首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neu oncogene was originally identified in cell lines derived from rat neuroectodermal tumors. neu is related to but distinct from the c-erbB gene, which encodes the epidermal growth factor (EGF) receptor. neu encodes a protein, designated p185, that is serologically related to the EGF receptor. Identification of the normal homolog of p185 encoded by the neu proto-oncogene enabled us to compare the product of the neu proto-oncogene with the mutated version specified by the neu oncogene and with the EGF receptor. The normal form of p185 was structurally similar to its transforming counterpart, indicating that activation of the neu oncogene did not cause major structural alterations in the gene product. Both normal and transforming forms of p185 were associated with tyrosine kinase activity, supporting the idea that normal p185 functions as a growth factor receptor. p185 differed both structurally and functionally from the EGF receptor. p185 and the EGF receptor had distinct electrophoretic mobilities when synthesized under normal culture conditions or in the presence of tunicamycin. EGF did not stimulate increased turnover of p185 and did not bind quantitatively to p185. A number of other growth factors failed to stimulate degradation of p185 or tyrosine phosphorylation of p185 and are therefore unlikely to be ligands for p185.  相似文献   

2.
In nontransformed DHFR/G-8 cells (NIH 3T3 cells transfected with normal rat neu gene), the normal neu gene product was initially synthesized as a 170-kDa protein bearing endoglycosidase H-sensitive oligosaccharide chains and was then processed to a 175-kDa mature form with endoglycosidase H-resistant, endoglycosidase F-sensitive oligosaccharide chains. Most of this 175-kDa mature form appeared on the cell surface 2 h following synthesis and showed a half-life of approximately 3 h. In the presence of a growth factor(s) partially purified from bovine kidney, the half-life of this 175-kDa normal neu gene product was shortened to less than 30 min. In B104-1-1 cells (NIH 3T3 cells transfected with neu gene activated oncogenically by a point mutation that changes a valine residue to a glutamic acid residue in the putative transmembrane region), the oncogenically activated neu gene product was also synthesized as a 170-kDa precursor with endoglycosidase H-sensitive oligosaccharide chains. However, this 170-kDa precursor diminished very fast and was only partially processed to a 185-kDa mature form which exhibited a half-life of less than 30 min. The 185-kDa activated neu gene product possessed an unidentified post-translational modification in addition to N-linked oligosaccharide chains. Both the precursor and mature forms of the mutationally activated neu gene product showed increased tyrosine-specific phosphorylation as compared with those of their normal counterparts in DHFR/G-8 cells. The mutationally activated neu gene product in B104-1-1 cells shared several features which have been reported previously for the ligand-activated platelet-derived growth factor receptor in v-sis- or c-sis-transformed cells. These properties include: 1) accelerated turnover of the precursor and mature forms compared with the rates of turnover of its normal counterparts, 2) insensitivity of this rapid turnover to lysosomotropic amines, and 3) increased in vivo tyrosine-specific phosphorylation of both the precursor and mature forms. These findings suggest that the mutationally activated neu gene product may transform the cells by mimicking ligand-induced activation.  相似文献   

3.
The neu proto-oncogene encodes a protein highly homologous to the epidermal growth factor receptor. The neu protein (p185) has a molecular weight of 185,000 Daltons and, like the EGF receptor, possesses tyrosine kinase activity. neu is activated in chemically induced rat neuro/glioblastomas by substitution of valine 664 with glutamic acid within the transmembrane domain. The activated neu* protein (p185*) has an elevated tyrosine kinase activity and a higher propensity to dimerize, but the mechanism of this activation is still unknown. We have used site-directed mutagenesis to explore the role of specific amino acids within the transmembrane domain in this activation. We found that the lateral position and rotational orientation of the glutamic acid in the transmembrane domain does not correlate with transformation. However, the primary structure in the vicinity of Glu664 plays a significant role in this activation. Our results suggest that the Glu664 activation involves highly specific interactions in the transmembrane domain of p185.  相似文献   

4.
p185neu is a receptor-like protein encoded by the neu/erbB-2 proto-oncogene. This protein is closely related to the epidermal growth factor (EGF) receptor, but does not bind EGF. We report here that incubation of Rat-1 cells with EGF stimulates tyrosine phosphorylation of p185. This effect is specific to EGF since neither platelet derived growth factor (PDGF) nor insulin, which also bind to receptors with ligand-stimulated tyrosine kinase activity, induced tyrosine phosphorylation of p185. The EGF-stimulated tyrosine phosphorylation of p185 and of the EGF receptor occurred with similar kinetics and EGF dose-responses, and both phosphorylations were prevented by down-regulation of the EGF receptor with EGF. Since p185 does not bind EGF, these results suggested that p185 is a substrate for the EGF receptor kinase. Incubation of cells with EGF before lysis stimulated the tyrosine phosphorylation of p185 in immune complexes. This suggested that EGF, acting through the EGF receptor, can regulate the intrinsic kinase activity of p185.  相似文献   

5.
The HER2/neu gene encodes a receptor tyrosine kinase that is highly homologous to the epidermal growth factor receptor. Overexpression of the receptor in mammary and ovarian carcinoma correlates with poor patient prognosis. To determine how the overexpression of a normal receptor leads to the generation of an oncogenic signal, we compared the patterns of tyrosine phosphorylation in tumor-derived human cell lines expressing high levels of p185HER2/neu. In intact SKBR3 cells, basal phosphorylation of p185HER2/neu was not detected. However, pretreatment of cells with the tyrosine phosphatase inhibitor, sodium orthovanadate, led to the detection of phosphotyrosine on phospholipase C-gamma (PLC-gamma), GTPase-activating protein but not on the RAF-1 kinase. Strikingly, PLC-gamma was detected in a complex which contained multiple tyrosine-phosphorylated polypeptides. This complex was detected only in cytoplasmic fractions and had a distinct composition in different p185HER2/neu-overexpressing cell lines. Although GTPase-activating protein has been found previously in association with proteins of 190 and 62 kDa in fibroblasts, in SKBR3 cells it was found associated with multiple additional tyrosine-phosphorylated polypeptides. These experiments show that SKBR3 cells possess high levels of protein tyrosine phosphatase that can act upon p185HER2/neu. Moreover, they reveal, for the first time, the presence of PLC-gamma and GTPase-activating protein in cytosolic complexes containing a variety of other tyrosine-phosphorylated polypeptides. These observations suggest novel possibilities for the specific definition of receptor-generated signals in tumor cells.  相似文献   

6.
p185, the product of the neu/erbB2 proto-oncogene, is oncogenically activated by a point mutation that substitutes glutamic acid for valine in the transmembrane domain of the protein. We have found that the transforming form of p185 differs from its normal counterpart in inducing increased tyrosine phosphorylation of other proteins in vivo and in having a much shorter half-life. These results support the model that the transforming p185 resembles a ligand-activated receptor.  相似文献   

7.
The human breast carcinoma cell line SK-BR-3, expresses the neu oncogene product, p185, which is a receptor tyrosine kinase. Using a double monoclonal antibody capture enzyme-linked immunosorbent assay for p185, activity was detected in conditioned media from cultures of SK-BR-3 cells. Two monoclonal antibodies specific for the extracellular domain of p185/neu immunoprecipitated a protein with a molecular mass of approximately 105 kDa. p105 was further shown to compete with p185 for binding to monoclonal antibodies and pulse-chase experiments indicate that it was generated by post-translational processing. Peptide maps showed that p105 and p185 are related polypeptides. Since p105 is close to the predicted size for the extracellular domain of p185/neu, we propose that SK-BR-3 cells specifically process and release this portion of the receptor into the medium. The release of the extracellular domain may have implications in oncogenesis and its detection could prove useful as a cancer diagnostic.  相似文献   

8.
In this work, we have used Xenopus oocyte maturation as a read-out for examining the ability of the neu tyrosine kinase (p185neu) to participate with the epidermal growth factor (EGF) receptor in a common signal transduction pathway. We find that unlike the case for the EGF receptor, which elicits EGF-dependent maturation of these oocytes as reflected by their germinal vesicle breakdown (GVBD), neither the normal neu tyrosine kinase (p185val664) nor the oncogenic form of neu (p185glu664) are able to effectively trigger this maturation event. However, expression of p185glu664 causes a specific and significant promotion of the progesterone-induced GVBD, reducing the half-time for this maturation even from approximately 9 h to approximately 5 h. Stimulation of the progesterone-induced GVBD did not occur following the expression of a kinase-deficient p185neu protein (in which a lysine residue at position 758 was changed to alanine). Essentially identical results were obtained when the mRNAs coding for fusion proteins comprised of the extracellular domain of the receptor for immunoglobulin E (IgE), and the membrane-spanning and tyrosine kinase domains of normal or oncogenic p185neu (designated IgER/p185val664 and IgER/p185glu664, respectively), were injected into oocytes. Antigen-induced crosslinking of IgER/p185val164 proteins expressed in oocytes caused a reduction in the half-time for the progesterone-stimulated GVBD from approximately 9 h to approximately 7 h. Thus, the aggregation of the membrane-spanning and/or tyrosine kinase domains of p185val664 partially mimics the effects of the oncogenic forms of p185neu. Overall, the results of these studies suggest that the activation of the p185neu tyrosine kinase by a point mutation within its membrane-spanning helix, or an aggregation event, can result in the facilitation of oocyte maturation events that are elicited by other factors (e.g. progesterone). However, the activated p185neu tyrosine kinases are not able to mimic the EGF-stimulated EGF receptor tyrosine kinase in triggering oocyte maturation, which suggests that the EGF receptor and the p185neu tyrosine kinase do not input into identical signal transduction pathways in these cells.  相似文献   

9.
The neu proto-oncogene encodes a receptor tyrosine kinase (p185) that is closely related to the epidermal growth factor receptor. It has been proposed that receptor tyrosine kinases are activated through oligomerization. Because this clustering model predicts that oligomerization of receptors is sufficient to activate them, we determined if p185 can be activated by introducing an extra cysteine proximal to the transmembrane domain. This should induce inter-receptor disulfide bonding and, according to the clustering model, activate the receptor. This amino acid substitution enhanced recovery of both normal and transforming neu proteins as dimers, with normal p185 recovered predominantly as monomers and transforming p185* as dimers. However, the cysteine substitution did not affect the transforming activity of the two proteins.  相似文献   

10.
Abstract: A small number of p185c- neu receptors have been found on PC12 cells. These receptors show some basal phosphorylation in quiescent cells. When the cells are treated with nerve growth factor (NGF) for a short time, some increase in phosphorylation is seen, mainly on serine and threonine residues, and this is accompanied by a slight shift in the apparent molecular weight. Epidermal growth factor (EGF) also increases the phosphorylation of p185c- neu , in this case on tyrosine residues. Neither heregulin-β1 nor gp30 stimulates the tyrosine phosphorylation of p185c- neu , and neither has a proliferative effect on the cells. Treatment of the cells with NGF for 5 days produces a 70–80% reduction in the number of p185c- neu receptors. This down-regulation does not occur when PC12nnr5 cells, which lack the high-affinity NGF receptor, p140 trk , are treated with NGF.The level of p185c- neu mRNA is not altered by NGF treatment, suggesting that the down-regulation is due to either a translational or a posttranslational alteration.  相似文献   

11.
p185(her2/neu) belongs to the ErbB receptor tyrosine kinase family, which has been associated with human breast, ovarian, and lung cancers. Targeted therapies employing ectodomain-specific p185(her2/neu) monoclonal antibodies (mAbs) have demonstrated clinical efficacy for breast cancer. Our previous studies have shown that p185(her2/neu) mAbs are able to disable the kinase activity of homomeric and heteromeric kinase complexes and induce the conversion of the malignant to normal phenotype. We previously developed a chimeric antibody chA21 that specifically inhibits the growth of p185(her2/neu)-overexpressing cancer cells in vitro and in vivo. Herein, we report the crystal structure of the single-chain Fv of chA21 in complex with an N-terminal fragment of p185(her2/neu), which reveals that chA21 binds a region opposite to the dimerization interface, indicating that chA21 does not directly disrupt the dimerization. In contrast, the bivalent chA21 leads to internalization and down-regulation of p185(her2/neu). We propose a structure-based model in which chA21 cross-links two p185(her2/neu) molecules on separate homo- or heterodimers to form a large oligomer in the cell membrane. This model reveals a mechanism for mAbs to drive the receptors into the internalization/degradation path from the inactive hypophosphorylated tetramers formed dynamically by active dimers during a "physiologic process."  相似文献   

12.
The protein product of the rodent neu oncogene, p185neu, is a tyrosine kinase with structural similarity to the epidermal growth factor receptor (EGFR). Transfection and subsequent overexpression of the human p185c-erbB-2 protein transforms NIH 3T3 cells in vitro. However, NIH 3T3 cells are not transformed by overexpressed rodent p185c-neu. NIH 3T3 transfectants overexpressing EGF receptors are not transformed unless incompletely transformed. Several groups have recently demonstrated EGF-induced, EGFR-mediated phosphorylation of p185c-neu. During efforts to characterize the interaction of p185c-neu with EGFR further, we created cell lines that simultaneously overexpress both p185c-neu and EGFR and observed that these cells become transformed. These observations demonstrate that two distinct, overexpressed tyrosine kinases can act synergistically to transform NIH 3T3 cells, thus identifying a novel mechanism that can lead to transformation.  相似文献   

13.
The functional integration of growth factor signaling occurs at several levels in target cells. One of the most proximal mechanisms is receptor transmodulation, by which one activated receptor can regulate the expression of other receptors in the same cells. Well-established transregulatory loops involve platelet-derived growth factor (PDGF) down-regulation of epidermal growth factor (EGF) receptors and beta-type transforming growth factors modulation of PDGF receptors. We have studied the relationship between neu tyrosine kinase activation and the expression of the PDGF receptors in transfected NIH/3T3 cells. Expression of the neu oncogene, but not of the neu proto-oncogene, was associated with a decrease of PDGF alpha- and beta-receptors on the cell surface, as measured by [125-I]PDGF-AA and -BB binding. These results were corroborated by metabolic labeling and immunoprecipitation of the PDGF beta-receptors. PDGF alpha- and beta-receptor mRNAs were strongly decreased in the neu oncogene-transformed cells in comparison with control cells expressing the neu proto-oncogene. Down-regulation of the PDGF receptors and their mRNAs was also observed after EGF treatment of cells expressing a chimeric EGF receptor/neu receptor, where the neu tyrosine kinase is activated by EGF binding. These results show that the neu tyrosine kinase can down-modulate PDGF receptor expression, and the effect is mediated via decreased PDGF receptor mRNA levels.  相似文献   

14.
The neu receptor oncoprotein tyrosine kinase, capable of transforming cultured fibroblasts and causing mammary carcinomas in transgenic mice, carries a point mutation in its transmembrane domain and shows a constitutive tyrosine kinase activity. We analyzed the neu tyrosine kinase and its substrates in transfected NIH 3T3 fibroblasts by phosphotyrosine immunoblotting. Tyrosine phosphorylated proteins were similar but not identical in epidermal growth factor (EGF)-stimulated cells expressing the human EGF receptor (EGFR) or a chimeric EGFR/neu receptor but differed from phosphotyrosyl proteins constitutively expressed in neu oncogene-transformed cells. The neu oncoprotein in the latter cells was phosphorylated in tyrosine in a ligand-independent manner and had a shortened half-life in comparison with the normal neu protein. Tumor promoter pretreatment inhibited ligand-induced receptor tyrosine phosphorylation and decreased tyrosine phosphorylated neu oncoprotein. Prolonged pretreatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) also prevented the induction of immediate early growth factor-regulated genes in response to neu activation. Expression of the neu oncogene but not the protooncogene in NIH 3T3 cells was associated with enhanced levels of the jun and fos oncoproteins and loss of serum growth factor induction of immediate early mRNA responses. The constitutively activated neu oncoprotein tyrosine kinase thus deregulates cellular genomic responses to growth factors.  相似文献   

15.
The neu/c-erbB-2 oncogene encodes a 185 kDa protein closely homologous to the epidermal growth factor receptor. The protein product (p185) is a glycoprotein with an external domain and an internal domain with tyrosine kinase activity. Amplification and/or overexpression of p185 is related to several human adenocarcinomas. Subsequent studies demonstrated its presence in certain neuroendocrine (NE) neoplasms, including phaeochromocytomas, insulinomas and medullary thyroid carcinomas. However, relatively little is known about its role in normal cell growth regulation and development. Therefore, our objective was to determine whether neu/c-erbB-2 was expressed in normal NE tissues of different mammals, specially in humans, as it was in their neoplasms. We have examined by immunohistochemistry different endocrine glands (thyroid, pancreas, suprarrenal and hypophysis) and the small intestine of human beings, rats and guinea pigs, using two polyclonal antibodies raised against the intracytoplasmic part of the protein, and specific antigen absorption controls. We have found that a neu/c-erbB-2-like product occurs in all normal NE tissues examined: C cells of the thyroid gland, chromaffin cells of the adrenal medulla, pancreatic islets, enteroendocrine cells of the small intestine and, finally, scattered cells of the adenohypophysis, according to a typical granular immunohistochemical pattern. Our results indicate that normal NE cells share a new common antigen in their cytoplasms, a neu/c-erbB-2-like product, with a similar immunostaining pattern to that presented by the neoplasms derived from them.  相似文献   

16.
17.
A neu/erb B2 ligand growth factor (NEL-GF) was purified to homogeneity from bovine kidney by a procedure involving ammonium sulfate fractionation (35-70% saturation) followed by sequential column chromatography on DEAE-cellulose (DE52), Sulfadex (sulfated Sephadex G-50), heparin-Sepharose 4B, and Superdex 75 (fast protein liquid chromatography). NEL-GF was found to be a 25-kDa polypeptide according to the analysis by gel filtration on Superdex 75 and 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. NEL-GF stimulated the tyrosine-specific autophosphorylation of the neu/erb B2 gene product purified by immunoabsorbent and tyrosine-specific phosphorylation of the neu/erb B2 gene product in intact dihydrofolate reductase (DHFR/G-8 cells (NIH 3T3 cells transfected with rat c-neu). NEL-GF also down-regulated the cell surface neu/erb B2 gene product in DHFR/G-8 cells. NEL-GF was mitogenic toward NIH 3T3 cells, DHFR/G-8 cells, A431 cells (human epidermoid carcinoma cells), and SK-BR-3 cells (human breast carcinoma cells) but inactive toward bovine aorta endothelial cells. NEL-GF was sensitive to 0.1% trifluoroacetic acid but resistant to 5% beta-mercaptoethanol and appeared to be distinct from a neu protein-specific activating factor (Davis, J. G., Hamuro, J., Shim, C. Y., Samanta, A., Greene, M. I., and Dobashi, K. (1991) Biochem. Biophys. Res. Commun. 179, 1536-1542) and a 30-kDa glycoprotein which competed with a monoclonal antibody for binding to the neu/erb B2 gene product (Lupu, R., Colomer, R., Zugmaier, G., Sarup, J., Shepard, M., Slamon, D., and Lippman, M. E. (1990) Science 249, 1552-1555).  相似文献   

18.
The neu oncogene, characterized by Weinberg and colleagues, is a transforming gene found in ethylnitrosourea-induced rat neuro/glioblastomas; its human proto-oncogene homologue has been termed erbB2 or HER2 because of its close homology with the epidermal growth factor receptor (EGF-R) gene (c-erbB1). Expression of the rat neu oncogene is sufficient for transformation of mouse NIH 3T3 fibroblasts in culture and for the development of mammary carcinomas in transgenic mice, but the neu proto-oncogene has not been associated with cell transformation. We constructed a vector for expression of a chimeric cDNA and hybrid protein consisting of the EGF-R extracellular, transmembrane and protein kinase C-substrate domains linked to the intracellular tyrosine kinase and carboxyl terminal domain of the rat neu cDNA. Upon transfection with the construct, NIH 3T3 cells gave rise to EGF-R antigen-positive cell clones with varying amounts of specific EGF binding. Immunofluorescence and immunoprecipitation using neu- and EGF-receptor specific antibodies demonstrated a correctly oriented and positioned chimeric EGF-R-neu protein of the expected apparent mol. wt on the surface of these cells. EGF or TGF alpha induced tyrosine phosphorylation of the chimeric receptor protein, stimulated DNA synthesis of EGF-R-neu expressing cells and led to a transformed cell morphology and growth in soft agar. In contrast, the neu proto-oncogene did not show kinase activity or transforming properties when expressed at similar levels in NIH 3T3 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
基质金属蛋白酶-2(Matrix Metalloproteinase-2,MMP-2)是基质金属蛋白酶家族的重要成员,能降解明胶蛋白和Ⅳ型、V型胶原,在细胞外基质的降解过程中起着关键作用,能够促进肿瘤细胞发生侵袭和转移。p185HER-2/neu蛋白是一种相对分子质量185×103的跨膜糖蛋白,由HER-2/neu基因编码,属于酪氨酸激酶受体家族,p185HER-2/neu蛋白在人类多种癌症中存在扩增及过量表达,并与肿瘤的侵袭性表型及生存期短密切相关。就基质金属蛋白酶-2和p185HER-2/neu蛋白的生物学特性,与卵巢癌侵袭转移和预后的关系及MMP-2和p185HER-2/neu蛋白的研究情况等予以综述。  相似文献   

20.
T Wada  X L Qian  M I Greene 《Cell》1990,61(7):1339-1347
We have used cross-linking reagents on cell lines expressing both p185neu and EGFR. The lysates of the cells were precipitated with anti-p185neu or anti-EGFR antibodies. These precipitates included a high molecular weight complex that was identified as an EGFR-p185neu heterodimer. Heterodimerization was found to be induced by exposure to EGR. The EGFR of these cells displayed three affinity states for EGF: low (Kd, approximately 10(-9) M), high (Kd, 10(-9) to 10(-10) M), and very high (Kd, 10(-11) M), as determined by Scatchard analyses. Relatively small levels of EGF had a dramatic biological effect on cells expressing very high affinity EGFR. The very high affinity EGFR disappeared after the cells were treated with anti-p185neu monoclonal antibodies that selectively down-regulated p185neu. EGF and TPA had differential effects on down-modulation of the EGFR in cells that express either one or both species of receptor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号