首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Interaction of camel lens zeta-crystallin with aspirin was investigated by activity and fluorescence measurements. Aspirin minimally inhibited the oxidoreductase activity of the enzyme and weakly quenched its fluorescence. However, significant fluorescence quenching of zeta-crystallin coincided with the appearance of a fluorescence signal characteristic of salicylic acid thereby raising the possibility that salicylic acid might have been the moiety responsible for inhibition and fluorescence quenching. Direct fluorescence measurements showed that zeta-crystallin had a much higher affinity for salicylic acid than aspirin (K(i) of about 24 microM for salicylic acid versus 630 microM for aspirin). Salicylic acid was also far more effective in inhibiting zeta-crystallin than aspirin (K(i) values were 23 microM versus 820 microM, respectively). Inhibition kinetics suggested that salicylic acid interacted with zeta-crystallin via a binding site that was distinct from that of NADPH. Salicylic acid also interacted with and quenched the fluorescence of camel lens alpha-crystallin suggesting a general mode of interaction with lens proteins. Within the normal therapeutic concentrations of salicylic acid or aspirin, only crystallin-salicylic acid interactions might be significant. These results showed that camel lens zeta- and alpha-crystallin exhibited remarkable selectivity for salicylic acid over aspirin, and thus, could be considered as salicylate-binding proteins.  相似文献   

2.
水杨酸在植物抗病中的作用   总被引:1,自引:0,他引:1  
水杨酸是一种重要的能激活植物抗病防卫反应的内源信号分子。本文首先介绍了水杨酸的基本性质及水杨酸在植物抗病中的作用,然后从水杨酸与水杨酸结合蛋白的相互作用以及水杨酸介导的信号传导途径与非水杨酸介导的信号途径等方面初步探讨了水杨酸诱导植物抗病性的作用机制,最后总结了研究水杨酸作用机制对植物抗性生理和抗性分子生物学发展的意义。  相似文献   

3.
水杨酸在植物抗病中的作用   总被引:30,自引:0,他引:30  
水杨酸是一种重要的能激活植物抗病防卫反应的内源信号分子,本文首先介绍了水杨酸的基本性质及水杨酸在植物抗病中的作用,然后从水杨酸与水杨酸结合蛋白的相互作用以及水杨酸介导的信号传导途径与非水杨酸介导的信号途径等方面初步探讨了水杨酸诱导植物抗病性的作用机制,最后总结了研究水杨酸作用机制对植物抗性生理和抗性分子生物学发展的意义。  相似文献   

4.
Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicylic acid-independent pathways provides great regulatory potential for activating multiple resistance mechanisms in varying combinations.  相似文献   

5.
水杨酸对植物光合作用影响的研究进展   总被引:4,自引:0,他引:4  
水杨酸作为一种信号分子,对植物呼吸代谢、种子萌发、成花诱导、衰老及抗逆等生理过程都有调节作用,近年来有关水杨酸对植物光合作用影响的研究取得了很大进展。水杨酸能够调节植物叶片气孔运动、光合色素含量、光合机构性能、光合碳同化酶活性等各方面,其效果因浓度、植物种类、环境条件等不同而表现出差异。该文就近年来国内外有关水杨酸对植物光合作用的影响(主要从植物叶片气孔运动、光合色素含量、光合机构性能和光合碳同化酶活性等方面)研究进展进行综述。  相似文献   

6.
水杨酸诱导植物抗性的研究进展   总被引:15,自引:0,他引:15  
水杨酸是一种重要的内源信号分子,能够激活一系列植物抗性防卫反应.为了研究这种抗性反应,对水杨酸诱导植物抗病性、抗旱性、抗盐性及与乙烯作用的新进展作了概述,并从水杨酸与过氧化氢及其代谢酶类相互作用的角度探讨了水杨酸诱导植物抗性生理的分子机理.  相似文献   

7.
The salicylic acid loop in plant defense   总被引:14,自引:0,他引:14  
Salicylic acid is an important signal molecule in plant defense. In the past two years, significant progress has been made in understanding the mechanism of salicylic-acid biosynthesis and signaling in plants. A pathway similar to that found in some bacteria synthesizes salicylic acid from chorismate via isochorismate. Salicylic-acid signaling is mediated by at least two mechanisms, one requiring the NON-EXPRESSOR OF PR1 (NPR1) gene and a second that is independent of NPR1. Feedback loops involving salicylic acid modulate upstream signals. These feedback loops may provide a point for integrating developmental, environmental and other defense-associated signals, and thus fine-tune the defense responses of plants.  相似文献   

8.
Salicylic acid is a widely used nonsteroidal anti-inflammatory drug (NSAID). But it is known to cause serious liver damage occasionally. Mitochondrial dysfunction and oxidative stress are predicted to be the major factors of salicylic acid-induced liver injury. We investigated the influence of salicylic acid on ATP contents, oxygen consumption and lipid peroxidation in the presence of the same concentration of salicylic acid. Leakage of lactate dehydrogenase (LDH) was significantly higher in the presence of 5 mM salicylic acid than in its absence. Salicylic acid-induced thiobarbituric acid-reactive substance (TBARS) formation and spontaneous chemiluminescence (CL) in rat hepatocytes, whereas antioxidants, such as promethazine (PMZ) and N,N-diphenylphenylenediamine (DPPD), suppressed both TBARS formation and LDH leakage. TBARS formation in rat liver microsomes was suppressed by diethyldithiocarbamate (a specific inhibitor of cytochrome P450 (CYP)2E1) and diclofenac (a specific inhibitor of CYP2C11). These results suggest that salicylic acid-induced lipid peroxidation was related to oxidative metabolism mediated by CYP2E1 and CYP2C11.On the other hand, 5 mM salicylic acid induced a drastic decrease of ATP contents in rat isolated hepatocytes. Furthermore, mitochondrial respiration control ratio (RC ratio), calculated by State 3/State 4 also decreased with the increase of salicylic acid concentration. These findings suggest that salicylic acid would trigger mitochondrial dysfunction and cause ATP decrease, leading to lethal liver cell injury by lipid peroxidation, although this hypothesis remains to be elucidated in vivo.  相似文献   

9.
研究了杉木自毒物质邻羟基苯甲酸胁迫对2个杉木优良无性系组培苗(分别记为01号、02号)叶片的膜质过氧化及渗透物质的化感效应。结果表明:(1)与对照相比,邻羟基苯甲酸对杉木叶片MDA的化感效应表现为低浓度抑制、高浓度促进,对01号的促进效应低于02号;(2)邻羟基苯甲酸胁迫使杉木叶片电导率及伤害率增加,对照与各胁迫处理间均达显著差异(P〈0.05),对02号伤害率及电导率的促进效应均大于01号;(3)40mg/L、80mg/L胁迫浓度对2个杉木无性系可溶性糖含量的化感效应随时间变化由抑制转为促进,对01号的促进效应更大、更早,120mg/L胁迫浓度均表现为抑制效应,对01号的抑制效应更小;(4)邻羟基苯甲酸胁迫对杉木叶片游离氨基酸含量均表现为促进效应,且随胁迫浓度升高而增大,对01号的促进效应远远大于02号。研究认为,01号杉木优良无性系具有较强的耐自毒物质胁迫的能力。  相似文献   

10.
Salicylic acid has been shown to decrease gastric mucosal lesions induced by indomethacin in the rat. In vitro, it has also been shown to counteract the inhibitory effect of indomethacin and aspirin on the cyclooxygenase enzyme system in seminal vesicle microsomes and in platelets and vascular tissue. The hypothesis that the mechanism of salicylic acid "protection" against indomethacin-induced gastric lesions involves interference with indomethacin-induced mucosal cyclooxygenase inhibition was tested. Male, fasted rats were treated with intragastric salicylic acid in doses of 50, 100, 200, 300, or 400 mg/kg concomitantly with a sc injection of 20 mg/kg of indomethacin. Gastric mucosal lesions and mucosal cyclooxygenase activity (as measured by ex vivo prostaglandin F2 alpha synthesis) were examined 3 hr later. Intragastric salicylic acid, 200-400 mg/kg, significantly reduced indomethacin-induced lesion formation, while counteracting significantly indomethacin inhibition of prostaglandin synthesis. Salicylic acid alone did not significantly change cyclooxygenase activity. It is concluded that topical salicylic acid can decrease indomethacin-induced gastric mucosal lesion in the rat, in part, by counteracting the inhibitory effect of indomethacin at the cyclooxygenase level.  相似文献   

11.
Effect of salicylic acid and Fusarium moniliforme on trypsin inhibitor activity, lectine activity, lectine carbohydrate specificity, and salicylic acid content in sprouted maize was studied. Changes in trypsin inhibitor activity, lectine activity, and content of endogenous salicylic acid during action of exogenous salicylic acid or pathogen were shown to depend on resistance of maize lines to fusariosis pathogen. Salicylic acid was proposed to take part in induction of trypsin and lectine inhibitors. Trypsin and lectine inhibitors are important in formation of sprouted maize resistance to abiotic and biotic factors.  相似文献   

12.
To clarify one mechanism of aspirin-induced gastric mucosal damage, inactivation of creatine kinase (CK) by salicylic acid that is easily produced from aspirin in vivo was examined in the presence of lactoperoxidase (LPO) and H2O2 (LPO-H2O2). Salicylic acid inactivated CK (rabbit muscle) during its interaction with LPO-H2O2. CK activity in gastric mucosal homogenate decreased dependent on the concentration of salicylic acid in the presence of LPO-H2O2. Oxygen radical scavengers did not prevent the inactivation of CK. Direct detection of free radicals of salicylic acid by electron spin resonance was unsuccessful. However, glutathionyl radicals were formed during the interaction of salicylic acid with LPO-H2O2 in the presence of reduced glutathione and 5,5-dimethyl-1-pyrroline oxide as a spin trap agent. Among salicylic acid-related drugs, salsalate, but not aspirin and ethenzamide, inactivated CK, indicating the phenolic hydroxyl group is oxidized by LPO-H2O2. During oxidation of salicylic acid by LPO-H2O2, the sulfhydryl group in CK markedly decreased, and salicylic acid bound to CK. These results indicate that CK was inactivated through loss of the sulfhydryl group and binding of salicylic acid.  相似文献   

13.
以不同浓度水杨酸、不同浸果时间研究水杨酸对板栗果实冷藏效果的影响。结果表明:水杨酸可抑制贮藏期间栗果呼吸强度,推迟呼吸跃变的到来;还可抑制VC含量和淀粉含量;水杨酸处理后栗果腐烂率和质量损失率均降低。最佳处理方式为0.5 g/L水杨酸浸果10 m in。  相似文献   

14.
Applying a salicylic acid soil drench to oilseed rape plantsincreased the concentration of glucosinolates in their leaves.The intensity of this ‘induction’ depended on theconcentration of salicylic acid applied and the age of the leaf:developing leaves retained enhanced levels of glucosinolateslonger than mature leaves. 2-Phenylethylglucosinolate showedthe greatest increase in concentration, with only minor increasesin other glucosinolates in developing leaves. This responseto salicylic acid is more specific than that observed followingfungal infection or damage by herbivores. The results presentedhere are among the first to demonstrate an increase in secondarymetabolite content in response to salicylic acid. The implicationsof this response are discussed in terms of the role of salicylicacid and glucosinolates in plant defence. Key words: Salicylic acid, oilseed rape, Brassica napus, glucosinolates  相似文献   

15.
Salicylic acid decarboxylase (Sdc) can produce salicylic acid from phenol; it was found in the yeast Trichosporon moniliiforme WU-0401 and was for the first time enzymatically characterized, with the sdc gene heterologously expressed. Sdc catalyzed both reactions: decarboxylation of salicylic acid to phenol and the carboxylation of phenol to form salicylic acid without any byproducts. Both reactions were detected without the addition of any cofactors and occurred even in the presence of oxygen, suggesting that this Sdc is reversible, nonoxidative, and oxygen insensitive. Therefore, it is readily applicable in the selective production of salicylic acid from phenol, the enzymatic Kolbe-Schmitt reaction. The deduced amino acid sequence of the gene, sdc, encoding Sdc comprises 350 amino acid residues corresponding to a 40-kDa protein. The recombinant Escherichia coli BL21(DE3) expressing sdc converted phenol to salicylic acid with a 27% (mol/mol) yield at 30 °C for 9 h.  相似文献   

16.
Inhibition of ethylene biosynthesis by salicylic Acid   总被引:33,自引:5,他引:28       下载免费PDF全文
Salicylic acid inhibited ethylene formation from ACC in self-buffered (pH 3.8) pear (Pyrus communis) cell suspension cultures with a K1app of about 10 micromolar after 1 to 3 hours incubation. Inhibition appeared noncompetitive. Among 22 related phenolic compounds tested, only acetylsalicylic acid showed similar levels of inhibition. Inhibition by salicylic acid was inversely dependent on the pH of the culture medium and did not require a continuous external supply of salicylate. When compared to known inhibitors of the ethylene forming enzyme, cobalt, n-propyl gallate, and dinitrophenol, inhibition by salicylic acid most closely resembled that by dinitrophenol but salicylic acid did not produce the same degree of respiratory stimulation. Results are discussed in terms of other known effects of salicylic acid on plants, pH-dependency, and the possible influence of salicylic acid on electron transport.  相似文献   

17.
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence‐related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full‐length cDNAs of GmSAMT1 from a SCN‐resistant soybean line and from a SCN‐susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli‐expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μm . To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN‐susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.  相似文献   

18.
Traw MB  Bergelson J 《Plant physiology》2003,133(3):1367-1375
Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds.  相似文献   

19.
Aim: Chromium (Cr(VI)) would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. Cr(VI) toxicity is often associated with oxidative stress, caused by the excessive formation of reactive oxygen species (ROS). In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. Salicylic acid (SA) plays a key role in the signal transduction pathways of various stress responses, demonstrating the protective effect of SA against abiotic stress factors. So, the present investigation was carried out to study the amelioration of pernicious effects of different concentration of Cr(VI) (0.0, 2.0, and 4.0?mg Cr(VI) kg?1 soil in the form of potassium dichromate) by treatments of salicylic acid solution viz. pretreatment and foliar spray via antioxidative enzymes and their metabolites.

Results: With different treatments of salicylic acid solution, the reinstatement from ill effects of Cr(VI) toxicity was contemplated but the most conspicuous effect was observed when salicylic acid solution was supplied through the foliar spray (0.50?mM). This was accompanied with an increase in ascorbate peroxidase activity and hydrogen peroxide content and decrease in peroxidase activity and ascorbic acid content.

Significance of the study: This study suggests that salicylic acid when applied through pre-treatment of seeds or through a foliar spray can be used to ameliorate the toxic effects of chromium (VI). Salicylic acid has the great potential for reducing the toxicity of heavy metals without negatively impacting the growth of the plants.  相似文献   

20.
Salicylic acid added as the iron chelate causes extension ofthe pedicels and distortion in the growth of daughter frondsof Lemna gibba, when included in a nutrient salt medium whichcontains the ammonium ion. The effect is abolished if iron orcopper is omitted from the nutrient solution or if the mediumcontains only nitrate nitrogen. The effect is specific for salicylicacid or acetyl salicylic acid; substituted or analogous compoundsare without effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号