长和柱头长均显著小于短柱型,而长柱型的叶片长和宽、雌蕊长、花药体积、花粉粒体积、柱头厚均显著大于短柱型。(2)自然种群植株柱头上型间花粉所占比例显著低于型内花粉的比例。(3)型间授粉的花粉萌发率以及花粉管长度均大于型内授粉和混合授粉。(4)型间授粉的结实率显著高于型内授粉的结实率,型内授粉具有一定的结实。(5)夜行性长喙条背天蛾(Cechenena lineosa)是滇丁香的有效传粉者,其吻长和滇丁香的花筒深相适应。本研究表明二型花柱植物滇丁香主要是通过与其花部特征相匹配的长喙天蛾实现有效的传粉,通过促进型间花粉的萌发和花粉管的伸长而有利于型间授粉结实,提高传粉精确性。  相似文献   

4.
Floral orientation may affect pollinator attraction and pollination effectiveness, and its influences may differ among pollinator species. We, therefore, hypothesized that, for plant species with a generalized pollination system, changes in floral orientation would affect the composition of pollinators and their relative contribution to pollination. Geranium refractum, an alpine plant with downward floral orientation was used in this study. We created upward-facing flowers by altering the flower angle. We compared the pollinator diversity, pollination effectiveness, and pollinator importance, as well as female reproductive success between flowers with downward- and upward-facing orientation. Results indicated that the upward-facing flowers were visited by a wider spectrum of pollinators (classified into functional groups), with higher pollinator diversity than natural flowers. Moreover, due to influences on visitation number and pollen removal, the pollinator importance exhibited by the main pollinator groups differed between flower types. Compared with natural flowers, the pollination contribution of principal pollinators (i.e., bumblebees) decreased in upward-facing flowers and other infrequent pollinators, such as solitary bees and muscoid flies, removed more pollen. Consequently, stigmatic pollen loads were lower in upward- than in downward-facing flowers. These findings reveal that floral orientation may affect the level of generalization of a pollination system and the relative importance of diverse pollinators. In this species, the natural downward-facing floral orientation may increase pollen transfer by effective pollinators and reduce interference by inferior pollinators.  相似文献   

5.
异型花柱是受遗传控制的花柱多态现象, 被达尔文认为是植物通过在传粉者体表不同部位滞落花粉以促进型间花粉准确传递的一种适应。该现象虽已受到广泛关注, 但在一些花型变异较大且不稳定的传粉系统中, 不同传粉者对各花型繁殖所产生的影响仍知之甚少。该研究以分布于新疆天山南坡的一个有同长花柱共存的异型花柱植物喀什补血草(Limonium kaschgaricum)种群为研究对象, 对其花型构成及频率、传粉者及花粉转移效率等进行了调查分析。结果表明: 1)种群中除了存在雌/雄蕊长度交互对应的长(L)/短(S)花柱型花外, 还有雌/雄蕊同长的花(H型), 且各花型花的花冠口直径、花冠筒长及花粉量等参数间无差异, 但花粉纹饰和柱头乳突细胞形态具二型性。其中, H型花的花粉和柱头形态与L型花(或S型花)的一致。2)花型内和自花授粉均不亲和; 型间授粉时, 花粉和柱头形态不同的花型间亲和, 反之不亲和。3)种群内存在长/短吻两类传粉昆虫。在以短吻传粉者为主的盛花初、中期, L和H型花柱头上的异型花粉数均显著高于S型花的, 且L和S型花高位性器官间的异型花粉传递效率高于低位性器官间的; 而在以长吻传粉者为主的盛花后期, L和S型花的柱头间异型花粉数无显著差异, 且高/低位性器官间具有相同的异型花粉转移效率; 与传粉者出现时期相对应的、在花期不同阶段开放花的结实率也明显不同。4)长/短吻昆虫具明显不同的传粉功能, 短吻昆虫只能对L和H型花进行有效传粉, 且访花频率和型间花粉转移效率较低, 为低效传粉者; 而长吻昆虫对各花型均能有效传粉, 具高的访花频率和型间花粉转移效率, 为高效传粉者。因为长吻昆虫的阶段性出现所形成的不稳定传粉系统, 使低效的短吻昆虫可能会成为种群中花型变异的驱动力, 并使S型花受到更大的选择压力。H型花克服了柱头缩入的弊端, 可能会成为不稳定传粉系统下的一个替代花型而持续存在。  相似文献   

6.
Habitat alteration can deteriorate plant-pollinator interactions and thereby increase the risk of population extinction. As part of a larger study on the effects of changes in land use on fen grassland vegetation, factors influencing the seed set of a short-lived, endangered wetland plant,Pedicularis palustris, were studied. We conducted field pollination experiments in one large and one small population. To investigate the effect of pollen source on seed set, individual flowers of caged plants were left unpollinated or were pollinated with pollen from the same flower, the same population or another population. To study pollen limitation and flower display, whole plants were subjected to pollinator exclosure, hand pollination or natural pollination. Self-compatibility was high, but differed between populations (61% and 97% of seed set after cross-pollination within populations). Cross-pollination between populations did not significantly alter seed number per capsule. Pollinator exclosure resulted in a very low seed set (<15% of natural seed set), despite high self-compatibility. The most likely explanations for high self-compatibility in combination with low autofertility are geitonogamy as reproductive assurance, selective neutrality of self-compatibility and phylogenetic constraints. Because of low autofertility, the seed set inP. palustris depends on pollinators. In the study populations, natural pollination was clearly sufficient for maximum seed production per plant, but seed set per capsule was significantly pollen-limited in the smaller population. Plants in this population also had a higher maximum percentage of simultaneously open flowers than those of the large population (31% vs. 13%), while flower longevity was generally extended without pollination. It is concluded thatP. palustris may influence pollinator behaviour and therefore the risk of pollen limitation by flower display.P. palustris showed a flexible reaction to differing pollination regimes without losses in overall seed set in the study populations.  相似文献   

7.
Plant populations vary in density both naturally and as a consequence of anthropogenic impacts. Density in turn can influence pollination by animals. For example, plants in dense populations might enjoy more frequent visitation if pollinators forage most efficiently in such populations. We explored effects of plant density on pollination and seed set in the larkspur Delphinium nuttallianum and monkshood Aconitum columbianum. At our site in the Colorado Rocky Mountains, flowers of D. nuttallianum are pollinated primarily by queen bumble bees, solitary bees, and hummingbirds, whereas those of A. columbianum are pollinated primarily by queen and worker bumble bees. We found that the quantity of pollination service to both species (pollinator visitation rate and pollen deposition) was at best weakly related to density. In contrast, seed set declined by approximately one-third in sparse populations relative to nearby dense populations. This decline may stem from the receipt of low-quality pollen, for example, inbred pollen. Alternatively, sparsity may indicate poor environmental conditions that lower seed set for reasons unrelated to pollination. Our results demonstrate the value of simultaneously exploring pollinator behavior, pollen receipt, and seed set in attempting to understand how the population context influences plant reproductive success.  相似文献   

8.
Heterodichogamy, including protandrous (PA) and protogynous (PG) morphs, is considered a mechanism to avoid selfing and promote disassortative mating. Although morphotypes are usually present in a population at a 1:1 ratio, this ratio may be biased in a low-density population by demographic stochasticity, resulting in a deficiency of mating partners in a neighbourhood dominated by a single morph. In this study, we determined morph ratio of the heterodichogamous tree species, Juglans ailantifolia by observing flowering in a low-density population during 2?years. The morph ratio (PG: PA) of 2.56:1 deviated significantly deviated from 1:1. We genotyped 59 reproductive trees and 405 offspring derived from eight PG-mother and three PA-mother trees with 11 microsatellite markers. Paternity analysis was conducted to clarify the effects of mother morph on the proportion of intra-morph mating. Then, we applied the Bayesian mixed effect mating model (MEMM) to clarify mating system, pollen dispersal, and individual fecundity of PG- and PA-mother trees. We found that the selfing rate and the distance of pollen dispersal were not clearly different between PG- and PA-mother trees. In contrast, the proportion of intra-morph mating was higher in the majority-morph (PG) mother trees than in the minor-morph (PA) mother trees. The MEMM indicated that mean dispersal distance of PG-mother trees was larger than that of PA-mother trees with large variance. Furthermore, we observed individuals with unusually high intra-morph fecundity for majority-morph (PG) trees. These findings indicate that intra-morph mating may occur when majority-morph mothers suffer a deficiency of potential inter-morph mates.  相似文献   

9.
1.  Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness.
2.  A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation.
3.  We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation.
4.  We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations.
5.   Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.  相似文献   

10.
Assessing the relative contributions to seed sets of each of a plant species' floral visitors provides an indication of the relative influence of these visitors on the plants' reproductive success. In this study we compared the seed set of the gynodioecious Knautia arvensis (Dipsacaceae) in 49 local plant populations in two regions of southern Sweden. We measured the seed set for hermaphroditic and female plant individuals. In both plant sexes and both regions, the seed set was positively related to the abundance of Apidae. The seed set was negatively related to the abundance of pollen-foraging solitary bees (Halictidae, Megachilidae) and beetles (Oedemeridae, Malachidae). The seed set was not related to plant population size, plant density or female frequency. Our results confirm that pollination success in generalised plant–pollinator systems varies between pollinator groups. Flower-visitors foraging for pollen might not contribute to increased pollination success in generalised pollination systems.  相似文献   

11.
Entomophilous and obligate out-crossing non-native plants need to become well integrated in the resident plant–pollinator network to set seeds and become established. However, it is largely unknown how pollination patterns differ between native ranges and those where plants have been introduced.We compared the identity, abundance and visitation rates of pollinators, insect pollen loads, pollen deposition on stigmas, and fruit and seed sets of Hedysarum coronarium, an entomophilous short lived N-fixing perennial, in populations from native and introduced ranges in Spain (South of mainland Spain and Menorca Island, respectively).In both areas, Hedysarum was visited by a similar number of species, mainly hymenopterans; seven species were common between native and introduced areas. However, pollinator richness, abundance, and visits per flower were greater in the native than in the introduced range, as were fruit and seed sets. Hedysarum pollen loads on stigmas and on Apis mellifera, the most common pollinator, did not differ between areas. Lower abundance of pollinators might be causing lower visitation rates, and to some extent reducing Hedysarum fruit and seed sets in the introduced area.Our biogeographical approach shows that integration of a non-native plant in a resident pollinator network does not prevent pollen limitation in the introduced area. Therefore, despite being necessary, pollination mutualistic relationships might not be the key for non-native plant establishment success in the introduced area.  相似文献   

12.
Variation in flowering plant density can have conflicting effects on pollination and seed production. Dense flower patches may attract more pollinators, but flowers in those patches may also compete for pollinator visits and abiotic resources. We examined how natural and experimental conspecific flowering plant density affected pollen receipt and seed production in a protandrous, bumble bee-pollinated wildflower, Delphinium barbeyi (Ranunculaceae). We also compared floral sex ratios, pollinator visitation rates, and pollen limitation of seed set from early to late in the season to determine whether these factors mirrored seasonal changes in pollen receipt and seed production. Pollen receipt increased with natural flowering plant density, while seed production increased across lower densities and decreased across higher flower densities. Experimental manipulation of flowering plant density did not affect pollinator visitation rate, pollen receipt, or seed production. Although pollinator visitation rate increased 10-fold from early to late in the season, pollen receipt and seed set decreased over the season. Seed set was never pollen-limited. Thus, despite widespread effects of flowering plant density on plant reproduction in other species, the effects of conspecific flowering plant density on D. barbeyi pollination and seed production are minor.  相似文献   

13.
Heterodichogamy is defined as the presence of two flower morphs that exhibit the male and female functions at different times among individuals within a population. Heterodichogamy is regarded as an adaptation to promote outcrossing through enhanced inter-morph mating, together with a 1:1 morph ratio. However, in highly fragmented populations, the morph ratio may be more likely to be biased by stochastic events. In such a situation, individuals of a minority morph within a population are expected to have higher reproductive success than those of a majority morph, which may suffer from pollen shortages of the minority morph. In this paper, we evaluated mating patterns and male reproductive success in a highly fragmented population of Machilus thunbergii, a putative heterodichogamous evergreen laurel tree. Results of paternity analysis indicated that the selfing rate was not clearly different between the two morphs. In contrast, the proportion of intra-morph mating was higher in the majority-morph (MM) mother trees than in the minority-morph (MF) mother trees. Bayesian estimated male reproductive success indicated that male reproductive success was higher in minority-morph (MF) than in majority-morph (MM) mother trees. These findings indicate that (1) the majority morph mothers, suffering a shortage of the opposite morph pollen, could partly compensate for the reduced reproductive success by intra-morph mating rather than by selfing, and (2) negative-frequency dependent selection may be involved in the maintenance of the two morphs.  相似文献   

14.
Habitat fragmentation can have severe effects on plant pollinator interactions, for example changing the foraging behaviour of pollinators. To date, the impact of plant population size on pollen collection by pollinators has not yet been investigated. From 2008 to 2010, we monitored nine bumble bee species (Bombus campestris, Bombus hortorum s.l., Bombus hypnorum, Bombus lapidarius, Bombus pascuorum, Bombus pratorum, Bombus soroensis, Bombus terrestris s.l., Bombus vestalis s.l.) on Vaccinium uliginosum (Ericaceae) in up to nine populations in Belgium ranging in size from 80 m2 to over 3.1 ha. Bumble bee abundance declined with decreasing plant population size, and especially the proportion of individuals of large bumble bee species diminished in smaller populations. The most remarkable and novel observation was that bumble bees seemed to switch foraging behaviour according to population size: while they collected both pollen and nectar in large populations, they largely neglected pollen collection in small populations. This pattern was due to large bumble bee species, which seem thus to be more likely to suffer from pollen shortages in smaller habitat fragments. Comparing pollen loads of bumble bees we found that fidelity to V. uliginosum pollen did not depend on plant population size but rather on the extent shrub cover and/or openness of the site. Bumble bees collected pollen only from three plant species (V. uliginosum, Sorbus aucuparia and Cytisus scoparius). We also did not discover any pollination limitation of V. uliginosum in small populations. We conclude that habitat fragmentation might not immediately threaten the pollination of V. uliginosum, nevertheless, it provides important nectar and pollen resources for bumble bees and declining populations of this plant could have negative effects for its pollinators. The finding that large bumble bee species abandon pollen collection when plant populations become small is of interest when considering plant and bumble bee conservation.  相似文献   

15.
Two subspecies of Nigella degenii (Ranunculaceae) possess a dimorphism in pollen colour and vary extensively in frequency of the two morphs in natural populations. Here we investigate the role of selection on pollen colour during the pollination phase in the two subspecies and its potential contribution to the maintenance of this colour variation. In a combination of common garden experiments and field observations, we obtained data on pollinator visitation rates and explored the effect of pollen colour on fertilisation success and siring ability under conditions of low vs. high pollen competition. In experimental gardens, naïve pollinators responded differently to plants with different pollen colour, but the favoured morph varied between dates and locations, and colour morphs were not visited in a frequency-dependent manner. Donor plants with dark pollen had a reproductive advantage (higher seed set) in single-donor pollinations, but the realised siring ability (measured by progeny morph ratio) was highly variable between different two-donor crosses with no general bias towards the light or dark morph. Therefore, although the dark pollen type appears to have a general selective advantage in terms of fertilisation success, our data are also consistent with a scenario involving the maintenance of both colour morphs, particularly under conditions of high pollen competition, a variable genetic background and/or spatial or temporal variation in the pollinator fauna.  相似文献   

16.
Restoration is used to conserve biodiversity; however, it is unclear to what extent restoration impacts ecosystem functions. Pollination is an ecosystem function that is critical to plant reproduction and thus restoration success. Few studies have assessed whether pollination is restored within restoration areas themselves. Plant–animal interactions may be affected by factors beyond the scale of the restoration. For example, surrounding landscape context may influence pollinator abundance and consequently the amount of pollen deposited. Decreased pollen receipt might then limit seed set. We hypothesized that in restorations surrounded by more agriculture, pollinator‐dependent forbs would experience greater pollen limitation. This would likely be due to declines in pollinator abundance within the restorations with an increase in surrounding agriculture. We deployed potted Chamaecrista fasciculata (Fabaceae), an obligatorily bee‐pollinated forb, and sampled bee communities in restored prairies in Minnesota, U.S.A. We measured pollen limitation by comparing seed set among open and supplementally pollinated plants. We also sampled native bees in seven of the eight sites. We tested for a relationship between proportion row crop agriculture (corn and soy) surrounding a restoration and pollen limitation, as well as an effect of agriculture on bee abundance. We did not find evidence that increasing proportion of surrounding agriculture negatively affected pollen limitation or bee abundance. Our results indicate that greater surrounding agriculture may not influence pollination of C. fasciculata through declines in pollinator availability, and suggest for some plants that landscape context might not limit pollination in restorations.  相似文献   

17.
The strength of interactions between plants for pollination depends on the abundance of plants and pollinators in the community. The abundance of pollinators may influence plant associations and densities at which individual fitness is maximized. Reduced pollinator visitation may therefore affect the way plant species interact for pollination. We experimentally reduced pollinator visitation to six pollinator‐dependent species (three from an alpine and three from a lowland community in Norway) to study how interactions for pollination were modified by reduced pollinator availability. We related flower visitation, pollen limitation and seed set to density of conspecifics and pollinator‐sharing heterospecifics inside 30 dome‐shaped cages partially covered with fishnet (experimental plots) and in 30 control plots. We expected to find stronger interactions between plants in experimental compared to controls plots. The experiment modified plant–plant interactions for pollination in all the six species; although for two of them neighbourhood interactions did not affect seed set. The pollen limitation and seed set data showed that reduction of pollinator visits most frequently resulted in novel and/or stronger interactions between plants in the experimental plots that did not occur in the controls. Although the responses were species‐specific, there was a tendency for increasing facilitative interactions with conspecific neighbours in experimental plots where pollinator availability was reduced. Heterospecifics only influenced pollination and fecundity in species from the alpine community and in the experimental plots, where they competed with the focal species for pollination. The patterns observed for visitation rates differed from those for fecundity, with more significant interactions between plants in the controls in both communities. This study warns against the exclusive use of visitation data to interpret plant–plant interactions for pollination, and helps to understand how plant aggregations may buffer or intensify the effects of a pollinator loss on plant fitness.  相似文献   

18.
Gynodioecy is a dimorphic breeding system in which female individuals coexist with hermaphroditic individuals in the same population. Females only contribute to the next generation via ovules, and many studies have shown that they are usually less attractive than hermaphrodites to pollinators. Several mechanisms have been proposed to explain how females manage to persist in populations despite these disadvantages. The ‘resource reallocation hypothesis’ (RRH) states that females channel resources not invested in pollen production and floral advertisement towards the production of more and/or larger seeds. We investigated pollination patterns and tested the RRH in a population of Thymus vulgaris. We measured flower display, flower size, nectar production, visitation rates, pollinator constancy and flower lifespan in the two morphs. In addition, we measured experimentally the effects of pollen and resource addition on female reproductive success (fruit set, seed set, seed weight) of the two morphs. Despite lower investment in floral advertisement, female individuals were no less attractive to pollinators than hermaphrodites on a per flower basis. Other measures of pollinator behaviour (number of flowers visited per plant, morph preference and morph constancy) also showed that pollinators did not discriminate against female flowers. In addition, stigma receptivity was longer in female flowers. Accordingly, and contrary to most studies on gynodioecious species, reproductive success of females was not pollen limited. Instead, seed production was pollen limited in hermaphrodites, suggesting low levels of cross‐pollination in hermaphrodites. Seed production was resource limited in hermaphrodites, but not in females, thus providing support for the RRH. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 395–408.  相似文献   

19.
Variation in flower color, particularly polymorphism, in which two or more different flower color phenotypes occur in the same population or species, may be affected or maintained by mechanisms that depend on pollinators. Furthermore, variation in floral display may affect pollinator response and plant reproductive success through changes in pollinator visitation and availability of compatible pollen. To asses if flower color polymorphism and floral display influences pollinator preferences and movements within and among plants and fitness-related variables we used the self-incompatible species Cosmos bipinnatus Cav. (Asteraceae), a model system with single-locus flower color polymorphism that comprises three morphs: white (recessive homozygous), pink (heterozygous co-dominate), and purple (dominant homozygous) flowers. We measured the preferences of pollinators for each morph and constancy index for each pollinator species, pollination visitation rate, floral traits, and female fitness measures. Flower color morphs differed in floral trait measures and seed production. Pollinators foraged nonrandomly with respect to flower color. The most frequent morph, the pink morph, was the most visited and pollinators exhibited the highest constancy for this morph. Moreover, this morph exhibited the highest female fitness. Pollinators responded strongly to floral display size, while probed more capitulums from plants with large total display sizes, they left a great proportion of them unvisited. Furthermore, total pollinator visitation showed a positive relation with female fitness. Results suggest that although pollinators preferred the heterozygous morph, they alternate indiscriminately among morphs making this polymorphism stable.  相似文献   

20.
Heterostylous self-incompatible plant species are particularly sensitive to habitat fragmentation and to disruption of pollination processes because of the need of intermorph cross-pollination for producing seeds. Heterostyly is characterized by sexual polymorphism through the occurrence of two (distyly) or three (tristyly) morph types that differ in floral traits (style length and anther position). We examined whether the long-styled (pin) and short-styled (thrum) morph types show differences in reproductive components and responses to habitat fragmentation in the distylous, self-incompatible perennial herb Primula veris. We documented reproductive components for pin and thrum individuals and their relationships with population size, plant density and morph ratio (pin frequency), in nine populations from Flanders (northern Belgium) located in fragmented habitats of the intensively used agricultural landscape. Seed abortion increased in small populations as a result of inbreeding depression. Fruit set increased with plant density. Seed set was positively related to pin proportion. Seed set was higher for pin than thrum in small populations, but lower in large populations. Two hypotheses can be considered to explain these morph-specific differences: a pollen transfer asymmetry, and a reproductive advantage for the partially self-compatible pin morph. Morph types appear to respond differently to habitat fragmentation constraints. A floral morph type showing partial self-compatibility may be favored in populations under pollination failure, because it can increase reproductive success and mating opportunities through intramorph crosses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号