首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent data suggest that uric acid is generated locally in the vessel wall by the action of xanthine oxidase. This enzyme, activated during ischemia/reperfusion by proteolytic conversion of xanthine dehydrogenase, catalyzes the oxidation of xanthine, thereby generating free radicals and uric acid. Because of the potential role of ischemia/reperfusion in vascular disease, we studied the effects of uric acid on rat aortic vascular smooth muscle cell (VSMC) growth. Uric acid stimulated VSMC DNA synthesis, as measured by [3H]thymidine incorporation, in a concentration-dependent manner with half-maximal activity at 150 microM. Maximal induction of DNA synthesis by uric acid (250 microM) was approximately 70% of 10% calf serum and equal to 10 ng/ml platelet-derived growth factor (PDGF) AB or 20 ng/ml fibroblast growth factor. Neither uric acid precursors (xanthine and hypoxanthine) nor antioxidants (ascorbic acid, glutathione, and alpha-tocopherol) were mitogenic for VSMC. Uric acid was mitogenic for VSMC but not for fibroblasts or renal epithelial cells. The time course for uric acid stimulation of VSMC growth was slower than serum, suggesting induction of an autocrine growth mechanism. Exposure of quiescent VSMC to uric acid stimulated accumulation of PDGF A-chain mRNA (greater than 5-fold at 8 h) and secretion of PDGF-like material in conditioned medium (greater than 10-fold at 24 h). Uric acid-induced [3H]thymidine incorporation was markedly inhibited by incubation with anti-PDGF A-chain polyclonal antibodies. Thus uric acid stimulates VSMC growth via an autocrine mechanism involving PDGF A-chain. These findings suggest that generation of uric acid during ischemia/reperfusion contributes to atherogenesis and intimal proliferation following arterial injury.  相似文献   

2.
Xanthine oxidase is able to mobilize iron from ferritin. This mobilization can be blocked by 70% by superoxide dismutase, indicating that part of its action is mediated by superoxide (O2-). Uric acid induced the release of ferritin iron at concentrations normally found in serum. The O2(-)-independent mobilization of ferritin iron by xanthine oxidase cannot be attributed to uric acid, because uricase did not influence the O2(-)-independent part and acetaldehyde, a substrate for xanthine oxidase, also revealed an O2(-)-independent part, although no uric acid was produced. Presumably the amount of uric acid produced by xanthine oxidase and xanthine is insufficient to release a measurable amount of iron from ferritin. The liberation of iron from ferritin by xanthine oxidase has important consequences in ischaemia and inflammation. In these circumstances xanthine oxidase, formed from xanthine dehydrogenase, will stimulate the formation of a non-protein-bound iron pool, and the O2(-)-produced by xanthine oxidase, or granulocytes, will be converted by 'free' iron into much more highly toxic oxygen species such as hydroxyl radicals (OH.), exacerbating the tissue damage.  相似文献   

3.
Anacardic acid, 6[8(Z), 11(Z), 14-pentadecatrienyl]salicylic acid, inhibits generation of superoxide radicals by xanthine oxidase. This inhibition does not follow a hyperbolic inhibition, depends on anacardic acid concentrations, but follows a sigmoidal inhibition. The inhibition was analyzed by using a Hill equation, and slope factor and EC(50) were 4.3+/-0.5 and 53.6+/-5.1 microM, respectively. In addition, anacardic acid inhibited uric acid formation by xanthine oxidase cooperatively. Slope factor and EC(50) were 1.7+/-0.5 and 162+/-10 microM, respectively. The results indicate that anacardic acid binds to allosteric sites near the xanthine-binding domain in xanthine oxidase. Salicylic acid moiety and alkenyl side chain in anacardic acid are associated with the cooperative inhibition and hydrophobic binding, respectively.  相似文献   

4.
Uric acid seems to act as an electronic acceptor in the dehydrogenation of hypoxanthine catalyzed by chicken liver's xanthinedehydrogenase (XDH). Oxidation was observed in crude homogenates under anaerobic conditions, although dialyzed homogenates or purified hepatic XDH also induce a similar action either in aerobic or anaerobic conditions. The reaction pH optimum is about 6.0. Xanthine appears to be the only inhibited product of the reaction when its concentration is greater than 1 X 10(-4) M. When hypoxanthine and uric acid concentrations exceed 2 X 10(-3) M and 1 X 10(-4) M, respectively, they induce inhibition by substrate. Purine is a fairly good substrate of XDH when uric acid acts as acceptor. Allopurinol inhibits hypoxanthine oxidation by uric acid in the presence of XDH. XDH also catalyzes the dismutation of xanthine to hypoxanthine and uric acid.  相似文献   

5.
The physiological ability to estivate is relevant for the maintenance of population size in the invasive Pomacea canaliculata. However, tissue reoxygenation during arousal from estivation poses the problem of acute oxidative stress. Uric acid is a potent antioxidant in several systems and it is stored in specialized tissues of P. canaliculata. Changes in tissue concentration of thiobarbituric acid reactive substances (TBARS), uric acid and allantoin were measured during estivation and arousal in P. canaliculata. Both TBARS and uric acid increased two-fold during 45 days estivation, probably as a consequence of concomitant oxyradical production during uric acid synthesis by xanthine oxidase. However, after arousal was induced, uric acid and TBARS dropped to or near baseline levels within 20 min and remained low up to 24h after arousal induction, while the urate oxidation product allantoin continuously rose to a maximum at 24h after induction, indicating the participation of uric acid as an antioxidant during reoxygenation. Neither uric acid nor allantoin was detected in the excreta during this 24h period. Urate oxidase activity was also found in organs of active snails, but activity shut down during estivation and only a partial and sustained recovery was observed in the midgut gland.  相似文献   

6.
Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50 = 0.600 +/- 0.009 microM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50 = 1.326 +/- 0.013 microM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50 = 1.564 +/- 0.065 microM) also showed comparable inhibitory activity to that of allopurinol (IC50 = 0.776 +/- 0.012 microM). All three compounds showed competitive type of inhibition with comparable Ki values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophenolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound was inhibiting enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.  相似文献   

7.
采用紫外分光光度法检测齿孔酸在体外对黄嘌呤氧化酶的作用,并进行动力学研究探讨其作用机制;采用酵母联合氧嗪酸钾诱导高尿酸血症小鼠模型,观察齿孔酸对高尿酸血症小鼠血清尿酸水平、血清黄嘌呤氧化酶活性、肝脏黄嘌呤氧化酶活性及血糖血脂的影响。研究发现,齿孔酸体在外能抑制黄嘌呤氧化酶活性,降低高尿酸血症小鼠血清尿酸水平、血清黄嘌呤氧化酶活性、肝脏黄嘌呤氧化酶活性,同时明显降低空腹血糖、总胆固醇、甘油三酯、低密度脂蛋白胆固醇水平,升高高密度脂蛋白胆固醇水平,提高口服糖耐受量。结果表明,齿孔酸是黄嘌呤氧化酶竞争性抑制剂,还能缓解高尿酸血症小鼠糖脂代谢紊乱,对高尿酸血症及痛风的防治具有潜在意义。  相似文献   

8.
采用紫外分光光度法检测齿孔酸在体外对黄嘌呤氧化酶的作用,并进行动力学研究探讨其作用机制;采用酵母联合氧嗪酸钾诱导高尿酸血症小鼠模型,观察齿孔酸对高尿酸血症小鼠血清尿酸水平、血清黄嘌呤氧化酶活性、肝脏黄嘌呤氧化酶活性及血糖血脂的影响。研究发现,齿孔酸体在外能抑制黄嘌呤氧化酶活性,降低高尿酸血症小鼠血清尿酸水平、血清黄嘌呤氧化酶活性、肝脏黄嘌呤氧化酶活性,同时明显降低空腹血糖、总胆固醇、甘油三酯、低密度脂蛋白胆固醇水平,升高高密度脂蛋白胆固醇水平,提高口服糖耐受量。结果表明,齿孔酸是黄嘌呤氧化酶竞争性抑制剂,还能缓解高尿酸血症小鼠糖脂代谢紊乱,对高尿酸血症及痛风的防治具有潜在意义。  相似文献   

9.
Tissues of kuruma shrimp Marsupenaeus japonicus Bate (5.7+/-1.1 g) reared in salinities of 18, 26, 34 and 42 were examined for levels of nucleotide-related compounds, ammonia, urea and uric acid, and activities of xanthine dehydrogenase (XDH), xanthine oxidase (XOD) and uricase. Levels of total nucleotide-related compounds, including xanthine and hypoxanthine, in gill increased directly with salinity, whereas these same levels in hepatopancreas were inversely related with salinity. Hemolymph ammonia, urea and uric acid levels, and epidermal ammonia, urea and uric acid levels increased directly with salinity, whereas hepatopancreas ammonia and uric acid and gill uric acid levels were inversely related to salinity. Activities of XDH and XOD in hepatopancreas increased directly with salinity level, whereas no significant difference of uricase activity in hepatopancreas was observed among the four salinities. It is concluded M. japonicus exhibited uricogenesis and uricolysis, and an increase of uricogenesis occurred for the shrimp under hyper-osmotic conditions (salinity of 42). Uric acid produced in the hepatopancreas was transported and accumulated in the epidermis, and removed along with the spongy connective tissue at the time of molting.  相似文献   

10.
This study assessed the role of xanthine oxidase in vascular ageing. A positive correlation between xanthine oxidase activity and age was found in human plasma. Similar results were found in rat plasma. Xanthine oxidase expression and activity in homogenates from the aortic wall were significantly higher in samples from old rats than in their young counterparts (p < 0.01). In rat skeletal muscle homogenates both xanthine oxidase expression and activity showed a similar age-related profile. Superoxide production by xanthine oxidase in aortic rings was higher in aged rats. Uric acid, the final product of xanthine oxidase has been proposed as a risk factor for coronary heart disease and an independent marker of worse prognosis in patients with moderate-to-severe chronic heart failure. These results give a possible explanation for this correlation and underscore the role of xanthine oxidase in ageing.  相似文献   

11.
Uric acid is an end-product of purine metabolism in Man, and has been suggested to act as an antioxidant in vivo. Products of attack upon uric acid by various oxidants were measured by high performance liquid chromatography. Hypochlorous acid rapidly oxidized uric acid, forming allantoin, oxonic/oxaluric and parabanic acids, as well as several unidentified products. HOCl could oxidize all these products further. Hydrogen peroxide did not oxidize uric acid at detectable rates, although it rapidly oxidized oxonic acid and slowly oxidized allantoin and parabanic acids. Hydroxyl radicals generated by hypoxanthine/xanthine oxidase or Fe2(+)-EDTA/H2O2 systems also oxidized uric acid to allantoin, oxonic/oxaluric acid and traces of parabanic acid. Addition of ascorbic acid to the Fe2(+)-EDTA/H2O2 system did not increase formation of oxidation products from uric acid, possibly because ascorbic acid can 'repair' the radicals resulting from initial attack of hydroxyl radicals upon uric acid. Mixtures of methaemoglobin or metmyoglobin and H2O2 also oxidized uric acid: allantoin was the major product, but some parabanic and oxonic/oxaluric acids were also produced. Caeruloplasmin did not oxidize uric acid under physiological conditions, although simple copper (Cu2+) ions could, but this was prevented by albumin or histidine. The possibility of using oxidation products of uric acid, such as allantoin, as an index of oxidant generation in vivo in humans is discussed.  相似文献   

12.
In recent years, xanthine oxidase has emerged as an important target not only for gout but also for cardiovascular and metabolic disorders involving hyperuricemia. Contrary to popular belief, recent clinical trials with uricosurics have demonstrated that enhanced excretion of uric acid is, by itself, not adequate to treat hyperuricemia; simultaneous inhibition of production of uric acid by inhibition of xanthine oxidase is also important. Virtual screening of in-house synthetic library followed by in vitro and in vivo testing led to the identification of a novel scaffold for xanthine oxidase inhibition. In vitro activity results corroborated the results from molecular docking studies of the virtual screening hits. The isocytosine scaffold maintains key hydrogen bonding and pi-stacking interactions in the deep end of the xanthine-binding pocket, which anchors it in an appropriate pose to inhibit binding of xanthine and shows promise for further lead optimization using structure-based drug design approach.  相似文献   

13.
This study assessed the role of xanthine oxidase in vascular ageing. A positive correlation between xanthine oxidase activity and age was found in human plasma. Similar results were found in rat plasma. Xanthine oxidase expression and activity in homogenates from the aortic wall were significantly higher in samples from old rats than in their young counterparts (p<0.01). In rat skeletal muscle homogenates both xanthine oxidase expression and activity showed a similar age-related profile. Superoxide production by xanthine oxidase in aortic rings was higher in aged rats. Uric acid, the final product of xanthine oxidase has been proposed as a risk factor for coronary heart disease and an independent marker of worse prognosis in patients with moderate-to-severe chronic heart failure. These results give a possible explanation for this correlation and underscore the role of xanthine oxidase in ageing.  相似文献   

14.
The purpose of this study was the evaluation of the xanthine oxidase (XO) inhibition produced by some synthetic 2-styrylchromones. Ten polyhydroxylated derivatives with several substitution patterns were synthesised, and these and a positive control, allopurinol, were tested for their effects on XO activity by measuring the formation of uric acid from xanthine. The synthesised 2-styrylchromones inhibited xanthine oxidase in a concentration-dependent and non-competitive manner. Some IC50 values found were as low as 0.55 microM, which, by comparison with the IC50 found for allopurinol (5.43 microM), indicates promising new inhibitors. Those 2-styrylchromones found to be potent XO inhibitors should be further evaluated as potential agents for the treatment of pathologies related to the enzyme's activity, as is the case of gout, ischaemia/reperfusion damage, hypertension, hepatitis and cancer.  相似文献   

15.
Xanthine oxidase (XO) is a key enzyme which can catalyze xanthine to uric acid causing hyperuricemia in humans. By using the fractionation technique and inhibitory activity assay, an active compound that prevents XO from reacting with xanthine was isolated from wheat leaf. It was identified by the Mass and NMR as 6-aminopurine (adenine). A structure-activity study based on 6-aminopurine was conducted. The inhibition of XO activity by 6-aminopurine (IC(50)=10.89+/-0.13 microM) and its analogues was compared with that by allopurinol (IC(50)=7.82+/-0.12 microM). Among these analogues, 2-chloro-6(methylamino)purine (IC(50)=10.19+/-0.10 microM) and 4-aminopyrazolo[3,4-d] pyrimidine (IC(50)=30.26+/-0.23 microM) were found to be potent inhibitors of XO. Kinetics study showed that 2-chloro-6(methylamino)purine is non-competitive, while 4-aminopyrazolo[3,4-d]pyrimidine is competitive against XO.  相似文献   

16.
A xanthine oxidase enzyme electrode (xanthine oxidase immobilized on electrochemically modified graphite and conveniently coated with gelatine electrode working surface) for quantitative analysis of xanthine is proposed. The detection of thus developed electrochemical system is based on the electroreduction of hydrogen peroxide generated in enzyme layer and offered L-ascorbic and uric acid reducing interference effect on the substrate determination. At a working potential -50 mV (vs. Ag/AgCl) the detection limit of 4.5 microM and the linearity of the amperometric signal up to substrate concentration of about 40 microM were found. At that working potential, the electrode is practically inert towards L-ascorbic- and uric acid present. The response time did not exceed 2 min.  相似文献   

17.
The importance of de novo purine synthesis as opposed to the reutilisation of metabolites by salvage pathways, and the nature of the excretory product(s) of purine degradation, have been examined in cultured preimplantation mouse embryos. In the presence of azaserine and mycophenolic acid, which inhibit de novo purine synthesis, embryo cleavage was blocked prior to compaction, the precise stages at which this occurred depended on whether the cultures were established on day 1 or day 2 after fertilisation, and indicated that salvage pathways were insufficient to fulfil the demand for nucleotides during early preimplantation development. The end-product of purine degradation appeared to be xanthine, which was excreted in very small amounts on days 1, 2 and 3, with a pronounced rise from the early to late blastocyst. Uric acid formation or excretion could not be detected. Exogenous hypoxanthine and adenine, which partially inhibited development, were taken up by the embryos and converted to xanthine, most probably by salvage pathways, since the enzyme xanthine oxidase, which converts hypoxanthine directly to xanthine and then to uric acid, could not be detected. Exogenous guanine had little effect on development and was also converted to xanthine, but in this case, the conversion was probably in a single step, via the enzyme guanase.  相似文献   

18.
Mild hyperuricemia has been linked to the development and progression of tubulointerstitial renal damage. However the mechanisms by which uric acid may cause these effects are poorly explored. We investigated the effect of uric acid on apoptosis and the underlying mechanisms in a human proximal tubule cell line (HK-2). Increased uric acid concentration decreased tubule cell viability and increased apoptotic cells in a dose dependent manner (up to a 7-fold increase, p<0.0001). Uric acid up-regulated Bax (+60% with respect to Ctrl; p<0.05) and down regulated X-linked inhibitor of apoptosis protein. Apoptosis was blunted by Caspase-9 but not Caspase-8 inhibition. Uric acid induced changes in the mitochondrial membrane, elevations in reactive oxygen species and a pronounced up-regulation of NOX 4 mRNA and protein (p<0.05). In addition, both reactive oxygen species production and apoptosis was prevented by the NADPH oxidase inhibitor DPI as well as by Nox 4 knockdown. URAT 1 transport inhibition by probenecid and losartan and its knock down by specific siRNA, blunted apoptosis, suggesting a URAT 1 dependent cell death. In summary, our data show that uric acid increases the permissiveness of proximal tubule kidney cells to apoptosis by triggering a pathway involving NADPH oxidase signalling and URAT 1 transport. These results might explain the chronic tubulointerstitial damage observed in hyperuricaemic states and suggest that uric acid transport in tubular cells is necessary for urate-induced effects.  相似文献   

19.
Xanthine oxidase is a key enzyme that catalyses hypoxanthine and xanthine to uric acid and the overproduction of uric acid will lead to hyperuricemia which is an important cause of gout. In the present study, three chalcone derivatives were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro. Of the compounds, only Compound 1, 3,5,2′,4′-tetrahydroxychalcone, exhibited a significant inhibitory activity on xanthine oxidase with an IC50 value of 22.5 μM. Lineweaver–Burk transformation of the inhibition kinetics data demonstrated that it was a competitive inhibitor of xanthine oxidase and Ki value was 17.4 μM. In vivo, intragastric administration of Compound 1 was able to significantly reduce serum uric acid levels and inhibited hepatic xanthine oxidase activities of hyperuricemic mice in a dose-dependent manner. Acute toxicity study in mice showed that Compound 1 was very safe at a dose of up to 5 g/kg. These results suggest that Compound 1 is a novel competitive xanthine oxidase inhibitor and is worthy of further development.  相似文献   

20.
The mechanism of action of xanthine oxidase has been investigated using single-turnover experiments in an effort to determine the primary source of the oxygen atom incorporated into product in the course of catalysis. It is found from mass spectroscopic analysis of the uric acid generated in these experiments that when 16O-labeled enzyme in [18O]H2O is reacted with substoichiometric amounts of xanthine (under conditions where no enzyme molecule is likely to react with more than one substrate molecule), the uric acid isolated from the reaction mixture contains 16O at position 8 of the purine ring. Conversely, when 18O-labeled enzyme in [16O]H2O is exposed to substoichiometric xanthine, 18O is incorporated into the product uric acid. These results strongly support a variety of chemical studies with model molybdenum complexes suggesting that the oxygen atom of the Mo = O group known to be present at the active site of xanthine oxidase is transferred to product in the course of catalysis. The mechanistic implications of the present work are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号