首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant mating systems are driven by several pre‐pollination factors, including pollinator availability, mate availability and reproductive traits. We investigated the relative contributions of these factors to pollination and to realized outcrossing rates in the patchily distributed mass‐flowering shrub Rhododendron ferrugineum. We jointly monitored pollen limitation (comparing seed set from intact and pollen‐supplemented flowers), reproductive traits (herkogamy, flower size and autofertility) and mating patterns (progeny array analysis) in 28 natural patches varying in the level of pollinator availability (flower visitation rates) and of mate availability (patch floral display estimated as the total number of inflorescences per patch). Our results showed that patch floral display was the strongest determinant of pollination and of the realized outcrossing rates in this mass‐flowering species. We found an increase in pollen limitation and in outcrossing rates with increasing patch floral display. Reproductive traits were not significantly related to patch floral display, while autofertility was negatively correlated to outcrossing rates. These findings suggest that mate limitation, arising from high flower visitation rates in small plant patches, resulted in low pollen limitation and high selfing rates, while pollinator limitation, arising from low flower visitation rates in large plant patches, resulted in higher pollen limitation and outcrossing rates. Pollinator‐mediated selfing and geitonogamy likely alleviates pollen limitation in the case of reduced mate availability, while reduced pollinator availability (intraspecific competition for pollinator services) may result in the maintenance of high outcrossing rates despite reduced seed production.  相似文献   

2.
Variation in flowering plant density can have conflicting effects on pollination and seed production. Dense flower patches may attract more pollinators, but flowers in those patches may also compete for pollinator visits and abiotic resources. We examined how natural and experimental conspecific flowering plant density affected pollen receipt and seed production in a protandrous, bumble bee-pollinated wildflower, Delphinium barbeyi (Ranunculaceae). We also compared floral sex ratios, pollinator visitation rates, and pollen limitation of seed set from early to late in the season to determine whether these factors mirrored seasonal changes in pollen receipt and seed production. Pollen receipt increased with natural flowering plant density, while seed production increased across lower densities and decreased across higher flower densities. Experimental manipulation of flowering plant density did not affect pollinator visitation rate, pollen receipt, or seed production. Although pollinator visitation rate increased 10-fold from early to late in the season, pollen receipt and seed set decreased over the season. Seed set was never pollen-limited. Thus, despite widespread effects of flowering plant density on plant reproduction in other species, the effects of conspecific flowering plant density on D. barbeyi pollination and seed production are minor.  相似文献   

3.
Fragmentation of natural vegetation creates one of the largest threats to plant–pollinator interactions. Although fragmentation impacts on plant populations have been explored in many, mainly herbaceous, species, the response of wild mass‐flowering species is poorly known. Here, we studied 28 heathland patches dominated by the mass‐flowering shrub Rhododendron ferrugineum, each presenting different R. ferrugineum floral display sizes (total inflorescence number per patch) and patch isolation (median distance to the three nearest patches). We assessed the impacts of these two factors on (i) heathland patch visitor assemblage (considering R. ferrugineum versus surrounding community) and (ii) R. ferrugineum flower visitation rate and pollen transfer limitation (comparing seed set from emasculated to pollen‐supplemented flowers). We found that diversity and abundance of bees visiting R. ferrugineum in heathland patches significantly decreased with decreasing R. ferrugineum floral display, while overall visitor density per patch and flower visitation rate increased. Moreover, a decrease in massive floral display and increase in patch isolation resulted in reduced visitor density in the surrounding community. Even in patches with few individuals, we found disproportionate visitor abundance in R. ferrugineum compared to the surrounding community. Finally, pollen transfer limitation in R. ferrugineum was neither affected by visitation rate nor by patch attributes. By disproportionally attracting pollinators from co‐flowering species, and probably promoting geitonogamous pollen transfer, the mass‐flowering trait appears adequate to compensate, in terms of conspecific pollen transfer, for the decrease in visitor diversity and abundance and in mate availability, which usually result from population fragmentation.  相似文献   

4.
The strength of interactions between plants for pollination depends on the abundance of plants and pollinators in the community. The abundance of pollinators may influence plant associations and densities at which individual fitness is maximized. Reduced pollinator visitation may therefore affect the way plant species interact for pollination. We experimentally reduced pollinator visitation to six pollinator‐dependent species (three from an alpine and three from a lowland community in Norway) to study how interactions for pollination were modified by reduced pollinator availability. We related flower visitation, pollen limitation and seed set to density of conspecifics and pollinator‐sharing heterospecifics inside 30 dome‐shaped cages partially covered with fishnet (experimental plots) and in 30 control plots. We expected to find stronger interactions between plants in experimental compared to controls plots. The experiment modified plant–plant interactions for pollination in all the six species; although for two of them neighbourhood interactions did not affect seed set. The pollen limitation and seed set data showed that reduction of pollinator visits most frequently resulted in novel and/or stronger interactions between plants in the experimental plots that did not occur in the controls. Although the responses were species‐specific, there was a tendency for increasing facilitative interactions with conspecific neighbours in experimental plots where pollinator availability was reduced. Heterospecifics only influenced pollination and fecundity in species from the alpine community and in the experimental plots, where they competed with the focal species for pollination. The patterns observed for visitation rates differed from those for fecundity, with more significant interactions between plants in the controls in both communities. This study warns against the exclusive use of visitation data to interpret plant–plant interactions for pollination, and helps to understand how plant aggregations may buffer or intensify the effects of a pollinator loss on plant fitness.  相似文献   

5.
  • Pollinator guilds may change throughout extended flowering periods, affecting plant reproductive output, especially in seasonal climates. We hypothesised a seasonal shift in pollinator guild and an autumn reduction in pollinator abundance, especially in small and sparse populations.
  • We recorded pollinator identity, abundance and behaviour in relation to flower density from plant to population throughout the extended flowering of Ononis tridentata. We evaluated female reproductive output by recording pollination success and pre‐dispersal seed predation in eight populations of contrasting size and density. Offspring quality was also characterised through seed weight and germination.
  • A diverse guild of insects visited O. tridentata in spring, while only Apis mellifera was observed in autumn. Visitation frequency did not vary seasonally, but the number of flowers per foraging bout was lower, and seeds were heavier and had a higher germination rate in autumn. Plant and neighbourhood flowering display were not related to pollinator visitation frequency or behaviour. However, the rate of fertilised ovules, seed set and autumn flowering display size were positively related to population density.
  • The maintenance of pollination in autumn enhances the reproductive performance of O. tridentata due to higher quality of autumn seed, and to a large reduction in seed predator pressure. We also suggest that observed changes in pollinator behaviour could be one of the processes behind seasonal variation in seed performance, since geitonogamous crosses were less likely to occur in autumn.
  相似文献   

6.
Both differences in local plant density and phenotypic traits may affect pollination and plant reproduction, but little is known about how density affects trait–fitness relationships via changes in pollinator activity. In this study we examined how plant density and traits interact to determine pollinator behaviour and female reproductive success in the self‐incompatible, perennial herb Phyteuma spicatum. Specifically, we hypothesised that limited pollination service in more isolated plants would lead to increased selection for traits that attract pollinators. We conducted pollinator observations and assessed trait–fitness relationships in a natural population, whose individuals were surrounded by a variable number of inflorescences. Both local plant density and plant phenotypic traits affected pollinator foraging behaviour. At low densities, pollinator visitation rates were low, but increased with increasing inflorescence size, while this relationship disappeared at high densities, where visitation rates were higher. Plant fitness, in terms of seed production per plant and per capsule, was related to both floral display size and flowering time. Seed production increased with increasing inflorescence size and was highest at peak flowering. However, trait–fitness relationships were not density‐dependent, and differences in seed production did not appear to be related to differences in pollination. The reasons for this remain unclear, and additional studies are needed to fully understand and explain the observed patterns.  相似文献   

7.
Kennedy BF  Elle E 《Oecologia》2008,155(3):469-477
Autonomous selfing can provide reproductive assurance (RA) for flowering plants that are unattractive to pollinators or in environments that are pollen limited. Pollen limitation may result from the breakdown of once-continuous habitat into smaller, more isolated patches (habitat fragmentation) if fragmentation negatively impacts pollinator populations. Here we quantify the levels of pollen limitation and RA among large and small populations of Collinsia parviflora, a wildflower with inter-population variation in flower size. We found that none of the populations were pollen limited, as pollen-supplemented and intact flowers did not differ in seed production. There was a significant effect of flower size on RA; intact flowers (can self) produced significantly more seeds than emasculated flowers (require pollen delivery) in small-flowered plants but not large-flowered plants. Population size nested within flower size did not significantly affect RA, but there was a large difference between our two replicate populations for large-flowered, small populations and small-flowered, large populations that appears related to a more variable pollination environment under these conditions. In fact, levels of RA were strongly negatively correlated with rates of pollinator visitation, whereby infrequent visitation by pollinators yielded high levels of RA via autonomous selfing, but there was no benefit of autonomous selfing when visitation rates were high. These results suggest that autonomous selfing may be adaptive in fragmented habitats or other ecological circumstances that affect pollinator visitation rates.  相似文献   

8.
Floral sex ratios, disease and seed set in dioecious Silene dioica   总被引:5,自引:0,他引:5  
1 In the dioecious, perennial herb Silene dioica , the density of pollen donors in a population is determined by overall plant density, the sex ratio and the proportion of plants infected with the anther-smut fungus Microbotryum violaceum , which results in permanent sterility of both male and female plants.
2 Pollinators ( Bombus spp.) were found to prefer male flowers and to avoid diseased flowers. This may result in an overall lower visitation frequency and increased risk for pollen limitation in populations with a low density of males or a high incidence of disease.
3 Compared with open-pollinated flowers, hand pollination resulted in a significant increase in the number of seeds produced per fruit in populations with an experimentally reduced proportion of males (25% and 50% male flowers) but not in a naturally male-dominated population (75% male flowers). Seed production per plant was increased by hand pollination only in the most female-dominated population. Because the floral sex ratio is often male-biased, resources rather than pollen availability are likely to set the upper limit for total seed production per individual in most healthy populations of S. dioica.
4 There was a negative relationship between seed set and incidence of disease across 22 populations in both years of a field study. However, there was no consistent difference between the responses of highly diseased populations (incidence 30–56%) and populations with a low disease incidence (incidence 0–8%) to hand pollination.
5 In a greenhouse experiment with cloned hand-pollinated females, the presence of spores on healthy flowers was found to reduce seed set significantly. In highly diseased populations, therefore, the frequent deposition of spores by flower visitors onto remaining healthy plants may decrease seed production below the potential level determined by resources or pollen availability.  相似文献   

9.
Hegland SJ  Totland Ø 《Oecologia》2005,145(4):586-594
Knowledge about plant–plant interactions for pollinator service at the plant community level is still scarce, although such interactions may be important to seed production and hence the population dynamics of individual plant species and the species compositions of communities. An important step towards a better understanding of pollination interactions at the community level is to assess if the variation in floral traits among plant species explain the variation in flower visitation frequency among those species. We investigated the relative importance of various floral traits for the visitation frequency of all insects, and bumblebees and flies separately, to plant species by measuring the visitation frequency to all insect-pollinated species in a community during an entire flowering season. Visitation frequency was identified to be strongly positive related to the visual display area and the date of peak flowering of plant species. Categorical variables, such as flower form and symmetry, were important to the visitation frequency of flies only. We constructed floral similarity measures based on the species’ floral traits and found that the floral similarity for all species’ traits combined and the continuous traits separately were positively related to individual visitation frequency. On the other hand, plant species with similar categorical floral traits did not have similar visitation frequencies. In conclusion, our results show that continuous traits, such as flower size and/or density, are more important for the variation in visitation frequency among plant species than thought earlier. Furthermore, differences in visitation frequency among pollinator groups give a poor support to the expectations derived from the classical pollination syndromes.  相似文献   

10.
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.  相似文献   

11.
Ørjan Totland 《Oikos》2004,106(3):558-564
The preference for certain floral phenotypes by flower visiting animals may fuel the evolution of floral traits because variation in flower visitation rates may lead to fitness variation within a population. Here, I examine the importance of flower size for pollinator visitation rate, seed set, and seed mass in two alpine populations of the insect-pollinated herb Ranunculus acris L. during two seasons. There was no pollen limitation of seed set or mass. Pollinators discriminated strongly against flowers experimentally reduced in size. Despite this, there were no signs of any significant impact of flower size on female reproductive success. The results show that although pollinators discriminate strongly among floral phenotypes, this may not always result in female fitness differences within a population because seed set or mass is not limited by pollen availability alone. Probably abiotic environmental constraints prevent plants with high pollinator visitation from capitalizing on the high pollen deposition.  相似文献   

12.
The rate of pollen exchange within and among flowers may depend on pollinator attraction traits such as floral display size and flowering plant density. Variations in these traits may influence pollinator movements, pollen receipt, and seed number. To assess how floral display size and flowering plant density affect parameters of pollinator visitation rate, pollen receipt per flower, seed number per fruit and the between-plant pollinator movements, we studied the self-incompatible plant, Nierembergia linariifolia. Per-flower pollinator visitation rate and bout length increased linearly with increasing floral display size. Pollen receipt per flower increased linearly with increasing flowering plant density. For seed number per fruit, a polynomial model describing an increased seed number per fruit at low density and a decreased seed number per fruit at high density provided a significant fit. Per-flower pollinator visitation rate was not associated with pollen receipt per flower and seed number per fruit. Bees visited plants located near to the center of the population more frequently than plants located at the periphery. Increases in both floral display size and flowering plant density led to an increased chance of a plant being chosen as the center of the pollinator foraging area. These results suggest that even though large floral displays and high flowering plant density are traits that attract more pollinators, they may also reduce potential mate diversity by restricting pollen movement to conspecific mates that are closely located.  相似文献   

13.
Pollination and seed predation were studied in Silene vulgaris populations during two seasons, one with much lower pollinator abundance than the other. Among the pollinators, noctuid moths of the genus Hadena also acted as seed predators. Nectar-foraging female moths oviposited in flowers, and their larvae consumed flowers and seed capsules.
Despite a lower percentage of pollinated flowers in the year of low pollinator abundance, similar numbers of flowers set fruit in both years, because fewer flower buds and flowers were eaten by Hadena larvae during the year of low pollinator visitation. The number of seed capsules preyed upon was also lower in the year with low pollinator abundance, resulting in a higher seed set. The positive correlation between the percentage of pollinated flowers and the percentage of seed capsules destroyed was also observed when comparing flowers opening in different parts of the season.
Early flowering plant individuals had the same pollination success but suffered higher seed predation than late flowering ones. Selection for maximized pollination success through synchronous flowering, is probably the main reason for the compressed flowering period in 5. vulgaris , but the high level of predation early in the season may further increase the reproductive success of synchronous flowering individuals.  相似文献   

14.
Plant populations vary in density both naturally and as a consequence of anthropogenic impacts. Density in turn can influence pollination by animals. For example, plants in dense populations might enjoy more frequent visitation if pollinators forage most efficiently in such populations. We explored effects of plant density on pollination and seed set in the larkspur Delphinium nuttallianum and monkshood Aconitum columbianum. At our site in the Colorado Rocky Mountains, flowers of D. nuttallianum are pollinated primarily by queen bumble bees, solitary bees, and hummingbirds, whereas those of A. columbianum are pollinated primarily by queen and worker bumble bees. We found that the quantity of pollination service to both species (pollinator visitation rate and pollen deposition) was at best weakly related to density. In contrast, seed set declined by approximately one-third in sparse populations relative to nearby dense populations. This decline may stem from the receipt of low-quality pollen, for example, inbred pollen. Alternatively, sparsity may indicate poor environmental conditions that lower seed set for reasons unrelated to pollination. Our results demonstrate the value of simultaneously exploring pollinator behavior, pollen receipt, and seed set in attempting to understand how the population context influences plant reproductive success.  相似文献   

15.
Among plants visited by many pollinator species, the relative contribution of each pollinator to plant reproduction is determined by variation in both pollinator and plant traits. Here we evaluate how pollinator movement among plants, apparent pollen carryover, ovule number, resource limitation of seed set, and pollen output affect variation in contribution of individual pollinator species to seed set in Lithophragma parviflorum (Saxifragaceae), a species visited by a broad spectrum of visitors, including beeflies, bees and a moth species. A previous study demonstrated differences among visitor species in their single-visit pollination efficacy but did not evaluate how differences in visitation patterns and pollen carryover affect pollinator efficacy. Incorporation of differential visitation patterns and pollen carryover effects —commonly cited as potentially important in evaluating pollinator guilds — had minor effects (0–0.6% change) on the estimates of relative contribution based on visit frequency and single-visit efficacy alone. Beeflies visited significantly more flowers per inflorescence than the bees and the moth. Seed set remained virtually constant during the first three visited flowers for beeflies and larger bees, indicating that apparent pollen carryover did not reduce per-visit efficacy of these taxa. In contrast, Greya moth visits showed a decrease in seed set by 55.4% and the smaller bees by 45.4% from first to second flower. The larger carryover effects in smaller bees and Greya were diminished in importance by their small overall contribution to seed set. Three variable plant traits may affect seed set: ovule number, resource limitation on seed maturation, and pollen output. Ovule number per flower declined strongly with later position within inflorescences. Numbers were much higher in first-year greenhouse-grown plants than in field populations, and differences increased during 3 years of study. Mean pollen count by position varied 7-fold among flowers; it paralleled ovule number variation, resulting in a relatively stable pollen:ovule ratio. Resource limitation of seed set increased strongly with later flowering, with seed set in hand-pollinated flowers ranging from 66% in early flowers to 0% in the last two flowers of all plants. Variation in ovule number and resource limitation of seed maturation jointly had a strong effect on the number of seeds per flower. Visitation to early flowers had the potential to cause more seed set than visitation to later flowers. Overall, the most important sources of variation to seed production contribution were differences among pollinators in abundance and absolute efficacy (ovules fertilized on a single visit) and potentially differential phenology among visitor species. These effects are likely to vary among populations and years.  相似文献   

16.
Liao K  Gituru RW  Guo YH  Wang QF 《Annals of botany》2011,108(5):877-884
Background and Aims The presence of co-flowering species can alter pollinator foraging behaviour and, in turn, positively or negatively affect the reproductive success of the focal species. Such interactions were investigated between a focal species, Pedicularis monbeigiana, and a co-flowering species, Vicia dichroantha, which was mediated by behaviour alteration of the shared bumble-bee pollinator. Methods Floral display size and floral colour change of P. monbeigiana were compared between pure (P. monbeigiana only) and mixed (P. monbeigiana and V. dichroantha) plots in two populations. Pollinator visitation rates, interspecific floral switching and successive within-plant pollinator visits were recorded. In addition, supplemental pollination at plant level was performed, and the fruit set and seed set were analysed in pure and mixed plots with different densities of P. monbeigiana. Key Results Pollinator visitation rates were dramatically higher in mixed plots than in pure plots. The higher pollinator visitation rates were recorded in both low- and high-density plots. In particular, successive flower visits within an individual plant were significantly lower in mixed plots. Supplemental pollination significantly increased fruit set and seed set of individuals in pure plots, while it only marginally increased seed set per fruit of plants in mixed plots. Conclusions The presence of V. dichroantha can facilitate pollination and increase female reproductive success of P. monbeigiana via both quantity (mitigating pollinator limitation) and quality (reducing geitonogamy) effects. This study suggests that successive pollinator movements among flowers within a plant, as well as pollinator visitation rates and interspecific flower switching, may be important determinants of the direction and mechanisms of interaction between species.  相似文献   

17.

Background and Aims

Few studies have examined the dynamics of specialist plant–pollinator interactions at a geographical scale. This knowledge is crucial for a more general evolutionary and ecological understanding of specialized plant–pollinator systems. In the present study, variations in pollinator activity, assemblage composition and pollen limitation were explored in the oil-producing species Nierembergia linariifolia (Solanaceae).

Methods

Pollen limitation in fruit and seed production was analysed by supplementary hand pollination in five wild populations. Pollinator activity and identity were recorded while carrying out supplementary pollination to assess the effect of pollinators on the degree of pollen limitation. In two populations, pollen limitation was discriminated into quantitative and qualitative components by comparing supplementation and hand cross-pollination in fruit set and seed set. The effect of flower number per plant on the number of flowers pollinated per visitor per visit to a plant was examined in one of these populations as a possible cause of low-quality pollination by increasing geitonogamy.

Results and Conclusions

Although pollen limitation was evident along time and space, differences in magnitude were detected among populations and years that were greatly explained by pollinator activity, which was significantly different across populations. Floral display size had a significant effect on the visitation rate per flower. Limitation by quality clearly affected one population presumably due to a high proportion of geitonogamous pollen. The great inter-population variation in plant–pollinator interaction (both in pollinator assemblages composition and pollinator activity) and fitness consequences, suggests that this system should be viewed as a mosaic of locally selective processes and locally specialized interactions.Key words: Nierembergia linariifolia, Centris, Chalepogenus, pollen limitation, pollen quality, oil-producing flowers, specialized pollination, floral display, assemblage composition, geographic variation, Solanaceae, tests of equivalence  相似文献   

18.
Summary   The re-establishment of threatened (and common) plant species populations is an important conservation activity in the agricultural landscapes of Australia where habitat fragmentation has destroyed much of their former range. The initial design of restoration plantings, including the number of individuals planted and their spatial configuration, is likely to affect long-term persistence of the re-introduced populations because of its potential effects on pollination and gene flow, but this topic has received little attention in the restoration literature. This study examined how population size and population density of experimental arrays of the grassland daisy Button Wrinklewort affected percentage seed set, a measure of reproductive success. We found strong evidence that population density, but not population size, affected seed set in this species. Seed set increased by, on average, 275% when plants were placed at high-density relative to low-density populations. The low seed set observed may occur because pollinator visitation rates decline in sparse populations or, alternatively, because pollinators are less efficient at pollen transfer when individuals are at low density. Hence, planting designs appear to be an important facet of restoration works that deserve far greater theoretical and practical attention than they have previously received.  相似文献   

19.
  • Plant species that are effective colonisers of transient habitats are expected to have a capacity for uniparental reproduction and show flexibility in pollination systems. Such traits may enable populations to be established from a small number of founding individuals without these populations succumbing to reductions in fecundity arising from pollinator limitation.
  • We tested these predictions for Aloe thraskii (Xanthorrhoeaceae), a succulent treelet that colonises shifting coastal dunes and has both bird and bee pollinators. We performed hand‐pollination experiments, and selectively excluded bird visitors to determine differences in pollinator effectiveness. We measured pollinator visitation rates and fecundity in populations varying in their size, density and isolation distance.
  • Controlled hand‐pollinations revealed that unlike most other Aloe species, A. thraskii is self‐compatible and thus capable of uniparental reproduction. The species does however depend on pollinators and is visited by various bird species as well as by bees. Fruit and seed set are not affected by selective exclusion of birds, thus indicating that bees are effective pollinators. Bird visitation rates increased with increasing plant height and population size, while bee visitation rates increased with increasing population size and density. We found that seed set per flower was lower in large populations than in small populations.
  • These results suggest that establishment of populations of A. thraskii from a small number of individuals is unlikely to be limited by the fecundity of individual plants.
  相似文献   

20.
Local flower density can affect pollen limitation and plant reproductive success through changes in pollinator visitation and availability of compatible pollen. Many studies have investigated the relationship between conspecific density and pollen limitation among populations, but less is known about within-population relationships and the effect of heterospecific flower density. In addition, few studies have explicitly assessed how the spatial scales at which flowers are monitored affect relationships. We investigated the effect of floral neighborhood on pollen limitation at four spatial scales in the self-incompatible herbs Armeria maritima spp. maritima and Ranunculus acris spp. acris. Moreover, we measured pollen deposition in Armeria and pollinator visits to Ranunculus. There was substantial variation in pollen limitation among Armeria individuals, and 25% of this variation was explained by the density of compatible and heterospecific flowers within a 3 m circle. Deposition of compatible pollen was affected by the density of compatible and incompatible inflorescences within a 0.5 m circle, and deposition of heterospecific pollen was affected by the density of heterospecific flowers within a 2 m circle. In Ranunculus, the number of pollinator visits was affected by both conspecific and heterospecific flower densities. This did not, however, result in effects of the floral neighborhood on pollen limitation, probably due to an absence of pollen limitation at the population level. Our study shows that considerable variation in pollen limitation may occur among individuals of a population, and that this variation is partly explained by floral neighborhood density. Such individual-based measures provide an important link between pollen limitation theory, which predicts ecological and evolutionary causes and consequences for individual plants, and studies of the effects of landscape fragmentation on plant species persistence. Our study also highlights the importance of considering multiple spatial scales to understand the spatial extent of pollination processes within a population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号