首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentration‐ and flux‐based O3 dose–responses of isoprene emission from single leaves and whole plants were developed. Two poplar clones differing in O3 sensitivity were exposed to five O3 levels in open‐top chambers for 97 d: charcoal‐filtered ambient air (CF), non‐filtered ambient air (NF) and NF plus 20 ppb (NF + 20), 40 ppb (NF + 40) and 60 ppb (NF + 60). At both leaf and plant level, isoprene emission was significantly decreased by NF + 40 and NF + 60 for both clones. Although intra‐specific variability was found when the emissions were up‐scaled to the whole plant, both leaf‐ and plant‐level emissions decreased linearly with increasing concentration‐based (AOT40, cumulative exposure to hourly O3 concentrations >40 ppb) and flux‐based indices (PODY, cumulative stomatal uptake of O3 > Y nmol O3 m?2 PLA s?1). AOT40‐ and POD7‐based dose–responses performed equally well. The two clones responded differently to AOT40 and similarly to PODY (with a slightly higher R2 for POD7) when the emission was expressed as change relative to clean air. We thus recommend POD7 as a large‐scale risk assessment metric to estimate isoprene emission responses to O3 in poplar.  相似文献   

2.
Using a high‐resolution (40 × 40 km) chemical transport model coupled with the Regional Emission inventory in Asia (REAS), we simulated surface ozone concentrations ([O3]) and evaluated O3‐induced wheat production loss in China and India for the years 2000 and 2020 using dose–response functions based on AOT40 (accumulated [O3] above 40 ppb) and PODY (phytotoxic O3 dose, accumulated stomatal flux of O3 above a threshold of Y nmol m?2 s?1). Two O3 dose metrics (90 days AOT40 and POD6) were derived from European experiments, and the other two (75 days AOT40 and POD12) were adapted from Asian studies. Relative yield loss (RYL) of wheat in 2000 was estimated to be 6.4–14.9% for China and 8.2–22.3% for India. POD6 predicted greater RYL, especially for the warm regions of India, whereas the 90 days AOT40 gave the lowest estimates. For the future projection, all the O3 dose metrics gave comparable estimates of an increase in RYL from 2000 to 2020 in the range 8.1–9.4% and 5.4–7.7% for China and India, respectively. The lower projected increase in RYL for India may be due to conservative estimation of the emission increase in 2020. Sensitivity tests of the model showed that the PODY‐based estimates of RYL are highly sensitive to perturbations in the meteorological inputs, but that the estimated increase in RYL from 2000 to 2020 is much more robust. The projected increase in wheat production loss in China and India in the near future is substantially larger than the uncertainties in the estimation and indicates an urgent need for curbing the rapid increase in surface [O3] in these regions.  相似文献   

3.
The extraordinary drought during the summer of 2003 in Central Europe allowed to examine responses of adult beech trees (Fagus sylvatica) to co-occurring stress by soil moisture deficit and elevated O3 levels under forest conditions in southern Germany. The study comprised tree exposure to the ambient O3 regime at the site and to a twice-ambient O3 regime as released into the canopy through a free-air O3 fumigation system. Annual courses of photosynthesis (A max), stomatal conductance (g s), electron transport rate (ETR) and chlorophyll levels were compared between 2003 and 2004, the latter year representing the humid long-term climate at the site. ETR, A max and g s were lowered during 2003 by drought rather than ozone, whereas chlorophyll levels did not differ between the years. Radial stem increment was reduced in 2003 by drought but fully recovered during the subsequent, humid year. Comparison of AOT40, an O3 exposure-based risk index of O3 stress, and cumulative ozone uptake (COU) yielded a linear relationship throughout humid growth conditions, but a changing slope during 2003. Our findings support the hypothesis that drought protects plants from O3 injury by stomatal closure, which restricts O3 influx into leaves and decouples COU from high external ozone levels. High AOT40 erroneously suggested high O3 risk under drought. Enhanced ozone levels did not aggravate drought effects in leaves and stem.  相似文献   

4.
Assessments of the impacts of ozone (O3) on regional and global food production are currently based on results from experiments using open‐top chambers (OTCs). However, there are concerns that these impact estimates might be biased due to the environmental artifacts imposed by this enclosure system. In this study, we collated O3 exposure and yield data for three major crop species—wheat, rice, and soybean—for which O3 experiments have been conducted with OTCs as well as the ecologically more realistic free‐air O3 elevation (O3‐FACE) exposure system; both within the same cultivation region and country. For all three crops, we found that the sensitivity of crop yield to the O3 metric AOT40 (accumulated hourly O3 exposure above a cut‐off threshold concentration of 40 ppb) significantly differed between OTC and O3‐FACE experiments. In wheat and rice, O3 sensitivity was higher in O3‐FACE than OTC experiments, while the opposite was the case for soybean. In all three crops, these differences could be linked to factors influencing stomatal conductance (manipulation of water inputs, passive chamber warming, and cultivar differences in gas exchange). Our study thus highlights the importance of accounting for factors that control stomatal O3 flux when applying experimental data to assess O3 impacts on crops at large spatial scales.  相似文献   

5.
Records of effects of ambient ozone pollution on vegetation have been compiled for Europe for the years 1990–2006. Sources include scientific papers, conference proceedings, reports to research funders, records of confirmed ozone injury symptoms and an international biomonitoring experiment coordinated by the ICP Vegetation. The latter involved ozone‐sensitive (NC‐S) and ozone‐resistant (NC‐R) biotypes of white clover (Trifolium repens L.) grown according to a common protocol and monitored for ozone injury and biomass differences in 17 European countries, from 1996 to 2006. Effects were separated into visible injury or growth/yield reduction. Of the 644 records of visible injury, 39% were for crops (27 species), 38.1% were for (semi‐) natural vegetation (95 species) and 22.9% were for shrubs (49 species). Owing to inconsistencies in reporting effort from year to year it was not possible to determine geographical or temporal trends in the data. Nevertheless, this study has shown effects in ambient air in 18 European countries from Sweden in the north to Greece in the south. These effects data were superimposed on AOT40 (accumulated ozone concentrations over 40 ppb) and POD3gen (modelled accumulated stomatal flux over a threshold of 3 nmol m?2 s?1) maps generated by the EMEP Eulerian model (50 km × 50 km grid) that were parameterized for a generic crop based on wheat and NC‐S/NC‐R white clover. Many effects were found in areas where the AOT40 (crops) was below the critical level of 3 ppm h. In contrast, the majority of effects were detected in grid squares where POD3gen (crops) were in the mid‐high range (>12 mmol m?2). Overall, maps based on POD3gen provided better fit to the effects data than those based on AOT40, with the POD3gen model for clover fitting the clover effects data better than that for a generic crop.  相似文献   

6.
陆地生态系统臭氧通量观测和气孔吸收估算研究进展   总被引:1,自引:0,他引:1  
朱治林  孙晓敏  于贵瑞  温学发 《生态学报》2014,34(21):6029-6038
近地面大气中臭氧(O3)对植物生长发育和产量会产生不良影响。工业和交通排放的增加使得全球地面O3浓度逐年增加,不断升高的O3浓度已开始影响到我国的粮食产量。O3对植物的影响是由于其进入植物体内发生生化反应所引起的,所以需要建立一种考虑到植物生理生态状况的评估指标来评估O3对植物的影响。其中基于O3通量(特别是植物气孔吸收)的评价指标和方法,被认为比传统的基于O3浓度的评价指标和方法更符合O3对植物的影响机理。介绍了O3对生态系统影响评估方法和评价指标,重点评述了生态系统尺度O3通量观测和气孔吸收估算的主要方法以及在不同生态系统上的研究进展分析了我国关于O3对植物和生态系统影响的研究现状,并对未来的研究工作进行了展望。  相似文献   

7.
The ozone (O3) biomonitoring system based on sensitive (S156) and resistant (R123) genotypes of snap bean (Phaseolus vulgaris L.), was tested in a fumigation experiment, with the aim of: (i) assessing the performance of the S156/R123 system under simulated climatic conditions and O3 levels often found in Mediterranean sites; (ii) contributing to identify possible ecophysiological mechanisms determining the different O3 sensitivity of S156 and R123, along different plant growth stages. In contrast with what reported by other authors, differences in stomatal O3 uptake were evident between sensitive and resistant plants. In particular, R123 plants showed an O3-induced stomatal closure (−38.1% than the control) during flowering and the onset of visible injury, a behaviour that can be regarded as an O3 avoidance mechanism. At the end of the fumigation period (AOT40 = 4.66 ppm h), despite the reduction of assimilation and the photoprotective down regulation of PSII photochemistry, the capacity to reduce the final electron acceptors beyond PSI was up-regulated, particularly in S156, while the PSI activity remained constant in both genotypes, an unusual response to O3 stress. Increased energy demand for maintenance and repair processes also determined increased dark respiration rates (Rd) in all fumigated plants; nocturnal stomatal conductance (gsN) was also enhanced, differently in the two genotypes, with possible implication for higher nocturnal stomatal uptake of S156 in field conditions. No clear genotype × O3 effect was instead detected on pod biomass, although a significant O3-induced reduction of yield was evident in both genotypes.  相似文献   

8.
This paper is focused on evaluation of the potential ozone stomatal fluxes (FO3) under seasonally varying microclimatic conditions at two levels of the canopy of an evergreen Mediterranean plant species, Holm oak (Quercus ilex L.), and on comparing them with ozone hourly averages, in order to assess what are the main environmental/physiological variables that most affect the definition of critical levels for Mediterranean vegetation. Microclimatic factors such as radiation, temperature and wind velocity greatly affected gas exchange rates and stomatal conductance to water vapour measured at different heights. O3 concentration values highlight a daily cycle with higher nocturnal O3 concentrations above the canopy than below it. Similar O3 trends have been observed by using passive diffusive samplers. As a consequence, potential O3 stomatal fluxes calculated for the upper layer of the canopy are higher than those below the canopy. Moreover, O3 concentration values show an opposite seasonal trend compared to FO3. These opposite trends are clearly due to the stomatal closure in drier months, as a protection against excessive water losses that yield low FO3 values during high O3 concentration. This paper highlights the different contribution of different Holm oak canopy portions to overall O3 uptake impact, attributing important roles to microclimatic conditions and to physiological activity related to stomata opening, which in turn is affected by internal and external effectors (hormones, water availability, hydraulic conductance, etc.). We cannot exclude an O3 effect on stomatal cell guards and on the carbon assimilation process working in the mesophyll cells. Further research needs to be considered to evaluate more clearly the risk of O3 on Mediterranean vegetation taking into consideration microclimatic conditions, plant physiology and possible plant canopy defensive reactions to O3, so as to define an air quality standard to protect the vegetation.  相似文献   

9.
Plant phenology plays a pivotal role in the climate system as it regulates the gas exchange between the biosphere and the atmosphere. The uptake of ozone by forest is estimated through several meteorological variables and a specific function describing the beginning and the termination of plant growing season; actually, in many risk assessment studies, this function is based on a simple latitude and topography model. In this study, using two satellite datasets, we apply and compare six methods to estimate the start and the end dates of the growing season across a large region covering all Europe for the year 2011. Results show a large variability between the green‐up and dormancy dates estimated using the six different methods, with differences greater than one month. However, interestingly, all the methods display a common spatial pattern in the uptake of ozone by forests with a marked change in the magnitude, up to 1.9 TgO3/year, and corresponding to a difference of 25% in the amount of ozone that enters the leaves. Our results indicate that improved estimates of ozone fluxes require a better representation of plant phenology in the models used for O3 risk assessment.  相似文献   

10.
11.
 Cuttings of a single birch clone (Betula pendula) were grown in field fumigation chambers throughout the growing season in either filtered air (control) or 90/40 nl O3 l–1 (day/night). Both regimes were split into plants under high and low nutrient supply (macro- and micronutrients). The stomatal density of leaves was increased by ozone but was lowered at high nutrition, while the inner air space was hardly affected by the treatments. Ozone induced macroscopic leaf injury regardless of nutrition, but leaf shedding was delayed in the low-fertilized plants, despite O3 uptake being similar to that in high-fertilized plants. The leaf turn-over was enhanced in the O3-exposed high-fertilized plants, but length growth and leaf formation of stems were not affected by ozone in either nutrient regime. Leaves of high-fertilized plants showed O3-caused decline in photosynthetic capacity, water-use efficiency, apparent carbon uptake efficiency and quantum yield earlier as compared with low-fertilized plants, whereas chlorophyll fluorescence (FV/FM) and leaf nitrogen concentration were rather stable. CO2 uptake rate and rubisco activity of young leaves compensated for the O3 injury in the ageing leaves of the low-fertilized plants. In 8-week-old leaves, however, the O3-induced decline in CO2 uptake did not differ between the nutrient regimes and was associated with increased dark respiration rather than changed photorespiration. The balance between CO2 supply and demand was lost, as was stomatal limitation on CO2 uptake. High nutrition did not help leaves to maintain a high photosynthetic capacity and life span under O3 stress. Received: 6 July 1996 / Accepted: 4 June 1997  相似文献   

12.
As the ratio of carbon uptake to water use by vegetation, water‐use efficiency (WUE) is a key ecosystem property linking global carbon and water cycles. It can be estimated in several ways, but it is currently unclear how different measures of WUE relate, and how well they each capture variation in WUE with soil moisture availability. We evaluated WUE in an Acacia‐dominated woodland ecosystem of central Australia at various spatial and temporal scales using stable carbon isotope analysis, leaf gas exchange and eddy covariance (EC) fluxes. Semi‐arid Australia has a highly variable rainfall pattern, making it an ideal system to study how WUE varies with water availability. We normalized our measures of WUE across a range of vapour pressure deficits using g1, which is a parameter derived from an optimal stomatal conductance model and which is inversely related to WUE. Continuous measures of whole‐ecosystem g1 obtained from EC data were elevated in the 3 days following rain, indicating a strong effect of soil evaporation. Once these values were removed, a close relationship of g1 with soil moisture content was observed. Leaf‐scale values of g1 derived from gas exchange were in close agreement with ecosystem‐scale values. In contrast, values of g1 obtained from stable isotopes did not vary with soil moisture availability, potentially indicating remobilization of stored carbon during dry periods. Our comprehensive comparison of alternative measures of WUE shows the importance of stomatal control of fluxes in this highly variable rainfall climate and demonstrates the ability of these different measures to quantify this effect. Our study provides the empirical evidence required to better predict the dynamic carbon–water relations in semi‐arid Australian ecosystems.  相似文献   

13.
Heterotrimeric G proteins function as key players in hydrogen peroxide (H2O2) production in plant cells, but whether G proteins mediate ethylene‐induced H2O2 production and stomatal closure are not clear. Here, evidences are provided to show the Gα subunit GPA1 as a missing link between ethylene and H2O2 in guard cell ethylene signalling. In wild‐type leaves, ethylene‐triggered H2O2 synthesis and stomatal closure were dependent on activation of Gα. GPA1 mutants showed the defect of ethylene‐induced H2O2 production and stomatal closure, whereas wGα and cGα overexpression lines showed faster stomatal closure and H2O2 production in response to ethylene. Ethylene‐triggered H2O2 generation and stomatal closure were impaired in RAN1, ETR1, ERS1 and EIN4 mutants but not impaired in ETR2 and ERS2 mutants. Gα activator and H2O2 rescued the defect of RAN1 and EIN4 mutants or etr1‐3 in ethylene‐induced H2O2 production and stomatal closure, but only rescued the defect of ERS1 mutants or etr1‐1 and etr1‐9 in ethylene‐induced H2O2 production. Stomata of CTR1 mutants showed constitutive H2O2 production and stomatal closure, but which could be abolished by Gα inhibitor. Stomata of EIN2, EIN3 and ARR2 mutants did not close in responses to ethylene, Gα activator or H2O2, but do generate H2O2 following challenge of ethylene or Gα activator. The data indicate that Gα mediates ethylene‐induced stomatal closure via H2O2 production, and acts downstream of RAN1, ETR1, ERS1, EIN4 and CTR1 and upstream of EIN2, EIN3 and ARR2. The data also show that ETR1 and ERS1 mediate both ethylene and H2O2 signalling in guard cells.  相似文献   

14.
Summary The uptake of air pollutants depends both on pollutant concentration and on stomatal conductance. This paper deals with the uptake of ozone (O3) from the air into the needles of Norway spruce [Picea abies (L.) Karst.] under ambient climatic conditions. Regulation of O3 uptake by the stomata is shown and also the difference between the physiologically active O3 concentration and the O3 concentration of the ambient air. Data from the sun and shade crown of spruce trees at 1000 m a.s.l. are presented. Analysis of data from three vegetation periods has shown that at low ambient O3 concentrations the O3 uptake is largely regulated by stomatal conductance. Water vapour pressure deficit (VPD) of the atmosphere is the climatic factor which showed the highest positive correlation with O3 concentration. However, a high leaf-air VDP led to stomatal closure, thus reducing the O3 uptake in the needles despite high O3 concentrations in the ambient air. The potential O3 stress caused by high O3 concentrations can be strongly mitigated by this natural closing of the stomata and the simultaneous occurrence of moderate drought stress.  相似文献   

15.
Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun‐induced fluorescence signal on the ground and on a coarse spatial scale using space‐borne imaging spectrometers. Intermediate‐scale observations using airborne‐based imaging spectroscopy, which are critical to bridge the existing gap between small‐scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun‐induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun‐induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun‐induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun‐induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress.  相似文献   

16.
冬小麦气孔臭氧通量拟合及通量产量关系的比较分析   总被引:6,自引:0,他引:6  
基于田间原位开顶箱(Open-Top Chambers,OTCs)实验,研究了不同浓度臭氧(O3)处理下(自然大气处理,AA;箱内大气处理,NF;箱内低浓度O3处理,NF+40 nL/L;箱内中等浓度O3处理,NF+80 nL/L;箱内高浓度O3处理,NF+120 nL/L),冬小麦(Triticum aestivum L.)旗叶气孔运动对不同环境因子的响应,并通过剂量反应分析,比较了冬小麦产量损失与累积气孔O3吸收通量(AFstX)和累积O3暴露浓度(AOT40和SUM06)的相关性差异。结果表明:冬小麦旗叶气孔运动的光饱和点和最适温度分别约为400μmol.m-.2s-1和27℃,水汽压差、土壤含水量和O3剂量的气孔限制临界值分别约为1.4 kPa、-100 kPa和20μL.L-.1h-1,超过此临界值时,气孔导度会明显下降。利用Jarvis气孔导度模型对冬小麦旗叶气孔导度和气孔O3吸收通量进行了预测,结果表明Jarvis模型解释了冬小麦实测气孔导度60%的变异性。由于不同时期植物体气孔导度的差异,冬小麦旗叶生长期内累积气孔O3吸收通量(AFstX)呈非线性增加趋势。O3吸收速率临界值(X)为4 nmol.m-.2s-1时,累积O3吸收通量(AFst4)与冬小麦产量的相关性最高(R2=0.76),该数值介于O3暴露指标AOT40和SUM06的剂量反应决定系数(0.74和0.81)之间。与O3浓度指标(AOT40和SUM06)相比,O3通量指标(AFstX)在本试验冬小麦产量损失评价中未表现出明显优势。  相似文献   

17.
Summary Injury caused by low O3 concentrations (0, 0.05, 0.075, 0.1 l 1-1) was analyzed in the epidermis and mesophyll of fully developed birch leaves by gas exchange experiments and low-temperature SEM: (I) after leaf formation in O3-free and ozonated air, and (II) after transferring control plants into ozonated air. In control leaves, autumnal senescence also was studied in O3-free air (III). As O3 concentration increased, leaves of (I) stayed reduced in size, but showed increased specific weight and stomatal density. The declining photosynthetic capacity, quantum yield and carboxylation efficiency lowered the light saturation of CO2 uptake and the water-use efficiency (WUE). Carbon gain was less limited by the reduced stomatal conductance than by the declining ability of CO2 fixation in the mesophyll. The changes in gas exchange were related to the O3 dose and were mediated by narrowed stomatal pores (overriding the increase in stomatal density) and by progressive collapse of mesophyll cells. The air space in the mesophyll increased, preceded by exudate formation on cell walls. Ozonated leaves, which had developed in O3-free air (II), displayed a similar but more rapid decline than the leaves from (I). In senescent leaves (III), CO2 uptake showed a similar decrease as in leaves with O3 injury but no changes in mesophyll structure and WUE. The nitrogen concentration declined only in senescent leaves in parallel with the rate of CO2 uptake. A thorough understanding of O3 injury and natural senescence requires combined structural and functional analyses of leaves.  相似文献   

18.
In the last decade extensive research has focused on the development of dose–response relationships based on stomatal plant ozone uptake (phytotoxic ozone dose, POD). So far most work has concentrated on crops and forest trees. This study provides a flux-based dose–response function for timothy (Phleum pratense), a widespread grassland species, which can be used in risk assessment for ground-level ozone. In 1996 and 2001 timothy was exposed in open-top chambers to ozone concentrations ranging from around 10 nmol mol−1 in the charcoal filtered treatments up to 60 nmol mol−1 in the fumigated treatments (08:00–20:00) in. In 1996 there was a negative effect of ozone on biomass production in the non-filtered treatment while in 2001 no such ozone effect in the non-filtered treatment could be seen. Measurements of stomatal conductance on four timothy genotypes in 2001 were used to calibrate a Jarvis-type multiplicative stomatal conductance model. The maximum conductance varied between the genotypes, from 477 to 589 mmol O3 m−2 s−1 (projected leaf area). The model includes functions describing the reduction of stomatal conductance of senescing leaves and the direct effects on stomatal conductance by light, temperature and water vapour pressure deficit. A function describing ozone induced senescence of the leaves was included since exposure to ozone is known to cause premature senescence. The function for ozone was applied when it suggested ozone to be more limiting to stomatal conductance than phenology. To avoid overestimation of stomatal conductance in days with high VPD, a function reflecting the effect on leaf water potential on stomatal conductance was included. Comparison between modelled and measured conductance for the four timothy genotypes resulted in an r2 value at 0.57 and a very small average deviation of observed from modelled values. The calibrated stomatal conductance model was used to estimate the accumulated POD, i.e. the accumulated stomatal flux of ozone, of the plants in the 1996 and 2001 experiments. The strongest relationship between ozone relative effects on biomass was obtained when POD was accumulated from 105 degree days after emergence to 1000 degree days after emergence, and integrated using an uptake rate threshold of 7 nmol m−2 s−1 (POD7). The response relationship between biomass and POD7 resulted in an r2 value of 0.71 over all four genotypes. This r2 value was somewhat higher than for the corresponding relationship based on the accumulated ozone exposure over 40 nmol mol−1 (AOT40; r2 = 0.66). With an uptake rate threshold at 7 nmol m−2 s−1, ozone concentrations above ∼20 nmol mol−1, contribute to reduce the biomass production of timothy if meteorological conditions promote maximum stomatal conductance.  相似文献   

19.
Models of vegetation function are widely used to predict the effects of climate change on carbon, water and nutrient cycles of terrestrial ecosystems, and their feedbacks to climate. Stomatal conductance, the process that governs plant water use and carbon uptake, is fundamental to such models. In this paper, we reconcile two long‐standing theories of stomatal conductance. The empirical approach, which is most commonly used in vegetation models, is phenomenological, based on experimental observations of stomatal behaviour in response to environmental conditions. The optimal approach is based on the theoretical argument that stomata should act to minimize the amount of water used per unit carbon gained. We reconcile these two approaches by showing that the theory of optimal stomatal conductance can be used to derive a model of stomatal conductance that is closely analogous to the empirical models. Consequently, we obtain a unified stomatal model which has a similar form to existing empirical models, but which now provides a theoretical interpretation for model parameter values. The key model parameter, g1, is predicted to increase with growth temperature and with the marginal water cost of carbon gain. The new model is fitted to a range of datasets ranging from tropical to boreal trees. The parameter g1 is shown to vary with growth temperature, as predicted, and also with plant functional type. The model is shown to correctly capture responses of stomatal conductance to changing atmospheric CO2, and thus can be used to test for stomatal acclimation to elevated CO2. The reconciliation of the optimal and empirical approaches to modelling stomatal conductance is important for global change biology because it provides a simple theoretical framework for analyzing, and simulating, the coupling between carbon and water cycles under environmental change.  相似文献   

20.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号