首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and specific immunoassay for the simultaneous detection of Clostridium botulinum type C (BoNT/C) and type D neurotoxin was developed. Goat anti-mouse immunoglobulin G was bound to polyethylene disks in a small disposable column used for this assay. The sample was preincubated together with monoclonal antibodies specific for the heavy chain of BoNT/C and D and affinity-purified, biotinylated polyclonal antibodies against these neurotoxins. This complex was captured on the assay disk. Streptavidin-poly-horseradish peroxidase was used as a conjugate, and a precipitating substrate allowed the direct semiquantitative readout of the assay, if necessary. For a more accurate quantitative detection, the substrate can be eluted and measured in a photometer. Depending on the preincubation time, a sensitivity of 1 mouse lethal dose ml−1 was achieved in culture supernatants.  相似文献   

2.
Botulinum neurotoxins (BoNTs) are the most toxic proteins in nature. Rapid and sensitive detection of BoNTs is achieved by the endopeptidase–mass spectrometry (Endopep–MS) assay. In this assay, BoNT cleaves a specific peptide substrate and the cleaved products are analyzed by MS. Here we describe the design of a new peptide substrate for improved detection of BoNT type B (BoNT/B) in the Endopep–MS assay. Our strategy was based on reported BoNT/B–substrate interactions integrated with analysis method efficiency considerations. Incorporation of the new peptide led to a 5-fold increased sensitivity of the assay both in buffer and in a clinically relevant human spiked serum.  相似文献   

3.
Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most poisonous substances known to humankind. It is essential to have a simple, quick, and sensitive method for the detection and quantification of botulinum toxin in various media, including complex biological matrices. Our laboratory has developed a mass spectrometry-based Endopep–MS assay that is able to rapidly detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Botulinum neurotoxin type E (BoNT/E) is a member of a family of seven distinctive BoNT serotypes (A–G) and is the causative agent of botulism in both humans and animals. To improve the sensitivity of the Endopep–MS assay, we report here the development of novel peptide substrates for the detection of BoNT/E activity through systematic and comprehensive approaches. Our data demonstrate that several optimal peptides could accomplish 500-fold improvement in sensitivity compared with the current substrate for the detection of both not-trypsin-activated and trypsin-activated BoNT/E toxin complexes. A limit of detection of 0.1 mouse LD50/ml was achieved using the novel peptide substrate in the assay to detect not-trypsin-activated BoNT/E complex spiked in serum, stool, and food samples.  相似文献   

4.
Serum samples from 35 golden jackals (Canis aureus syriacus), eight wolves (Canis lupus), and four red foxes (Vulpes vulpes) from various regions of Israel were collected during the years 2001-04 and tested for antibodies to Clostridium botulinum neurotoxin (BoNT) types C and D. Antibodies against BoNT types C and D were detected in 10 (29%) and in 3 (9%) of 35 golden jackals, respectively, using enzyme-linked immunosorbent assay. This report describes detection of anti BoNT antibodies in wild canids other than coyotes (Canis latrans) for the first time and demonstrates that C. botulinum type C is prevalent in Israel.  相似文献   

5.
Botulinum neurotoxins (BoNTs) are among the most toxic substances known. Surveillance and diagnostics require methods for rapid detection of BoNTs in complex media such as foodstuffs and human serum. We have developed in vitro assays to specifically detect the protease activity of botulinum neurotoxin B (BoNT/B) on a time scale of minutes. Cleavage of the BoNT/B substrate VAMP2, a membrane SNARE protein associated with synaptic vesicles, was monitored using real-time surface plasmon resonance to measure vesicle capture by specific antibodies coupled to microchips. The assay is functional in low-ionic-strength buffers and stable over a wide range of pH values (5.5–9.0). Endoproteolytic cleavage of VAMP2 was detected in 10 min with 2 pM native BoNT/B holotoxin. Contamination of liquid food products such as carrot juice, apple juice, and milk with low picomolar amounts of BoNT/B was revealed within 3 h. BoNT/B activity was detected in sera from patients with type B botulism but not in healthy controls or patients with other neurological diseases. This robust, sensitive, and rapid protein chip assay is appropriate for monitoring BoNT/B in food products and diagnostic tests for type B botulism and could replace the current in vivo mouse bioassay.  相似文献   

6.
Aims:  To develop a convenient and rapid detection method for toxigenic Clostridium botulinum types A and B using a loop-mediated isothermal amplification (LAMP) method.
Methods and results:  The LAMP primer sets for the type A or B botulinum neurotoxin gene, BoNT / A or BoNT / B , were designed. To determine the specificity of the LAMP assay, a total of 14 C. botulinum strains and 17 other Clostridium strains were tested. The assays for the BoNT/A or BoNT/B gene detected only type A or B C. botulinum strains, respectively, but not other types of C. botulinum or strains of other Clostridium species. Using purified chromosomal DNA, the sensitivity of LAMP for the BoNT/A or BoNT/B gene was 1 pg or 10 pg of DNA per assay, respectively. The assay times needed to detect 1 ng of DNA were only 23 and 22 min for types A and B, respectively. In food samples, the detection limit per reaction was one cell for type A and 10 cells for type B.
Conclusions:  The LAMP is a sensitive, specific and rapid detection method for C. botulinum types A and B.
Significance and Impact of the Study:  The LAMP assay would be useful for detection of C. botulinum in environmental samples.  相似文献   

7.
Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to humans. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype-specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep–MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype-specific antibodies and detecting the unique and serotype-specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep–MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity 5-fold with toxin spiked into buffer solution or different biological matrices.  相似文献   

8.
Clostridium botulinum neurotoxin (BoNT) serotypes A and B are widely used as pharmaceuticals to treat various neurological disorders and in cosmetic applications. The major adverse effect of these treatments has been resistance to treatment after multiple injections. Currently, patients receiving BoNT therapies and patients enrolled in clinical trials for new applications and/or new formulations of BoNTs are not routinely monitored for the formation of neutralizing antibodies, since no assay other than the mouse protection procedure is commercially available that reliably tests for the presence of such antibodies. This report presents a highly sensitive and specific neuronal cell-based assay that provides sensitive and specific detection of neutralizing antibodies to BoNT/A.  相似文献   

9.
Botulinum neurotoxins (serotypes BoNT/A–BoNT/G) induce botulism, a disease leading to flaccid paralysis. These serotypes are highly specific in their proteolytic cleavage of SNAP-25 (synaptosomal-associated protein of 25 kDa), VAMP (vesicle associated membrane protein) or syntaxin. The catalytic domain (light chain, LC) of the neurotoxin has a Zn2+ dependent endopeptidase activity. In order to design drugs and inhibitors against these toxins, high level overexpression and characterization of LC of BoNTs along with the development of assays to monitor their proteolytic activity becomes important. Using the auto-induction method, we attained a high level expression of BoNT/C1(1–430) yielding more than 30 mg protein per 500 ml culture. We also developed an efficient assay to measure the activity of serotype C1 based on a HPLC method. SNAP-25 with varying peptide length has been reported in literature as substrates for BoNT/C1 proteolysis signifying the importance of remote exosites in BoNT/C1 required for activity. Here, we show that a 17-mer peptide corresponding to residues 187–203 of SNAP-25, which has earlier been shown to be a substrate for BoNT/A, can be used as a substrate for quantifying the activity of BoNT/C1(1–430). There was no pH dependence for the proteolysis, however the presence of dithiothreitol is essential for the reaction. Although the 17-mer substrate bound 110-fold less tightly to BoNT/C1(1–430) than SNAP-25, the optimal assay conditions facilitated an increase in the catalytic efficiency of the enzyme by about 5-fold.  相似文献   

10.
Botulinum neurotoxins (BoNTs) are the most toxic substances known to humans. Endopeptidase–mass spectrometry (Endopep–MS) is used as a specific and rapid in vitro assay to detect BoNTs. In this assay, immunocaptured toxin cleaves a serotype-specific peptide substrate, and the cleavage products are then detected by MS. To further improve the sensitivity of the assay, we report here the rational design of a new substrate peptide for the detection of botulinum neurotoxin type E (BoNT/E). Our strategy was based on previously reported structural interactions integrated with analysis method efficiency considerations. Integration of the newly designed substrate has led to a more than one order of magnitude increased sensitivity of the assay.  相似文献   

11.
Botulinum neurotoxins (BoNTs), the most potent naturally-occurring neurotoxins known to humans, comprise seven distinct serotypes (BoNT/A-G), each of which exhibits unique substrate specificity. Many methods have been developed for BoNT detection, in particular for BoNT/A, with various complexity and sensitivity, while substrate based FRET assay is considered as the most widely used approach due to its simplicity and sensitivity. In this study, we designed a vesicle-associated membrane protein 2 (VAMP2) based FRET assay based on the understanding of the VAMP2 and light chain/B (LC/B) interactions in our previous studies. The current design constituted the shortest peptide, VAMP2 (63–85), with FRET dyes (EDAN and Dabcyl) labelled at position 76 and 85, respectively, which showed minimal effect on VAMP2 substrate catalysis by LC/B and therefore enhanced the sensitivity of the assay. The FRET peptide, designated as FVP-B, was specific to LC/B, with a detection sensitivity as low as ∼20 pM in 2 h. Importantly, FVP-B showed the potential to be scaled up and used in high throughput screening of LC/B inhibitor. The currently developed FRET assay is one of the most economic and rapid FRET assays for LC/B detection.  相似文献   

12.
Investigation of animal botulism outbreaks by PCR and standard methods   总被引:1,自引:0,他引:1  
Abstract A double PCR procedure is proposed for identification of Clostridium botulinum C and D. This method consists of a first PCR amplification with a degenerate primer pair able to amplify a 340 bp common DNA fragment from botulinum neurotoxin (BoNT) C1 and D genes, followed by two subsequent PCR amplifications with two primer pairs specific for BoNT/C1 and D respectively (198 bp DNA fragment). This method was found to be specific for C. botulinum C and D, amongst 81 strains of C. botulinum and 21 different species of other Clostridium and bacteria tested. The detection limit ranged from 10 to 103 bacteria in the reaction volume according to the C. botulinum C and D strains. In 160 naturally contaminated animal and food samples submitted to a 48 h enrichment culture, the double PCR showed an 89.4% correlation rate with the standard mouse bioassay. A clear distinction between botulism type C and D was obtained. The double PCR provides a reliable alternative for detection and identification of C. botulinum C and D in clinical and food samples.  相似文献   

13.
The ultimate molecular action of botulinum neurotoxin (BoNT) is a Zn-dependent endoproteolytic activity on one of the three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. There are seven serotypes (A-G) of BoNT having distinct cleavage sites on the SNARE substrates. The proteolytic activity is located on the N-terminal light chain (Lc) domain and is used extensively as the primary target toward therapeutic development against botulism. Here we describe an improved method using ultra-performance liquid chromatography (UPLC) whereby quantitative data were obtained in 1/10th the time using 1/20th the sample and solvent volumes compared with a widely used high-performance liquid chromatography (HPLC) method. We also synthesized a VAMP (vesicle-associated membrane protein)-based peptide containing an intact V1 motif that was efficiently used as a substrate by BoNT/D Lc. Although serotype C1 cleaves the serotype A substrate at a bond separated by only one residue, we were able to distinguish the two reactions by UPLC. The new method can accurately quantify as low as 7 pmol of the peptide substrates for BoNT serotypes A, B, C1, and D. We also report here that the catalytic efficiency of serotype A can be stimulated 35-fold by the addition of Triton X-100 to the reaction mixture. Combining the use of Triton X-100 with the newly introduced UPLC method, we were able to accurately detect very low levels of proteolytic activity in a very short time. Sensitivity of the assay and accuracy and rapidity of product analysis should greatly augment efforts in therapeutic development.  相似文献   

14.
Aim: To develop a novel assay technique for the botulinum neurotoxin family (BoNTs) which is dependent on both the endopeptidase and receptor‐binding activities of the BoNTs and which is insensitive to antigenic variation with the toxin family. Methods and Results: An endopeptidase activity, receptor‐binding assay (EARB assay) has been developed which captures biologically active toxin from media using brain synaptosomes. After capture, the bound toxin can be incubated with its substrate, and cleavage detected using serotype‐specific antibodies raised against the cleaved product of each toxin serotype. The EARB assay was assessed using a range of BoNT serotypes and subtypes. For BoNT/A, detection limits for subtypes A1, A2 and A3 were 0·5, 3 and 10 MLD50 ml?1, respectively. The limit of detection for BoNT/B1 was 5 MLD50 ml?1 and a novel antibody‐based endopeptidase assay for BoNT/F detected toxin at 0·5 MLD50 ml?1. All these BoNTs can be captured from media containing up to 10% serum without loss of sensitivity. BoNT/A1 could also be detected in dilutions of a lactose‐ containing formulation similar to that used for clinical preparations of the toxin. Different serotypes were found to possess different optimal cleavage pHs (pH 6·5 for A1, pH 7·4 for B1). Conclusions: The EARB assay has been shown to be able to detect a broad range of BoNT serotypes and subtypes from various media. Significance and Impact of the Study: The EARB assay system described is the first convenient in vitro assay system described which is requires multiple functional biological activities with the BoNTs. The assay will have applications in instances where it is essential or desirable to distinguish biologically active from inactive neurotoxin.  相似文献   

15.
Mouse monoclonal antibodies against the most acutely toxic substances, botulinum neurotoxins (BoNTs) of types A, B, E, and F, was generated and characterized, that recognize their respective toxins in natural toxin complex. Based on these antibodies, we developed sandwich-ELISA for quantitative detection of these toxins. For each respective toxin the detection limit of the assay was: BoNT/A - 0.4 ng/ml, BoNT/B - 0.5 ng/ml; BoNT/E - 0.1 ng/ml; and for BoNT/F - 2.4 ng/ml. The developed assays permitted quantitative identification of the BoNTs in canned meat and vegetables. The BNTA-4.1 and BNTA-9.1 antibodies possessed neutralizing activity against natural complex of the botulinium toxin type A in vivo, both individually and in mixture, the mixture of the antibodies neutralized the higher dose of the toxin. The BNTA-4.1 antibody binds specifically the light chain (the chain with protease activity) of the toxin, whereas BNTA-9.1 interacts with the heavy chain. We believe that the BNTA-4.1 and BNTA-9.1 monoclonal antibodies are prospective candidates for development of humanized therapeutic antibodies for treatment of BoNT/A-caused botulism.  相似文献   

16.
An amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Clostridium botulinum complex neurotoxins was evaluated for its ability to detect these toxins in food. The assay was found to be suitable for detecting type A, B, E, and F botulinum neurotoxins in a variety of food matrices representing liquids, solid, and semisolid food. Specific foods included broccoli, orange juice, bottled water, cola soft drinks, vanilla extract, oregano, potato salad, apple juice, meat products, and dairy foods. The detection sensitivity of the test for these botulinum complex serotypes was found to be 60 pg/ml (1.9 50% lethal dose [LD50]) for botulinum neurotoxin type A (BoNT/A), 176 pg/ml (1.58 LD50) for BoNT/B, 163 pg/ml for BoNT/E (4.5 LD50), and 117 pg/ml for BoNT/F (less than 1 LD50) in casein buffer. The test could also readily detect 2 ng/ml of neurotoxins type A, B, E, and F in a variety of food samples. For specificity studies, the assay was also used to test a large panel of type A C. botulinum, a smaller panel of proteolytic and nonproteolytic type B, E, and F neurotoxin-producing Clostridia, and nontoxigenic organisms using an overnight incubation of toxin production medium. The assay appears to be an effective tool for large-scale screening of the food supply in the event of a botulinum neurotoxin contamination event.  相似文献   

17.
Botulinum neurotoxin serotype A (BoNT/A) is a proteolytic enzyme that induces muscle paralysis. It is a cause of food poisoning, a potential bioterrorist threat and, in low doses an emerging pharmaceutical product. No effective treatment is currently available for BoNT intoxication. Previously we developed a BoNT/A light chain enzyme assay using a peptide substrate based on the SNAP-25 protein target, with HPLC separation and UV detection of assay products, and applied the method to screen combinatorial peptide libraries for inhibitory activity to BoNT/A. We now report on development of a capillary electrophoresis laser-induced fluorescence (CE-LIF) method for measuring BoNT/A activity. The enzyme assay products were labeled with CBQCA dye followed by CE separation on a bare fused silica column in a HEPES-based buffer and LIF detection. All assay products were separated in CE within 8 min compared to incomplete separation of assay products within 1h by HPLC. The labeled products showed linear dependence of intensity versus concentration, and quantitative mole-fraction assignments. We used the CE-LIF method to screen combinatorial peptide libraries for potential modulating effects on BoNT/A peptidase activity. With some of the libraries, peptides co-migrated with assay products and interfered with quantitation. In such cases, interference was reduced by substituting sodium dodecyl sulfate (SDS) for Tween-20 in the running buffer. Separation in the capillaries then occurred by micellar electrokinetic chromatography (MEKC). The CE-LIF method is quick and lends itself to high-throughput or microfluidic formats.  相似文献   

18.
A rapid immunochromatographic assay was developed to detect botulinum neurotoxin type B (BoNT/B). The assay was based on the sandwich format using polyclonal antibody (Pab). The thiophilic gel purified anti-BoNT/B Pab was immobilized to a defined detection zone on a porous nitrocellulose membrane and conjugated to colloidal gold particles that served as a detection reagent. The BoNT/B-containing sample was added to the membrane and allowed to react with Pab-coated particles. The mixture was then passed along the porous membrane by capillary action past the Pab in the detection zone, which will bind the particles that had BoNT/B bound to their surface, giving a red colour within this detection zone with an intensity proportional to BoNT/B concentration. In the absence of BoNT/B, no immunogold was bound to the solid-phase antibody. With this method, 50 ng/ml of BoNT/B was detected in less than 10 min. The assay sensitivity can be increased by silver enhancement to 50 pg/ml. The developed BoNT/B assay also showed no cross reaction to type A neurotoxin (BoNT/A) and type E neurotoxin (BoNT/E).  相似文献   

19.
Clostridium botulinum neurotoxins (BoNTs) act on nerve endings to block acetylcholine release. Their potency is due to their enzymatic activity and selective high affinity binding to neurons. Although there are many pieces of data available on the receptor for BoNT, little attempt has been made to characterize the receptors for BoNT/C and BoNT/D. For this purpose, we prepared the recombinant carboxyl-terminal domain of the heavy chain (H(C)) and then examined its binding capability to rat brain synaptosomes treated with enzymes and heating. Synaptosomes treated with proteinase K or heating retained binding capability to both H(C)/C and H(C)/D, suggesting that a proteinaceous substance does not constitute the receptor component. We next performed a thin layer chromatography overlay assay of H(C) with a lipid extract of synaptosomes. Under physiological or higher ionic strengths, H(C)/C bound to gangliosides GD1b and GT1b. These data are in accord with results showing that neuraminidase and endoglycoceramidase treatment decreased H(C)/C binding to synaptosomes. On the other hand, H(C)/D interacted with phosphatidylethanolamine but not with any ganglioside. Using cerebellar granule cells obtained from GM3 synthase knock-out mice, we found that BoNT/C did not elicit a toxic effect but that BoNT/D still inhibited glutamate release to the same extent as in granule cells from wild type mice. These observations suggested that BoNT/C recognized GD1b and GT1b as functional receptors, whereas BoNT/D induced toxicity in a ganglioside-independent manner, possibly through binding to phosphatidylethanolamine. Our results provide novel insights into the receptor for clostridial neurotoxin.  相似文献   

20.
Arndt JW  Chai Q  Christian T  Stevens RC 《Biochemistry》2006,45(10):3255-3262
The seven serotypes (A-G) of botulinum neurotoxins (BoNTs) function through their proteolytic cleavage of one of three proteins (SNAP-25, Syntaxin, and VAMP) that form the SNARE complex required for synaptic vesicle fusion. The different BoNTs have very specific protease recognition requirements, between 15 and 50 amino acids in length depending on the serotype. However, the structural details involved in substrate recognition remain largely unknown. Here is reported the 1.65 A resolution crystal structure of the catalytic domain of BoNT serotype D (BoNT/D-LC), providing insight into the protein-protein binding interaction and final proteolysis of VAMP-2. Structural analysis has identified a hydrophobic pocket potentially involved in substrate recognition of the P1' VAMP residue (Leu 60) and a second remote site for recognition of the V1 SNARE motif that is critical for activity. A structural comparison of BoNT/D-LC with BoNT/F-LC that also recognizes VAMP-2 one residue away from the BoNT/D-LC site provides additional molecular details about the unique serotype specific activities. In particular, BoNT/D prefers a hydrophobic interaction for the V1 motif of VAMP-2, while BoNT/F adopts a more hydrophilic strategy for recognition of the same V1 motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号