首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
There is currently international interest in the application of DNA barcoding as a tool for plant species discrimination and identification. In this study, we evaluated the utility of five candidate plant DNA barcoding regions [rbcL, matK, trnH-psbA, trnL-F and internal transcribed spacer (ITS)] in Eurasian yews. This group of species is taxonomically difficult because of a lack of clear-cut morphologically differences between species and hence represents a good test case for DNA barcoding. Forty-seven accessions were analysed, representing all taxa treated in current floristic works and covering most of the distribution range of Taxus in Eurasia. As single loci, trnL-F and ITS showed the highest species discriminatory power, each resolving 11 of 11 lineages (= barcode taxa). Species discrimination using matK, trnH-psbA and rbcL individually was lower, with matK resolving 8 of 10, trnH-psbA 7 of 11 and rbcL 5 of 11 successfully sequenced lineages. The proposed CBOL core barcode (rbcL + matK) resolved 8 of 11 lineages. Combining loci generally increased the robustness (measured by clade support) of the barcoding discrimination. Based on overall performance, trnL-F and ITS, separately or combined, are proposed as barcode for Eurasian Taxus. DNA barcoding discriminated recognized taxa of Eurasian Taxus, namely T. baccata, T. cuspidata, T. fuana and T. sumatrana, and identified seven lineages among the T. wallichiana group, some with distinct geographical distributions and morphologies, and potentially representing new species. Using the proposed DNA barcode, a technical system can be established to rapidly and reliably identify Taxus species in Eurasia for conservation protection and for monitoring illegal trade.  相似文献   

2.
Distinguishing yam species based on morphological traits is extremely difficult and unreliable, posing a challenge to breeders and genebank curators. Development of a molecular assay based on DNA barcoding can facilitate rapid and accurate identification of important Dioscorea species. To develop a DNA barcoding system forDioscorea species identification, the rbcL and matK loci (in unison and in combination), the non-coding intergenic spacer trnH-psbA of the chloroplast genome, and the nuclear ITS regions were investigated using criteria for developing candidate DNA barcodes. All DNA barcoding sequences were assessed for ease of PCR amplification, sequence quality and species discriminatory power. Amongst the markers investigated, the matK locus performed well in terms of species identification (63.2%), in addition to detecting high interspecific variation with mean divergence of 0.0196 (SD=0.0209). The combination of the two coding regions (rbcL + matK) was determined to be the optimal (76.2%) DNA barcoding approach as 16 out of 21 species could be defined. While the rbcL exhibited good PCR amplification efficiency and sequence quality, its species discriminatory power was relatively poor with 47.6% identification. Similarly, the trnH-psbA region had a weak discrimination efficiency of only 36.8%. While the development of more robust DNA barcoding systems is an ongoing challenge, our results indicate that therbcL + matK combination can be utilized as multi-locus DNA barcode regions for Dioscorea species identification.  相似文献   

3.

Background and Aims

The gametophyte phase of ferns plays an important role in habitat selection, dispersal, adaptation and evolution. However, ecological studies on fern gametophytes have been impeded due to the difficulty of species identification of free-living gametophytes. DNA barcoding provides an alternative approach to identifying fern gametophytes but is rarely applied to field studies. In this study, an example of field vittarioid gametophyte identification using DNA barcoding, which has not been done before, is given.

Methods

A combination of distance-based and tree-based approaches was performed to evaluate the discriminating power of three candidate barcodes (matK, rbcL and trnL-F) on 16 vittarioid sporophytes. Sequences of the trnL-F region were generated from 15 fern gametophyte populations by tissue-direct PCR and were compared against the sporophyte dataset, using BLAST.

Key Results trnL-F

earns highest primer universality and discriminatory ability scores, whereas PCR success rates were very low for matK and rbcL regions (10·8 % and 41·3 %, respectively). BLAST analyses showed that all the sampled field gametophytes could be successfully identified to species level. Three gametophyte populations were also discovered to be living beyond the known occurrence of their sporophyte counterparts.

Conclusions

This study demonstrates that DNA barcoding (i.e. reference databasing, tissue-direct PCR and molecular analysis), especially the trnL-F region, is an efficient tool to identify field gametophytes, and has considerable potential in exploring the ecology of fern gametophytes.  相似文献   

4.
DNA barcoding is currently gaining popularity due to its simplicity and high accuracy as compared to the complexity and subjective biases associated with morphology-based identification of taxa. The standard chloroplast DNA barcode for land plants recommended by the Consortium for the Barcode of Life (CBOL) plant working group needs to be evaluated for a wide range of plant species. We therefore tested the potential of the rbcL marker for the identification of wild plants belonging to diverse families of arid regions. Maximum likelihood tree analysis was performed to evaluate the discriminatory power of the rbcL gene. Our findings showed that using rbcL gene sequences enabled identification of the majority of the samples (92%) to genus level and only 17% to species level.  相似文献   

5.
藻类DNA条形码研究进展   总被引:2,自引:0,他引:2  
DNA barcode,又称为DNA条形码,是指利用短的标准DNA序列的核苷酸多样性进行物种的鉴定和快速识别.目前该方法在动物分类研究中应用广泛,其中线粒体的细胞色素c氧化酶亚基1(cytochrome c oxidase subunit 1,COI或cox 1)基因中的约700bp长度的一段被用来作为标准DNA片段.在陆地植物条形码研究中,生命-植物条形码联盟会(Consortium for the Barcode of Life-Plant Working Group,CBOL-Plant Working Group)近期推荐将植物叶绿体中的两个基因片段rbcL+ matK作为初步的陆生植物条形码,此组合能在70%的程度上进行植物物种的鉴别.在海藻的分类研究中,DNA条形码的应用较少,已有的研究主要集中在硅藻、红藻和褐藻,尚没有学者明确提出适合藻类的DNA条形码.总结了能够作为藻类DNA条形码的序列特点、应用流程及分析方法,综述了DNA条形码在藻类中的研究现状和存在的问题,展望了藻类DNA条形码的应用前景.  相似文献   

6.
One application ofDNA barcoding is species identification based on sequences of a short and standardized DNA region.In plants,various DNA regions,alone or in combination,have been proposed and investigated,but consensus on a universal plant barcode remains elusive.In this study,we tested the utility of four candidate barcoding regions (rbcL,matK,trnH-psbA,and internal transcribed spacer (ITS)) as DNA barcodes for discriminating species in a large and hemiparasitic genus Pedicularis (Orobanchaceae).Amplification and sequencing was successful using single primer pairs for rbcL,trnH-psbA,and ITS,whereas two primer pairs were required for matK.Patterns of sequence divergence commonly showed a “barcoding gap”,that is,a bimodal frequency distribution of pairwise distances representing genetic diversity within and between species,respectively Considering primer universality,ease of amplification and sequencing,and performance in discriminating species,we found the most effective single-region barcode for Pedicularis to be ITS,and the most effective two-region barcode to be rbcL +ITS.Both discriminated at least 78% of the 88 species and correctly identified at least 89% of the sequences in our sample,and were effective in placing unidentified samples in known species groups.Our results suggest that DNA barcoding has the potential to aid taxonomic research in Pedicularis,a species-rich cosmopolitan clade much in need of revision,as well as ecological studies in its center of diversity,the Hengduan Mountains region of China.  相似文献   

7.
DNA barcoding, as a tool for species discrimination, has been used efficiently in animals, algae and fungi, but there are still debates on which DNA region(s) can be used as the standard barcode(s) for land plants. Gymnosperms, especially conifers, are important components of forests, and there is an urgent need for them to be identified through DNA barcoding because of their high frequency of collection in the field. However, the feasibility of DNA barcoding in gymnosperms has not been examined based on a dense species sampling. Here we selected seven candidate DNA barcodes from the plastome (matK, rbcL, rpoB, rpoC1, atpF-atpH, psbA-trnH, and psbK-psbI) to evaluate their suitability in Picea (spruce). The results showed that none of them or their different combinations has sufficient resolution for spruce species, although matK+rbcL might be used as a two-locus barcode. The low efficiency of these candidate barcodes in Picea might be caused by the paternal inheritance of the chloroplast genome, long generation time, recent radiation, and frequent inter-specific hybridization aided by wind pollination. Some of these factors could also be responsible for the difficulties in barcoding other plant groups. Furthermore, the potential of the nuclear LEAFY gene as a land plant barcode was discussed.  相似文献   

8.
蒟蒻薯属(Tacca)植物种间在形态上差别不大,导致分类上存在一定的困难。DNA条形码是一种利用短的DNA标准片段来鉴别和发现物种的方法。本研究利用核基因ITS片段和叶绿体基因trnH psbA, rbcL, matK片段对蒟蒻薯属6个种的DNA条形码进行研究,对4个DNA片段可用性,种内种间变异,barcode gap进行了分析,采用Tree based和BBA两种方法比较不同序列的鉴定能力。结果显示:单片段ITS正确鉴定率最高,片段组合rbcL+matK正确鉴定率最高。支持CBOL植物工作组推荐的条码组合rbcL+matK可作为蒟蒻薯属物种鉴定的标准条码,建议ITS片段作为候选条码。丝须蒟蒻薯Tacca integrifolia采自西藏的居群与马来西亚居群形成了2个不同的遗传分支,且两者在形态上也存在一定的差异,很可能是一个新种。  相似文献   

9.
DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia.  相似文献   

10.
秋海棠属植物种类繁多,形态变异多样,导致种类的系统放置混乱,近缘种类鉴定困难。利用DNA条形码实现物种快速准确的鉴定技术具有不受形态特征约束的优势,为秋海棠属植物的分类鉴定提供了新的方法。本研究选择4个DNA条形码候选片段(rbcL,matK,trnH psbA,ITS)对中国秋海棠属26种136个个体进行了分析。结果显示:叶绿体基因rbcL,matK和trnH psbA种内和种间变异小,对秋海棠属植物的鉴别能力有限;ITS/ITS2种内和种间变异大,在本研究中物种正确鉴定率达到100%/96%,可考虑作为秋海棠属DNA条形码鉴定的候选片段。研究结果支持中国植物条形码研究组建议将核基因ITS/ITS2纳入种子植物DNA条形码核心片段中的观点。  相似文献   

11.
竹亚科是一个形态上鉴定困难且易于混淆的类群。DNA条形码技术为这一类群的鉴定提供了一个辅助手段。核心条形码(rbcL+matK)在竹亚科中的鉴别率很低,因此.有必要针对竹亚科筛选有效的DNA条形码片段。本研究根据已发表的竹亚科叶绿体基因组序列,筛选出16个片段,包括1个基因片段和15个基因间隔区,选取青篱竹族和莉竹族的10属22种30个个体,进行引物通用性、测序成功率和变异位点分析。研究结果表明:(1)引物具有较高的扩增成功率,但部分片段中由于存在poly结构造成测序失败;(2)片段中的插入/缺失可以编码,作为信息位点;(3)trnG—trnT(t)具有最多变异位点,建议可作为竹亚科优先选择的DNA条形码;(4)在开展不同类群的DNA条形码和分子系统学研究时,可以按照“trnG—trnT(t)+x”的方式选择合适的叶绿体DNA片段。  相似文献   

12.
DNA barcoding is a method of identifying species by analyzing one or a few short standardized DNA sequences. There are particular challenges in barcoding plants, especially for distinguishing closely related species. Hence, there is an urgent need to evaluate the performance of candidate loci for distinguishing between species, especially closely related species, to complement the rbcL + matK combination suggested as the core barcode for land plants. We sampled 48 individuals representing 12 species in Primula sect. Proliferae Pax in China to evaluate the performance of eight leading candidate barcode loci (matK, rbcL, rpoB, rpoC1, trnH-psbA, psbK-psbI, atpF-atpH, and internal transcribed spacer (ITS)). The core combination rbcL+matK gave only 50% species resolution in sect. Proliferae. In terms of intraspecies and interspecies divergence, degree of monophyly, and sequence similarity, ITS, trnH-psbA, and psbK-psbI showed good performance as single-locus barcodes. Internal transcribed spacer displayed the highest genetic divergence and best discriminatory power, both alone and in combination with rbcL+matK (83.3% species resolution). We recommend evaluating the use of ITS for barcoding in other species. Low or single copy nuclear regions would provide more sophisticated barcoding tools in the long term, even though further research is required to find suitable loci.  相似文献   

13.
DNA barcoding is a method of identifying species by analyzing one or a few short standardized DNA sequences. There are particular challenges in barcoding plants, especially for distinguishing closely related species. Hence, there is an urgent need to evaluate the performance of candidate loci for distinguishing between species, especially closely related species, to complement the rbcL + matK combination suggested as the core barcode for land plants. We sampled 48 individuals representing 12 species in Primula sect. Proliferae Pax in China to evaluate the performance of eight leading candidate barcode loci (matK, rbcL, rpoB, rpoCl, trnH-psbA, psbK-psbI, atpFatpH, and internal transcribed spacer (ITS)). The core combination rbcL + matK gave only 50% species resolution in sect. Proliferae. In terms of intraspecies and interspecies divergence, degree of monophyly, and sequence similarity, ITS, trnH-psbA, and psbK-psbI showed good performance as single-locus barcodes. Internal transcribed spacer displayed the highest genetic divergence and best discriminatory power, both alone and in combination with rbcL +matK (83.3% species resolution). We recommend evaluating the use of ITS for barcoding in other species. Low or single copy nuclear regions would provide more sophisticated barcoding tools in the long term, even though further research is required to find suitable loci.  相似文献   

14.
根据形态特征难以准确地辨别金合欢属植物,DNA条形码技术提供了一种准确地鉴定物种的方法。本文利用条形码技术对中国金合欢属物种的序列(psbA trnH、matK、rbcL和ITS)及其不同组合进行比较,通过计算种内和种间变异进行barcoding gap分析,运用Wilcoxon秩和检验比较不同序列的变异性,构建系统树。结果表明:4个片段均存在barcoding gap,ITS序列种间变异率较psbA trnH、rbcL和matK序列有明显优势,单片段ITS正确鉴定率最高,ITS+rbcL片段联合条码的正确鉴定率最高,因此我们认为ITS片段或条形码组合ITS+rbcL是金合欢属的快速鉴别最理想的条码。  相似文献   

15.
The utility of DNA barcoding for identifying representative specimens of the circumpolar tree genus Fraxinus (56 species) was investigated. We examined the genetic variability of several loci suggested in chloroplast DNA barcode protocols such as matK, rpoB, rpoC1 and trnH-psbA in a large worldwide sample of Fraxinus species. The chloroplast intergenic spacer rpl32-trnL was further assessed in search for a potentially variable and useful locus. The results of the study suggest that the proposed cpDNA loci, alone or in combination, cannot fully discriminate among species because of the generally low rates of substitution in the chloroplast genome of Fraxinus. The intergenic spacer trnH-psbA was the best performing locus, but genetic distance-based discrimination was moderately successful and only resulted in the separation of the samples at the subgenus level. Use of the BLAST approach was better than the neighbor-joining tree reconstruction method with pairwise Kimura's two-parameter rates of substitution, but allowed for the correct identification of only less than half of the species sampled. Such rates are substantially lower than the success rate required for a standardised barcoding approach. Consequently, the current cpDNA barcodes are inadequate to fully discriminate Fraxinus species. Given that a low rate of substitution is common among the plastid genomes of trees, the use of the plant cpDNA "universal" barcode may not be suitable for the safe identification of tree species below a generic or sectional level. Supplementary barcoding loci of the nuclear genome and alternative solutions are proposed and discussed.  相似文献   

16.
DNA barcoding is a biological technique that uses short and standardized genes or DNA regions to facilitate species identification. DNA barcoding has been used successfully in several animal and plant groups. Ligustrum (Oleaceae) species occur widely throughout the world and are used as medicinal plants in China. Therefore, the accurate identification of species in this genus is necessary. Four potential DNA barcodes, namely the nuclear ribosomal internal transcribed spacer (ITS) and three chloroplast (cp) DNA regions (rbcL, marK, and trnH-psbA),were used to differentiate species within Ligustrum. BLAST, character-based method, tree-based methods and TAXONDNA analysis were used to investigate the molecular identification capabilities of the chosen markers for discriminating 92 samples representing 20 species of this genus. The results showed that the ITS sequences have the most variable information, followed by trnH-psbA, matK, and rbcL. All sequences of the four regions correctly identified the species at the genus level using BLAST alignment. At the species level, the discriminating power of rbcL, matK, trnH-psbA and ITS based on neighbor-joining (NJ) trees was 36.8%, 38.9%, 77.8%, and 80%,respectively. Using character-based and maximum parsimony (MP) tree methods together, the discriminating ability of trnH-psbA increased to 88.9%. All species could be differentiated using ITS when combining the NJ tree method with character-based or MP tree methods. Overall, the results indicate that DNA barcoding is an effective molecular identification method for Ligustrum species. We propose the nuclear ribosomal ITS as a plant barcode for plant identification and trnH-psbA as a candidate barcode sequence.  相似文献   

17.
DNA barcoding is a biological technique that uses short and standardized genes or DNA regions to facilitate species identification. DNA barcoding has been used successfully in several animal and plant groups. Ligustrum (Oleaceae) species occur widely throughout the world and are used as medicinal plants in China. Therefore, the accurate identification of species in this genus is necessary. Four potential DNA barcodes, namely the nuclear ribosomal internal transcribed spacer (ITS) and three chloroplast (cp) DNA regions (rbcL, matK, and trnH–psbA), were used to differentiate species within Ligustrum. BLAST, character-based method, tree-based methods and TAXONDNA analysis were used to investigate the molecular identification capabilities of the chosen markers for discriminating 92 samples representing 20 species of this genus. The results showed that the ITS sequences have the most variable information, followed by trnH–psbA, matK, and rbcL. All sequences of the four regions correctly identified the species at the genus level using BLAST alignment. At the species level, the discriminating power of rbcL, matK, trnH–psbA, and ITS based on neighbor-joining (NJ) trees was 36.8%, 38.9%, 77.8%, and 80%, respectively. Using character-based and maximum parsimony (MP) tree methods together, the discriminating ability of trnH–psbA increased to 88.9%. All species could be differentiated using ITS when combining the NJ tree method with character-based or MP tree methods. Overall, the results indicate that DNA barcoding is an effective molecular identification method for Ligustrum species. We propose the nuclear ribosomal ITS as a plant barcode for plant identification and trnH–psbA as a candidate barcode sequence.  相似文献   

18.
We compared the performances of the candidate loci for moss DNA barcoding and the primers used in amplifying the loci. Primers for three coded loci (matK, rps4 and rbcL a) and four non coded loci (atpB rbcL, atpF H, psbK I and trnH psbA) of the chloroplast genome, one from the mitochondrial genome (nad5), and one from the nucleus genome (ITS2) were evaluated. Seventy four samples representing 14 species belonging to five genera of Trachypodoaceae (or Meteoriaceae) were screened. All primers for matK and a pair of primers for trnH psbA failed. Low successes were encountered with the primers for atpF H and psbK I. The primers for psbK I produced several bands and the PCR products of atpF H were difficult to sequence. The powers of the remaining six loci were compared using the variability, identification success and the resolutions. It was found that ITS2 is the most promising candidate for DNA barcoding for mosses. Among the chloroplast genes, atpB rbcL exhibited the highest resolution. Although trnH psbA is very variable, it is too short to be an ideal barcode alone. Combinations of chloroplast genes were also tried and Ps of both atpB rbcL+trnH psbA and rbcL a++trnH psbA were 64% using NJ method. More additions of loci did not increase the resolution. No barcoding gap exists for all these loci. Phylogenetic analyses were carried out prior to the DNA barcoding evaluation and some taxonomic problems do exist. This study exemplifies the necessity of correct species delimitation and the adoption of both plastid and nuclear loci in plant DNA barcoding.  相似文献   

19.
DNA barcoding of a group of European liverwort species from the genus Herbertus was undertaken using three plastid (matK, rbcL and trnH-psbA) and one nuclear (ITS) marker. The DNA barcode data were effective in discriminating among the sampled species of Herbertus and contributed towards the detection of a previously overlooked European Herbertus species, described here as H. norenus sp. nov. This species shows clear-cut differences in DNA sequence for multiple barcode regions and is also morphologically distinct. The DNA barcode data were also useful in clarifying taxonomic relationships of the European species with some species from Asia and North America. In terms of the discriminatory power of the different barcode markers, ITS was the most informative region, followed closely by matK. All species were distinguishable by ITS alone, rbcL + matK and various other multimarker combinations.  相似文献   

20.
DNA barcoding is a new technology which can identify species rapidly based on short and standardized DNA sequences. Ligularia, a genus of Asteraceae with about 140 species, exhibits high morphological and ecological diversity, which makes the classification and species delimitation difficult, especially in the cases of closely related taxa. In this study, we tested four DNA core barcoding regions (ITS, matK, psbA trnH and rbcL) in 144 samples representing 35 species of Ligularia. The results revealed that the chloroplast regions (matK, psbA trnH and rbcL) have extremely low species identification rate due to low interspecific variation. Conversely, ITS sequence showed higher species identification rate (60%) and could discriminate the species which are difficult to identify. The combination of these four gene fragments did not improve the ability of species discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号