首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Results from Merck's phase II adenovirus type 5 (Ad5) gag/pol/nef test-of-concept trial showed that the vaccine lacked efficacy against human immunodeficiency virus (HIV) infection in a high-risk population. Among the many questions to be explored following this outcome are whether (i) the Ad5 vaccine induced the quality of T-cell responses necessary for efficacy and (ii) the lack of efficacy in the Ad5 vaccine can be generalized to other vector approaches intended to induce HIV type 1 (HIV-1)-specific T-cell responses. Here we present a comprehensive evaluation of the T-cell response profiles from cohorts of clinical trial subjects who received the HIV CAM-1 gag insert delivered by either a regimen with DNA priming followed by Ad5 boosting (n = 50) or a homologous Ad5/Ad5 prime-boost regimen (n = 70). The samples were tested using a statistically qualified nine-color intracellular cytokine staining assay measuring interleukin-2 (IL-2), tumor necrosis factor alpha, macrophage inflammatory protein 1β, and gamma interferon production and expression of CD107a. Both vaccine regimens induced CD4+ and CD8+ HIV gag-specific T-cell responses which variably expressed several intracellular markers. Several trends were observed in which the frequencies of HIV-1-specific CD4+ T cells and IL-2 production from antigen-specific CD8+ T cells in the DNA/Ad5 cohort were more pronounced than in the Ad5/Ad5 cohort. Implications of these results for future vaccine development will be discussed.  相似文献   

2.
The identification of “asymptomatic” (i.e., protective) epitopes recognized by T cells from herpes simplex virus (HSV)-seropositive healthy individuals is a prerequisite for an effective vaccine. Using the PepScan epitope mapping strategy, a library of 179 potential peptide epitopes (15-mers overlapping by 10 amino acids) was identified from HSV type 1 (HSV-1) glycoprotein B (gB), an antigen that induces protective immunity in both animal models and humans. Eighteen groups (G1 to G18) of 10 adjacent peptides each were first screened for T-cell antigenicity in 38 HSV-1-seropositive but HSV-2-seronegative individuals. Individual peptides within the two immunodominant groups (i.e., G4 and G14) were further screened with T cells from HLA-DR-genotyped and clinically defined symptomatic (n = 10) and asymptomatic (n = 10) HSV-1-seropositive healthy individuals. Peptides gB161-175 and gB166-180 within G4 and gB661-675 within G14 recalled the strongest HLA-DR-dependent CD4+ T-cell proliferation and gamma interferon production. gB166-180, gB661-675, and gB666-680 elicited ex vivo CD4+ cytotoxic T cells (CTLs) that lysed autologous HSV-1- and vaccinia virus (expressing gB)-infected lymphoblastoid cell lines. Interestingly, gB166-180 and gB666-680 peptide epitopes were strongly recognized by CD4+ T cells from 10 of 10 asymptomatic patients but not by CD4+ T cells from 10 of 10 symptomatic patients (P < 0.0001; analysis of variance posttest). Inversely, CD4+ T cells from symptomatic patients preferentially recognized gB661-675 (P < 0.0001). Thus, we identified three previously unrecognized CD4+ CTL peptide epitopes in HSV-1 gB. Among these, gB166-180 and gB666-680 appear to be “asymptomatic” peptide epitopes and therefore should be considered in the design of future herpes vaccines.  相似文献   

3.
HIV-1 infection is characterized by loss of CD56dim CD16+ NK cells and increased terminal differentiation on various lymphocyte subsets. We identified a decrease of CD57 and CD57dim cells but not of CD57bright cells on CD56dim CD16+ NK cells in chronic HIV infection. Increasing CD57 expression was strongly associated with increasing frequencies of killer immunoglobulin-like receptors (KIRs) and granzyme B-expressing cells but decreasing percentages of cells expressing CD27+, HLA-DR+, Ki-67+, and CD107a. Our data indicate that HIV leads to a decline of less-differentiated cells and suggest that CD57 is a useful marker for terminal differentiation on NK cells.NK cells are effector cells of innate immunity which are pivotal as first-line defense against viral infections, such as HIV infection (14). Large genotypic studies demonstrated a delayed onset of AIDS in HIV-seropositive individuals carrying the activating receptor KIR3DS1 and/or alleles of the inhibiting receptor KIR3DL1 in conjunction with HLA-Bw4-80I (18, 19). Development of NK cells mainly takes place in the bone marrow, from which mature NK cells move out to reside and circulate in peripheral sites (13). Mature NK cells are characterized by granules which harbor granzymes and perforin. These NK cells are fully armed, “ready-to-go” effector cells (17).A number of NK cell abnormalities have been reported in HIV infection (9), including high activation status (2, 10), increased turnover (16), differential expression of activating and inhibitory receptors (20), impaired interaction with dendritic cells (12), and loss of CD56dim CD16+ NK cells (23). CD56dim CD16+ NK cells represent the largest NK cell subset in peripheral blood in healthy individuals. The expression of killer immunoglobulin-like receptors (KIRs) and CD57 are predominant features of this subpopulation (8, 15). CD57 expression on NK cells has been previously associated with replicative senescence on T and NK cells (4), raising the question of how HIV-1 infection alters CD57 expression on CD56dim CD16+ NK cells.To the best of our knowledge, no one has addressed the phenotypic and functional properties of CD56dim CD16+ NK cells that are preferentially lost during HIV infection. Here, we provide evidence that increasing CD57 expression indicates terminal differentiation in healthy individuals, as well in as HIV-infected subjects. We furthermore show that HIV infection is associated with preferential loss of less-differentiated cells, which are characterized by high activation status and turnover.In this study, blood samples from 37 HIV-seropositive individuals and 15 healthy subjects were analyzed; all HIV-infected patients were either antiretroviral therapy naïve or untreated for more than one year. The HIV-positive study cohort comprised 10 patients with a viral load of less than 2,000 copies/ml, 14 patients with a viral load ranging from 2,000/ml to 20,000 copies/ml, and 13 patients with a viral load above 20,000 copies/ml. CD4 T cell counts ranged from 180/μl to 1,355/μl, the average being 457.3/μl.The study was approved by the local ethics commission (Ethikkommission der Medizinischen Hochschule Hannover, Votum No. 3150), and all study participants gave informed written consent for their participation.Flow cytometric analysis was performed on cryopreserved peripheral blood mononuclear cells (PBMCs) as previously described (21, 22). A list of monoclonal antibodies employed in this study is available upon request. For intracellular analysis of granzyme B, perforin, and Ki-67, we used a fixation and permeabilization kit (Invitrogen). At least 1 million events were acquired for each sample, using either a FACSAria or LSR II flow cytometer (BD Biosciences). Data were analyzed with FlowJo (TreeStar). Lymphocytes were defined by forward and side scatter. CD3+, CD14+, CD19+, dead cells, and cell aggregates were removed from analysis based on peridinin chlorophyll protein and Viaprobe staining and gating on a plot of forward-scatter area versus forward-scatter height (Fig. (Fig.1A).1A). NK cells and their distinctive subpopulations were defined based on their CD56 and/or CD16 expression. Fluorescence-minus-one (FMO) staining was used to determine threshold values for the expression of specific markers.Open in a separate windowFIG. 1.HIV infection is associated with loss of CD57 and CD57dim but not CD57bright CD56dim CD16+ NK cells. (A) Representative gating scheme for identification of NK cells. NK cells were defined as CD3 CD14 CD19 lymphocytes expressing either CD56 or CD16 or both. We divided CD56dim CD16+ NK cells into three subsets based on their level of CD57 expression: CD57, CD57dim, and CD57bright cells. Numbers on FACS plots indicate frequency of gated population. SSC-A, side scatter area; FSC-A, forward scatter area; FSC-W, forward scatter width. (B) Comparison of percentages of the CD57, CD57dim, and CD57bright subpopulations in control subjects (n = 14) and HIV-seropositive individuals (n = 34) on CD56dim CD16+ NK cells. ns, not significant (P > 0.05); **, P < 0.01; ***, P < 0.001. (C) Frequencies of CD57, CD57dim, and CD57bright expressing CD56dim CD16+ NK cells in relation to total NK cells in control subjects (n = 14) and HIV-seropositive individuals (n = 34). (D) Mean frequency of CD56dim CD16+ NK cells in 14 control individuals and in 34 HIV-infected people and the distribution of CD57, CD57dim, and CD57bright cells within CD56dim CD16+ NK cells is shown. (E) Relationship between percentage of CD57dim CD56dim CD16+NK cells and percentage of CD56neg CD16+ NK cells on total NK cells. Horizontal bars in dot plots show the means.NK cells as defined above were sorted from cryopreserved PBMCs on a FACSAria (purities ranged from 91% to 99%). An amount of 105 NK cells was plated per well and stimulated with 10 ng/ml interleukin-15 (IL-15), 100 ng/ml IL-12, and 5 × 104 K562 cells. A CD107a degranulation assay was performed as described previously (1, 12). GraphPad Prism (version 5.0) software was used for statistical evaluation of data. Correlation analysis was performed using the Pearson test. The unpaired t test was performed when two groups were compared, and all t tests were two tailed. Comparison of more than two groups was performed using one-way analysis of variance followed by Tukey''s post-hoc test. P values of less than 0.05 were considered significant.We found that CD57 on NK cells was predominantly expressed on the CD56dim CD16+ population (Fig. (Fig.1A).1A). The expression patterns of CD57 allowed us to differentiate between three subfractions within CD56dim CD16+ NK cells, namely, CD57, CD57dim, and CD57bright cells. The frequency of the CD57bright subpopulation on CD56dim CD16+ NK cells was increased compared to the frequency of the CD57dim subpopulation on CD56dim CD16+ NK cells in HIV-seropositive patients but not in HIV-seronegative control subjects (Fig. (Fig.1B).1B). This relative increase was associated with substantial reductions of the CD57 CD56dim and the CD57dim CD56dim NK cell subpopulations of total NK cells in our HIV-seropositive cohort compared to these subpopulations in healthy control subjects (means, 36.6% versus 24.8% [P = 0.0002] and 22.4% versus 15.4% [P = 0.0001]), but the frequencies of CD57bright CD56dim NK cells within total NK cells were similar between HIV-infected patients and HIV-seronegative individuals (Fig. (Fig.1C).1C). In accordance with previously published data (3, 23), we could confirm that there is a relative loss of CD56dim CD16+ NK cells in HIV infection (mean, 84.3% versus 67.0%, P = 0.0004) (Fig. (Fig.1D).1D). Our data indicate that this loss is predominantly due to decreased numbers of CD57 CD56dim and CD57dim CD56dim NK cells, leading to a relative overrepresentation of CD57bright cells within CD56dim CD16+ NK cells in HIV infection (Fig. (Fig.1C).1C). There was no significant correlation between the relative loss of CD57 and CD57dim NK cells and absolute numbers of CD56dim CD16+ NK cells, but there was a significant inverse correlation between loss of CD57dim NK cells and increasing percentages of CD56 CD16+ cells (Pearson r = −0.54, P = 0.001) (Fig. (Fig.1E1E).To determine whether the relative decrease of CD57 and CD57dim NK cells was associated with parameters of HIV disease progression, we performed correlation analysis of the percentages of CD57 or CD57dim cells with viral load and CD4 T cell counts. We found no such correlations (Pearson r < 0.2 and P > 0.05 for all) (data not shown). A recent cross-sectional and longitudinal study demonstrated that changes in the NK cell compartment, as shown by down-modulation of Siglec-7 on CD56dim NK cells, are associated with HIV viremia (5). The longitudinal data in the study indicated that the full restoration of NK cell pathologies required 24 months of antiviral treatment. This suggests that alterations in the NK cell compartment can be driven by HIV viral load but that these changes seem to require a significant amount of time.We next investigated the phenotypic and functional properties of the CD57, CD57dim, and CD57bright subpopulations on CD56dim CD16+ NK cells. For KIR2DL2/DL3/DS2, we detected increasing prevalences of KIR-expressing NK cells with increasing expression of CD57 in both healthy control subjects and HIV-infected blood donors (Fig. (Fig.2A).2A). As for KIR3DS1/DL1, we found an increase of KIR+-expressing NK cells between CD57 and CD57bright cells in control individuals and significant differences in percentages of KIR3DS1/DL1-expressing NK cells between CD57 and CD57dim, as well as between CD57 and CD57bright, NK cells in our HIV-positive cohort (Fig. (Fig.2A).2A). These results suggest that increasing CD57 expression is associated with higher numbers of KIR-expressing NK cells in control subjects and HIV-infected subjects.Open in a separate windowFIG. 2.Phenotypic characterization of the CD57, CD57dim, and CD57bright subpopulations of CD56dim CD16+ NK cells. Representative flow cytometry plots for one control and one HIV-infected subject and summary data for all individuals whose PBMCs were analyzed are shown. CD57, CD57dim, and CD57bright NK cells are concatenated to visualize them in a single dot plot. Numbers in contour plots indicate percentages of gated events of the respective subset. (A) Percentages of KIR2DL2/DL3/DS2 and KIR3DS1/DL1-expressing CD57, CD57dim, and CD57bright cells were analyzed in control individuals (n = 15) and HIV-infected subjects (n = 37). (B) Numbers of HLA-DR-expressing and CD27-expressing CD57, CD57dim, and CD57bright cells in control individuals'' (n = 15) and HIV-infected subjects'' (n = 37) PBMCs were analyzed. Horizontal bars in dot plots show the means. ns, not significant (P > 0.05); *, P < 0.05; **, P < 0.01; ***, P < 0.001.We next addressed the question of whether increasing CD57 expression is linked to differential phenotypic properties of NK cells and analyzed the HLA-DR and CD27 expression of the CD57, CD57dim, and CD57bright subpopulations on CD56dim CD16+ NK cells. A significantly higher fraction of NK cells expressed HLA-DR in the CD57 than in the CD57bright subset in both healthy control individuals and HIV-infected subjects (Fig. (Fig.2B).2B). A considerably higher portion of NK cells was positive for HLA-DR in HIV-infected individuals than in control subjects (means, 3.2% versus 13.2% [P < 0.0001], 1.8% versus 10.4% [P = 0.001], and 0.9% versus 6.5% [P = 0.005] for CD57, CD57dim, and CD57bright subpopulations, respectively). We furthermore detected marked differences in frequencies of cells expressing CD27, a member of the tumor necrosis factor (TNF) receptor family (24). CD57 NK cells displayed the highest percentages of CD27+ cells, whereas CD57bright cells were almost all negative for CD27, in both control individuals and HIV-seropositive subjects (Fig. (Fig.2B).2B). We thus show that increasing expression of CD57 is associated with differential activation status and differential phenotype.Next, we sought to determine whether CD57 is linked to differential functional phenotypes by assessing the intracellular expression of granzyme B, perforin, and Ki-67. The frequencies of perforin-expressing NK cells did not vary within the different CD57 subsets of CD56dim CD16+ NK cells (Fig. (Fig.3A).3A). However, we found that CD57bright cells displayed the highest frequencies of granzyme B+ in both control and HIV-seropositive subjects, whereas CD57 cells exhibited the lowest percentages for granzyme B+ cells (Fig. (Fig.3A).3A). Conversely, when we studied the expression of Ki-67, we identified the opposite trend: less than 5% of CD57bright cells in control individuals and less than 10% of CD57bright cells in HIV-infected study subjects expressed Ki-67 (Fig. (Fig.3B).3B). The highest numbers of Ki-67+ cells were found in the CD57 population.Open in a separate windowFIG. 3.Functional characterization of CD57, CD57dim, and CD57bright cells within the CD56dim CD16+ NK cell population. (A) Representative staining results for granzyme B and perforin and summary data for control (n = 14) and HIV-seropositive subjects (n = 36). Numbers in the concatenated contour plots indicate percentages of gated events of the respective subset. B cells were defined as the negative control for granzyme and perforin staining. (B) Percentages of Ki-67+ and CD107a+ cells on CD57, CD57dim, and CD57bright cells within the CD56dim NK cell population in control (n = 14 and n = 9, respectively) and HIV-seropositive (n = 36 and n = 21, respectively) subjects'' PBMCs were analyzed. Horizontal bars in dot plots show the means. NC, negative control; ns, not significant (P > 0.05); *, P < 0.05; **, P < 0.01; ***, P < 0.001.We also assessed the presence of the degranulation marker CD107a on CD57, CD57dim, and CD57bright subpopulations of CD56dim CD16+ NK cells after stimulation with IL-12 and IL-15 and exposure to K562 cells. Similarly to what we had observed for Ki-67 expression, CD57 cells were the most efficient at degranulation when compared with CD57dim and CD57bright cells in HIV-infected individuals. Comparison to healthy controls revealed that there was a higher expression of CD107a in HIV-seropositive subjects for each CD57 subset. However, the most effective degranulation occurred in the CD57 and CD57dim subsets, which are preferentially depleted in HIV infection.We focused our analysis on CD56dim CD16+ NK cells because they constitute the largest NK cell subset in peripheral blood, they are the major NK cell subset expressing CD57 and KIRs, and they are the most prominent subpopulation for cytolytic activity. CD56dim CD16+ cells but not CD56bright CD16 NK cells were reported to be decreased in HIV-infected subjects (23), which we could confirm in our experiments (data not shown). We did not find CD57 on CD56bright CD16 NK cells either in healthy or in HIV-infected individuals. CD57 has been described as a marker for replicative senescence, and its expression has been associated with shorter telomeres and diminished proliferative capacities on T and NK cells (4). The presence of this marker on CD56dim CD16+ but not on CD56bright CD16+ NK cells might explain why the latter subset was shown to proliferate more efficiently upon cytokine stimulation (6). We demonstrated that increasing CD57 expression on NK cells was associated with lower numbers of CD27-expressing cells, a marker which is mainly expressed by CD56bright CD16 NK cells (24). CD56bright CD16 cells were suggested to be early NK cells, which differentiate from CD34dim CD45RA+ hematopoietic precursor cells with high expression of integrin α4β7 (11). These cells can furthermore give rise to CD56dim CD16+ NK cells (7). Our data support this hypothesis, as we show that CD57 can be found on CD56dim CD16+ NK cells but not on CD56bright NK cells, whereas the opposite is observed for CD27.We demonstrate that differential CD57 expression is associated with distinct functional characteristics. We show for the first time that increasing expression of CD57 on CD56dim CD16+ NK cells is associated with increasing prevalence of KIR+ and granzyme B+ cells. These cells appear to be more mature and differentiated in terms of KIR and granzyme B expression but less functionally active, as shown by decreased expression of Ki-67 and CD107a. We therefore propose that CD57 is not only a marker for replicative senescence but, in addition, a marker for terminal differentiation on NK cells, which is characterized by increased expression of KIR and higher granzyme B content and “counterbalanced” by decreased degranulation (CD107a) and decreased proliferation (Ki-67).Notably, we observed consistently higher frequencies of granzyme B+ cells in all three subsets within CD56dim CD16+ NK cells from HIV-seropositive individuals than in healthy control subjects (means, 52.9% versus 78.7% [P < 0.0001], 65.3% versus 89.6% [P < 0.0001], and 76.5% versus 95.0% [P < 0.0001]for CD57, CD57dim, and CD57bright subpopulations, respectively) (Fig. (Fig.1C).1C). Furthermore, HIV infection was associated with higher numbers of Ki-67-expressing NK cells (means, 8.4% versus 16.1% [P = 0.0005], 5.3% versus 11.6% [P = 0.0016], and 4.1% versus 6.2% [P = 0.04]) (Fig. (Fig.1C).1C). These changes, including the strong increase in HLA-DR-expressing NK cells, probably reflect the systemic immune activation in HIV-infected individuals.In summary, these findings support a view of a differential regulation of NK function and are in concordance with maturation of NK cells with high expression of CD57 on NK cells with a more terminally differentiated phenotype. Our data indicate that high turnover; activation status; and active degranulation as characterized by the expression of Ki-67, HLA-DR, and CD107a are mainly features of CD57 and much less of CD57dim NK cells. HIV infection is associated with increased activation, proliferation, and cytotoxicity during “early” stages of CD56dim CD16+ NK cell differentiation compared to their occurrence in healthy controls, but those are the very cells that are significantly decreased in chronic HIV infection. A loss of these functionally more active NK cells may be a yet-unappreciated factor in overall NK cell pathology and a further possible explanation for the impairment of NK cells in their contribution to viral control in HIV infection.  相似文献   

4.
The effects of 3′ single-strand dangling-ends of different lengths, sequence identity of hairpin loop, and hairpin loop biotinylation at different loop residues on DNA hairpin thermodynamic stability were investigated. Hairpins contained 16 bp stem regions and five base loops formed from the sequence, 5′-TAGTCGACGTGGTCC-N5-GGACCACGTCGACTAG-En-3′. The length of the 3′ dangling-ends (En) was n = 13 or 22 bases. The identities of loop bases at positions 2 and 4 were varied. Biotinylation was varied at loop base positions 2, 3 or 4. Melting buffers contained 25 or 115 mM Na+. Average tm values for all molecules were 73.5 and 84.0°C in 25 and 115 mM Na+, respectively. Average two-state parameters evaluated from van’t Hoff analysis of the melting curve shapes in 25 mM Na+ were ΔHvH = 84.8 ± 15.5 kcal/mol, ΔSvH = 244.8 ± 45.0 cal/K·mol and ΔGvH = 11.9 ± 2.1 kcal/mol. In 115 mM Na+, two-state parameters were not very different at ΔHvH = 80.42 ± 12.74 kcal/mol, ΔSvH = 225.24 ± 35.88 cal/K·mol and ΔGvH = 13.3 ± 2.0 kcal/mol. Differential scanning calorimetry (DSC) was performed to test the validity of the two-state assumption and evaluated van’t Hoff parameters. Thermodynamic parameters from DSC measurements (within experimental error) agreed with van’t Hoff parameters, consistent with a two-state process. Overall, dangling-end DNA hairpin stabilities are not affected by dangling-end length, loop biotinylation or sequence and vary uniformly with [Na+]. Consider able freedom is afforded when designing DNA hairpins as probes in nucleic acid based detection assays, such as microarrays.  相似文献   

5.
The effectiveness and potential immunosuppressive effects of anti-inflammatory glucocorticoids in the lungs of severe acute respiratory syndrome (SARS) patients are undefined. We treated porcine respiratory coronavirus (PRCV)-infected conventional pigs with the corticosteroid dexamethasone (DEX) as a model for SARS. Innate and Th1 cytokines in bronchoalveolar lavage (BAL) and serum were elevated in PRCV-infected pigs compared to controls, but were decreased after DEX treatment in the PRCV-infected, DEX-treated (PRCV/DEX) pigs. Although decreased in BAL, Th2 cytokine levels were higher in serum after DEX treatment. Levels of the proinflammatory cytokine interleukin-6 in BAL and serum were decreased in PRCV/DEX pigs early but increased later compared to those in phosphate-buffered saline-treated, PRCV-infected pigs, corresponding to a similar trend for lung lesions. PRCV infection increased T-cell frequencies in BAL, but DEX treatment of PRCV-infected pigs reduced frequencies of T cells; interestingly B and SWC3a(+) (monocytes/macrophages/granulocytes) cell frequencies were increased. DEX reduced numbers of PRCV-stimulated Th1 gamma interferon-secreting cells in spleen, tracheobroncheolar lymph nodes, and blood. Our findings suggest that future glucocorticoid treatment of SARS patients should be reconsidered in the context of potential local immunosuppression of immune responses in lung and systemic Th1 cytokine-biased suppression.  相似文献   

6.
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (Apobec3) antiretroviral factors cause hypermutation of proviral DNA leading to degradation or replication-incompetent HIV-1. However, HIV-1 viral infectivity factor (Vif) suppresses Apobec3 activity through the Cullin 5-Elongin B-Elongin C E3 ubiquitin ligase complex. We examined the effect of genetic polymorphisms in the CUL5 gene (encoding Cullin 5 protein) on AIDS disease progression in five HIV-1 longitudinal cohorts. A total of 12 single nucleotide polymorphisms (SNPs) spanning 93 kb in the CUL5 locus were genotyped and their haplotypes inferred. A phylogenetic network analysis revealed that CUL5 haplotypes were grouped into two clusters of evolutionarily related haplotypes. Cox survival analysis and mixed effects models were used to assess time to AIDS outcomes and CD4+ T cell trajectories, respectively. Relative to cluster I haplotypes, the collective cluster II haplotypes were associated with more rapid CD4+ T cell loss (relative hazards [RH] = 1.47 and p = 0.009), in a dose-dependent fashion. This effect was mainly attributable to a single cluster II haplotype (Hap10) (RH = 2.49 and p = 0.00001), possibly due to differential nuclear protein–binding efficiencies of a Hap10-specifying SNP as indicated by a gel shift assay. Consistent effects were observed for CD4+ T cell counts and HIV-1 viral load trajectories over time. The findings of both functional and genetic epidemiologic consequences of CUL5 polymorphism on CD4+ T cell and HIV-1 levels point to a role for Cullin 5 in HIV-1 pathogenesis and suggest interference with the Vif-Cullin 5 pathway as a possible anti-HIV-1 therapeutic strategy.  相似文献   

7.
The antiviral role of CD4+ T cells in virus-induced pathologies of the central nervous system (CNS) has not been explored extensively. Control of neurotropic mouse hepatitis virus (JHMV) requires the collaboration of CD4+ and CD8+ T cells, with CD8+ T cells providing direct perforin and gamma interferon (IFN-γ)-mediated antiviral activity. To distinguish bystander from direct antiviral contributions of CD4+ T cells in virus clearance and pathology, memory CD4+ T cells purified from wild type (wt), perforin-deficient (PKO), and IFN-γ-deficient (GKO) immune donors were transferred to immunodeficient SCID mice prior to CNS challenge. All three donor CD4+ T-cell populations controlled CNS virus replication at 8 days postinfection, indicating IFN-γ- and perforin-independent antiviral function. Recipients of GKO CD4+ T cells succumbed more rapidly to fatal disease than untreated control infected mice. In contrast, wt and PKO donor CD4+ T cells cleared infectious virus to undetectable levels and protected from fatal disease. Recipients of all CD4+ T-cell populations exhibited demyelination. However, it was more severe in wt CD4+ T-cell recipients. These data support a role of CD4+ T cells in virus clearance and demyelination. Despite substantial IFN-γ-independent antiviral activity, IFN-γ was crucial in providing protection from death. IFN-γ reduced neutrophil accumulation and directed macrophages to white matter but did not ameliorate myelin loss.  相似文献   

8.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening pneumonia and meningoencephalitis in immune compromised individuals. Previous studies have shown that immunization of BALB/c mice with an IFN-γ-producing C. neoformans strain, H99γ, results in complete protection against a second pulmonary challenge with an otherwise lethal cryptococcal strain. The current study evaluated local anamnestic cell-mediated immune responses against pulmonary cryptococcosis in mice immunized with C. neoformans strain H99γ compared to mice immunized with heat-killed C. neoformans (HKC.n.). Mice immunized with C. neoformans strain H99γ had significantly reduced pulmonary fungal burden post-secondary challenge compared to mice immunized with HKC.n. Protection against pulmonary cryptococcosis was associated with increased pulmonary granulomatous formation and leukocyte infiltration followed by a rapid resolution of pulmonary inflammation, which protected the lungs from severe allergic bronchopulmonary mycosis (ABPM)-pathology that developed in the lungs of mice immunized with HKC.n. Pulmonary challenge of interleukin (IL)-4 receptor, IL-12p40, IL-12p35, IFN-γ, T cell and B cell deficient mice with C. neoformans strain H99γ demonstrated a requirement for Th1-type T cell-mediated immunity, but not B cell-mediated immunity, for the induction of H99γ-mediated protective immune responses against pulmonary C. neoformans infection. CD4+ T cells, CD11c+ cells, and Gr-1+ cells were increased in both proportion and absolute number in protected mice. In addition, significantly increased production of Th1-type/pro-inflammatory cytokines and chemokines, and conversely, reduced Th2-type cytokine production was observed in the lungs of protected mice. Interestingly, protection was not associated with increased production of cytokines IFN-γ or TNF-α in lungs of protected mice. In conclusion, immunization with C. neoformans strain H99γ results in the development of protective anti-cryptococcal immune responses that may be measured and subsequently used in the development of immune-based therapies to combat pulmonary cryptococcosis.  相似文献   

9.

Background

Although the etiology of idiopathic pulmonary fibrosis (IPF) remains perplexing, adaptive immune activation is evident among many afflicted patients. Repeated cycles of antigen-induced proliferation cause T-cells to lose surface expression of CD28, and we hypothesized this process might also occur in IPF.

Methodology/Principal Findings

Peripheral blood CD4 T-cells from 89 IPF patients were analyzed by flow cytometry and cytokine multiplex assays, and correlated with clinical events. In comparison to autologous CD4+CD28+cells, the unusual CD4+CD28null lymphocytes seen in many IPF patients had discordant expressions of activation markers, more frequently produced cytotoxic mediators perforin (2.4±0.8% vs. 60.0±7.4%, p<0.0001) and granzyme B (4.5±2.8% vs.74.9±6.5%, p<0.0001), produced greater amounts of many pro-inflammatory cytokines, and less frequently expressed the regulatory T-cell marker FoxP3 (12.9±1.1% vs. 3.3±0.6% p<0.0001). Infiltration of CD4+CD28null T-cells in IPF lungs was confirmed by confocal microscopy. Interval changes of CD28 expression among subjects who had replicate studies were correlated with conterminous changes of their forced vital capacities (rs = 0.49, p = 0.012). Most importantly, one-year freedom from major adverse clinical events (either death or lung transplantation) was 56±6% among 78 IPF patients with CD4+CD28+/CD4total≥82%, compared to 9±9% among those with more extensive CD28 down-regulation (CD4+CD28+/CD4total<82%) (p = 0.0004). The odds ratio for major adverse events among those with the most extensive CD28 down-regulation was 13.0, with 95% confidence intervals 1.6-111.1.

Conclusions/Significance

Marked down-regulation of CD28 on circulating CD4 T-cells, a result of repeated antigen-driven proliferations, is associated with poor outcomes in IPF patients. The CD4+CD28null cells of these patients have potentially enhanced pathogenic characteristics, including increased productions of cytotoxic mediators and pro-inflammatory cytokines. These findings show proliferative T-cell responses to antigen(s) resulting in CD28 down-regulation are associated with progression and manifestations of IPF, and suggest assays of circulating CD4 T-cells may identify patients at greatest risk for clinical deterioration.  相似文献   

10.
Although CD133 has been reported to be a promising colon cancer stem cell marker, the biological functions of CD133+ colon cancer cells remain controversial. In the present study, we investigated the biological differences between CD133+ and CD133 colon cancer cells, with a particular focus on their interactions with cancer-associated fibroblasts, especially CD10+ fibroblasts. We used 19 primary colon cancer tissues, 30 primary cultures of fibroblasts derived from colon cancer tissues and 6 colon cancer cell lines. We isolated CD133+ and CD133 subpopulations from the colon cancer tissues and cultured cells. In vitro analyses revealed that the two populations showed similar biological behaviors in their proliferation and chemosensitivity. In vivo analyses revealed that CD133+ cells showed significantly greater tumor growth than CD133 cells (P = 0.007). Moreover, in cocultures with primary fibroblasts derived from colon cancer tissues, CD133+ cells exhibited significantly more invasive behaviors than CD133 cells (P<0.001), especially in cocultures with CD10+ fibroblasts (P<0.0001). Further in vivo analyses revealed that CD10+ fibroblasts enhanced the tumor growth of CD133+ cells significantly more than CD10 fibroblasts (P<0.05). These data demonstrate that the in vitro invasive properties and in vivo tumor growth of CD133+ colon cancer cells are enhanced in the presence of specific cancer-associated fibroblasts, CD10+ fibroblasts, suggesting that the interactions between these specific cell populations have important roles in cancer progression. Therefore, these specific interactions may be promising targets for new colon cancer therapies.  相似文献   

11.
In the human fetal kidney (HFK) self-renewing stem cells residing in the metanephric mesenchyme (MM)/blastema are induced to form all cell types of the nephron till 34th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms'' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms'' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2) are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24) in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (<10% of HFK cells) and were mostly present within the EpCAMneg and EpCAMdim fractions, indicating putative stem/progenitor markers. In contrast, single markers such as CD24 and CD133 as well as double-positive CD24+CD133+ cells comprise >50% of HFK cells and predominantly co-express EpCAMbright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM+EpCAM- and to a lesser extent in NCAM+EpCAM+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM+EpCAM+FZD7+), MM stem cells (NCAM+EpCAM-FZD7+) or both (NCAM+FZD7+). These results and concepts provide a framework for developing cell selection strategies for human renal cell-based therapies.  相似文献   

12.
Electron spin resonance (ESR) studies of radicals formed by radiation-induced multiple one-electron oxidations of guanine moieties in DNA are reported in this work. Annealing of gamma-irradiated DNA from 77 to 235 K results in the hydration of one electron oxidized guanine (G•+) to form the 8-hydroxy-7,8-dihydroguanin-7-yl-radical (•GOH) having one β-proton coupling of 17–28 G and an anisotropic nitrogen coupling, A, of ~20 G, A = 0 with g = 2.0026 and g = 2.0037. Further annealing to 258 K results in the formation of a sharp singlet at g = 2.0048 with line-width of 5.3 G that is identified as the 8-oxo-7,8-dihydroguanine one-electron-oxidized radical (8-oxo-G•+). This species is formed via two one-electron oxidations of •GOH. These two one-electron oxidation steps leading to the formation of 8-oxo-G•+ from •GOH in DNA, are in accordance with the expected ease of oxidation of •GOH and 8-oxo-G. The incorporation of oxygen from water in G•+ leading to •GOH and to 8-oxo-G•+ is verified by ESR studies employing 17O isotopically enriched water, which provide unambiguous evidence for the formation of both radicals. ESR analysis of irradiated-DNA in the presence of the electron scavenger, Tl3+, demonstrates that the cationic pathway leads to the formation of the 8-oxo-G•+. In irradiated DNA–Tl3+ samples, Tl3+ captures electrons. Tl2+ thus produced is a strong oxidant (2.2 V), which is metastable at 77 K and is observed to increase the formation of G•+ and subsequently of 8-oxo-G•+ upon annealing. We find that in the absence of the electron scavenger the yield of 8-oxo-G•+ is substantially reduced as a result of electron recombinations with G•+ and possible reaction with •GOH.  相似文献   

13.
Following treatment of hepatitis B virus (HBV) monoinfection, HBV-specific T-cell responses increase significantly; however, little is known about the recovery of HBV-specific T-cell responses following HBV-active highly active antiretroviral therapy (HAART) in HIV-HBV coinfected patients. HIV-HBV coinfected patients who were treatment naïve and initiating HBV-active HAART were recruited as part of a prospective cohort study in Thailand and followed for 48 weeks (n = 24). Production of gamma interferon (IFN-γ) and tumor necrosis factor α (TNF-α) in both HBV- and HIV-specific CD8+ T cells was quantified using intracellular cytokine staining on whole blood. Following HBV-active HAART, the median (interquartile range) log decline from week 0 to week 48 for HBV DNA was 5.8 log (range, 3.4 to 6.7) IU/ml, and for HIV RNA it was 3.1 (range, 2.9 to 3.5) log copies/ml (P < 0.001 for both). The frequency of HIV Gag-specific CD8+ T-cell responses significantly decreased (IFN-γ, P < 0.001; TNF-α, P = 0.05). In contrast, there was no significant change in the frequency (IFN-γ, P = 0.21; TNF-α, P = 0.61; and IFN-γ and TNF-α, P = 0.11) or magnitude (IFN-γ, P = 0.13; TNF-α, P = 0.13; and IFN-γ and TNF-α, P = 0.13) of HBV-specific CD8+ T-cell responses over 48 weeks of HBV-active HAART. Of the 14 individuals who were HBV e antigen (HBeAg) positive, 5/14 (36%) lost HBeAg during the 48 weeks of follow-up. HBV-specific CD8+ T cells were detected in 4/5 (80%) of patients prior to HBeAg loss. Results from this study show no sustained change in the HBV-specific CD8+ T-cell response following HBV-active HAART. These findings may have implications for the duration of treatment of HBV in HIV-HBV coinfected patients, particularly in HBeAg-positive disease.Individuals infected with human immunodeficiency virus (HIV) and hepatitis B virus (HBV) are at increased risk of liver disease progression and liver-related mortality (35). Despite the introduction of effective highly active antiretroviral therapy (HAART), liver disease remains a major cause of non-AIDS-related deaths in HIV-1-infected patients (31). Current guidelines recommend the early consideration of HBV-active HAART in the majority of coinfected individuals (28), and treatment of both HBV and HIV is generally lifelong. This is in contrast to HBV-monoinfected patients, where HBV treatment ceases following production of antibody to HBV e antigen (HBeAg) or HBV surface antigen (HBsAg) (23). HBeAg and HBsAg seroconversions are considered important endpoints of treatment as they are associated with HBV DNA clearance, normalization of alanine aminotransferase (ALT), and a reduction in the risk of liver disease (12).Little is known about the immune events precipitating HBeAg or HBsAg seroconversion. However, a reduction in antigen burden following anti-HBV treatment may reduce T-cell tolerance and exhaustion, allowing for a more efficient HBV-specific T-cell and B-cell immune response against either HBeAg and/or HBsAg (11, 13, 21). Circulating HBV-specific CD4+ and CD8+ T cells are rarely detected in untreated chronic HBV infection (5, 24). Following treatment of HBV monoinfection with nucleos(t)ide analogues such as lamivudine (LMV), there is an increase in functional HBV-specific CD4+ and CD8+ T cells both in the peripheral blood (5, 18) and within the liver (32). However, recovery of HBV-specific T cells appears to be transient and has been shown to decline following long-term therapy (5, 14, 20).We have previously shown that the HBV-specific T-cell response is impaired in HIV-HBV coinfection (7, 9). In one small observational study (n = 5), HBV-active HAART was associated with the recovery of CD8+ HBV-specific T cells (19); however, in this study, two patients had received prior HAART, and the HBV-specific T-cell responses were examined only during the first 24 weeks of treatment (19). In addition, HBeAg status was not defined, and HBV-specific T-cell responses were measured only by IFN-γ production following stimulation with HLA-A2-restricted epitopes (19).In the present study, we used an overlapping peptide library covering the complete HBV genome to assess change in HBV-specific CD8+ T cells following the introduction of HBV-active HAART in treatment-naïve HIV-HBV-coinfected patients in Thailand. Overall, we show that there was no sustained change in the magnitude, frequency, or quality of HBV-specific T-cell responses following initiation of effective HBV-active HAART.  相似文献   

14.
Human immunodeficiency virus (HIV)-infected infants in sub-Saharan Africa typically progress to AIDS or death by 2 years of life in the absence of antiretroviral therapy. This rapid progression to HIV disease has been related to immaturity of the adaptive immune response in infants. We screened 740 infants born to HIV-infected mothers and tracked development and specificity of HIV-specific CD8+ T-cell responses in 63 HIV-infected infants identified using gamma interferon enzyme-linked immunospot assays and intracellular cytokine staining. Forty-four in utero-infected and 19 intrapartum-infected infants were compared to 45 chronically infected children >2 years of age. Seventy percent (14 of 20) in utero-infected infants tested within the first week of life demonstrated HIV-specific CD8+ T-cell responses. Gag, Pol, and Nef were the principally targeted regions in chronic pediatric infection. However, Env dominated the overall response in one-third (12/36) of the acutely infected infants, compared to only 2/45 (4%) of chronically infected children (P = 0.00083). Gag-specific CD4+ T-cell responses were minimal to undetectable in the first 6 months of pediatric infection. These data indicate that failure to control HIV replication in in utero-infected infants is not due to an inability to induce responses but instead suggest secondary failure of adaptive immunity in containing this infection. Moreover, the detection of virus-specific CD8+ T-cell responses in the first days of life in most in utero-infected infants is encouraging for HIV vaccine interventions in infants.  相似文献   

15.
Invasive serotype 2 (cps2+) strains of Streptococcus suis cause meningitis in pigs and humans. Four case reports of S. suis meningitis in hunters suggest transmission of S. suis through the butchering of wild boars. Therefore, the objective of this study was to investigate the prevalence of potentially human-pathogenic S. suis strains in wild boars. S. suis was isolated from 92% of all tested tonsils (n = 200) from wild boars. A total of 244 S. suis isolates were genotyped using PCR assays for the detection of serotype-specific genes, the hemolysin gene sly, and the virulence-associated genes mrp and epf. The prevalence of the cps2+ genotype among strains from wild boars was comparable to that of control strains from domestic pig carriers. Ninety-five percent of the cps2+ wild boar strains were positive for mrp, sly, and epf*, the large variant of epf. Interestingly, epf* was significantly more frequently detected in cps2+ strains from wild boars than in those from domestic pigs; epf* is also typically found in European S. suis isolates from humans, including a meningitis isolate from a German hunter. These results suggest that at least 10% of wild boars in Northwestern Germany carry S. suis strains that are potentially virulent in humans. Additional amplified fragment length polymorphism analysis supported this hypothesis, since homogeneous clustering of the epf* mrp+ sly+ cps2+ strains from wild boars with invasive human and porcine strains was observed.  相似文献   

16.
Previous studies have suggested that polyfunctional mucosal CD8+ T-cell responses may be a correlate of protection in HIV controllers. Mucosal T-cell breadth and/or specificity may also contribute to defining protective responses. In this study, rectal CD8+ T-cell responses to HIV Gag, Env, and Nef were mapped at the peptide level in four subject groups: elite controllers (n = 16; viral load [VL], <75 copies/ml), viremic controllers (n = 14; VL, 75 to 2,000 copies/ml), noncontrollers (n = 14; VL, >10,000 copies/ml), and antiretroviral-drug-treated subjects (n = 8; VL, <75 copies/ml). In all subject groups, immunodominant CD8+ T-cell responses were generally shared by blood and mucosa, although there were exceptions. In HIV controllers, responses to HLA-B27- and HLA-B57-restricted epitopes were common to both tissues, and their magnitude (in spot-forming cells [SFC] per million) was significantly greater than those of responses restricted by other alleles. Furthermore, peptides recognized by T cells in both blood and rectal mucosa, termed “concordant,” elicited higher median numbers of SFC than discordant responses. In magnitude as well as breadth, HIV Gag-specific responses, particularly those targeting p24 and p7, dominated in controllers. Responses in noncontrollers were more evenly distributed among epitopes in Gag, Env, and Nef. Viremic controllers showed significantly broader mucosal Gag-specific responses than other groups. Taken together, these findings demonstrate that (i) Gag-specific responses dominate in mucosal tissues of HIV controllers; (ii) there is extensive overlap between CD8+ T cells in blood and mucosal tissues, with responses to immunodominant epitopes generally shared by both sites; and (iii) mucosal T-cell response breadth alone cannot account for immune control.Despite more than two decades of intensive research, the immunologic correlates of protection from human immunodeficiency virus (HIV) infection and disease progression remain incompletely understood. To date, the majority of studies of HIV-specific T-cell responses have focused on the measurement of such responses in peripheral blood lymphocytes. Nevertheless, the majority of the body''s lymphocytes are housed in mucosal tissues, notably the gastrointestinal (GI) tract (18, 33, 40). The gastrointestinal mucosa also serves as a major target of HIV infection and CD4+ T-cell depletion (7, 25, 36), as well as an important site of transmission (18, 33, 40). Antigen-experienced T cells may preferentially traffic to tissue sites of infection (50), where they may also expand in an antigen-driven manner. Because of the unique role of the gastrointestinal mucosa in HIV pathogenesis, detailed studies of HIV-specific immune responses in this compartment may contribute important insights to our understanding of the disease process.An important question is the degree to which T-cell responses in mucosal tissues are “compartmentalized” and distinct in specificity and/or clonality from those found elsewhere in the body, including in peripheral blood. Because of the technical challenges associated with obtaining large numbers of viable lymphocytes from mucosal biopsy specimen tissue, comprehensive mapping of the fine specificity of mucosal HIV-specific T-cell responses has been difficult. Relying on a polyclonal expansion approach, Ibarrondo and colleagues successfully mapped HIV-specific CD8+ T-cell responses in blood and rectal mucosa of chronically infected persons to the level of peptide pools but not to individual epitopes (29). Their studies revealed a similar pattern of responses, and nearly identical immunodominance hierarchies, in the two tissue sites.We have focused our recent studies of mucosal immunity on a group of individuals who control HIV infection in the absence of antiretroviral therapy. These are often called “long-term nonprogressors” (LTNP) (14), referring to their ability to maintain normal CD4+ T-cell counts for more than 10 years without medication. LTNP are believed to account for 5 to 15% of the HIV-infected population. Several recent studies have used the term “HIV controllers,” defined as those who maintain undetectable plasma HIV RNA levels (“elite controllers”) and those who have persistently detectable but low plasma HIV RNA levels (“viremic controllers”). Elite controllers represent less than 1% of the HIV-infected population (14). In contrast, individuals with viral loads of >10,000 copies/ml in the absence of therapy are termed “noncontrollers.” Recently, we found that “polyfunctional” HIV-specific T cells, producing multiple antiviral factors, were significantly more abundant in gastrointestinal mucosa of HIV controllers than in those of noncontrollers or subjects on highly active antiretroviral therapy (HAART) (20). Furthermore, in many cases these strong, polyfunctional mucosal T-cell responses were not mirrored in peripheral blood, suggesting that HIV-specific T cells either preferentially traffic to or undergo expansion within mucosal tissues.Because of these findings, we undertook a follow-up study to determine the breadth and fine specificity, to the peptide level, of mucosal CD8+ T-cell responses to HIV Gag, Env, and Nef among HIV controllers, noncontrollers, and individuals on HAART. We hypothesized that controllers might harbor an unusually broad repertoire of HIV-specific CD8+ T cells in mucosal tissues. We found a similar response breadth in mucosal tissues of all three subject groups, arguing against a critical role for mucosal T-cell response breadth in determining the extent of HIV control. In contrast, we found that high-magnitude mucosal responses directed at well-conserved regions in Gag were a strong and consistent correlate of control. Finally, concordant responses, defined as those common to blood and mucosa, were generally stronger than discordant responses, underscoring the observation that T cells responding to immunodominant epitopes are broadly distributed throughout the body in both controllers and noncontrollers.  相似文献   

17.

Background

Non adherent bone marrow derived cells (NA-BMCs) have recently been described to give rise to multiple mesenchymal phenotypes and have an impact in tissue regeneration. Therefore, the effects of murine bone marrow derived NA-BMCs were investigated with regard to engraftment capacities in allogeneic and syngeneic stem cell transplantation using transgenic, human CD4+, murine CD4−/−, HLA-DR3+ mice.

Methodology/Principal Findings

Bone marrow cells were harvested from C57Bl/6 and Balb/c wild-type mice, expanded to NA-BMCs for 4 days and characterized by flow cytometry before transplantation in lethally irradiated recipient mice. Chimerism was detected using flow cytometry for MHC-I (H-2D[b], H-2K[d]), mu/huCD4, and huHLA-DR3). Culturing of bone marrow cells in a dexamethasone containing DMEM medium induced expansion of non adherent cells expressing CD11b, CD45, and CD90. Analysis of the CD45+ showed depletion of CD4+, CD8+, CD19+, and CD117+ cells. Expanded syngeneic and allogeneic NA-BMCs were transplanted into triple transgenic mice. Syngeneic NA-BMCs protected 83% of mice from death (n = 8, CD4+ donor chimerism of 5.8±2.4% [day 40], P<.001). Allogeneic NA-BMCs preserved 62.5% (n = 8) of mice from death without detectable hematopoietic donor chimerism. Transplantation of syngeneic bone marrow cells preserved 100%, transplantation of allogeneic bone marrow cells 33% of mice from death.

Conclusions/Significance

NA-BMCs triggered endogenous hematopoiesis and induced faster recovery compared to bone marrow controls. These findings may be of relevance in the refinement of strategies in the treatment of hematological malignancies.  相似文献   

18.
Increased lymphocyte turnover is a hallmark of pathogenic lentiviral infection. To investigate perturbations in lymphocyte dynamics in natural hosts with nonpathogenic simian immunodeficiency virus (SIV) infection, the nucleoside analog bromodeoxyuridine (BrdU) was administered to six naturally SIV-infected and five SIV-negative sooty mangabeys. As a measure of lymphocyte turnover, we estimated the mean death rate by fitting a mathematical model to the fraction of BrdU-labeled cells during a 2-week labeling and a median 10-week delabeling period. Despite significantly lower total T- and B-lymphocyte counts in SIV-infected sooty mangabeys than in SIV-negative mangabeys, the turnover rate of B lymphocytes and CD4+ and CD8+ T lymphocytes was not increased in the SIV-infected animals. A small, rapidly proliferating CD45RA+ memory subset and a large, slower-proliferating CD45RA central memory subset of CD4+ T lymphocytes identified in the peripheral blood of sooty mangabeys also did not show evidence of increased turnover in the context of SIV infection. Independently of SIV infection, the turnover of CD4+ T lymphocytes in sooty mangabeys was significantly higher (P < 0.01) than that of CD8+ T lymphocytes, a finding hitherto not reported in rhesus macaques or humans. The absence of aberrant T-lymphocyte turnover along with an inherently high rate of CD4+ T-lymphocyte turnover may help to preserve the pool of central memory CD4+ T lymphocytes in viremic SIV-infected sooty mangabeys and protect against progression to AIDS.  相似文献   

19.
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is an infectious disease characterized by severe reproductive deficiency in pregnant sows, typical respiratory symptoms in piglets, and high mortality rate of piglets. In this study, we employed an Affymetrix microarray chip to compare the gene expression profiles of lung tissue samples from Dapulian (DPL) pigs (a Chinese indigenous pig breed) and Duroc×Landrace×Yorkshire (DLY) pigs after infection with PRRSV. During infection with PRRSV, the DLY pigs exhibited a range of clinical features that typify the disease, whereas the DPL pigs showed only mild signs of the disease. Overall, the DPL group had a lower percentage of CD4+ cells and lower CD4+/CD8+ratios than the DLY group (p<0.05). For both IL-10 and TNF-α, the DLY pigs had significantly higher levels than the DPL pigs (p<0.01). The DLY pigs have lower serum IFN-γ levels than the DPL pigs (p<0.01). The serum IgG levels increased slightly from 0 dpi to 7 dpi, and peaked at 14 dpi (p<0.0001). Microarray data analysis revealed 16 differentially expressed (DE) genes in the lung tissue samples from the DLY and DPL pigs (q≤5%), of which LOC100516029 and LOC100523005 were up-regulated in the PRRSV-infected DPL pigs, while the other 14 genes were down-regulated in the PRRSV-infected DPL pigs compared with the PRRSV-infected DLY pigs. The mRNA expression levels of 10 out of the 16 DE genes were validated by real-time quantitative RT-PCR and their fold change was consistent with the result of microarray data analysis. We further analyzed the mRNA expression level of 8 differentially expressed genes between the DPL and DLY pigs for both uninfected and infected groups, and found that TF and USP18 genes were important in underlying porcine resistance or susceptibility to PRRSV.  相似文献   

20.

Background

Global programs of anti-HIV treatment depend on sustained laboratory capacity to assess treatment initiation thresholds and treatment response over time. Currently, there is no valid alternative to CD4 count testing for monitoring immunologic responses to treatment, but laboratory cost and capacity limit access to CD4 testing in resource-constrained settings. Thus, methods to prioritize patients for CD4 count testing could improve treatment monitoring by optimizing resource allocation.

Methods and Findings

Using a prospective cohort of HIV-infected patients (n = 1,956) monitored upon antiretroviral therapy initiation in seven clinical sites with distinct geographical and socio-economic settings, we retrospectively apply a novel prediction-based classification (PBC) modeling method. The model uses repeatedly measured biomarkers (white blood cell count and lymphocyte percent) to predict CD4+ T cell outcome through first-stage modeling and subsequent classification based on clinically relevant thresholds (CD4+ T cell count of 200 or 350 cells/µl). The algorithm correctly classified 90% (cross-validation estimate = 91.5%, standard deviation [SD] = 4.5%) of CD4 count measurements <200 cells/µl in the first year of follow-up; if laboratory testing is applied only to patients predicted to be below the 200-cells/µl threshold, we estimate a potential savings of 54.3% (SD = 4.2%) in CD4 testing capacity. A capacity savings of 34% (SD = 3.9%) is predicted using a CD4 threshold of 350 cells/µl. Similar results were obtained over the 3 y of follow-up available (n = 619). Limitations include a need for future economic healthcare outcome analysis, a need for assessment of extensibility beyond the 3-y observation time, and the need to assign a false positive threshold.

Conclusions

Our results support the use of PBC modeling as a triage point at the laboratory, lessening the need for laboratory-based CD4+ T cell count testing; implementation of this tool could help optimize the use of laboratory resources, directing CD4 testing towards higher-risk patients. However, further prospective studies and economic analyses are needed to demonstrate that the PBC model can be effectively applied in clinical settings. Please see later in the article for the Editors'' Summary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号