首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We have purified the DNA polymerase II of Escherichia coli from the recombinant strain carrying the plasmid which encodes the polB gene. We confirmed that the purified protein, of molecular weight 90,000, possesses a 3'----5' exonuclease activity in addition to DNA polymerizing activity in a single polypeptide. Its DNA polymerizing activity was sensitive to the drug aphidicoline, which is a specific and direct inhibitor of the alpha-like DNA polymerases including eukaryotic replicative DNA polymerases. Aphidicolin had no detectable effect on the 3'----5' exonuclease activity. The inhibition by aphidicolin on the polymerizing activity of polymerase II was competitive with respect to dNTP and uncompetitive with respect to template DNA. This mode of action is the same as that on eukaryotic DNA polymerase alpha. The apparent Ki value calculated from Lineweaver-Burk plots was 55.6 microM.  相似文献   

2.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

3.
DNA polymerases delta and alpha were purified from CV-1 cells, and their sensitivities to the inhibitors aphidicolin, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), and monoclonal antibodies directed against DNA polymerase alpha were determined. The effects of these inhibitors on DNA replication in permeabilized CV-1 cells were studied to investigate the potential roles of polymerases delta and alpha in DNA replication. Aphidicolin was shown to be a more potent inhibitor of DNA replication than of DNA polymerase alpha or delta activity. Inhibition of DNA replication by various concentrations of BuPdGTP was intermediate between inhibition of purified polymerase alpha or delta activity. Concentrations of BuPdGTP which totally abolished DNA polymerase alpha activity were much less effective in reducing DNA replication, as well as the activity of DNA polymerase delta. Monoclonal antibodies which specifically inhibited polymerase alpha activity reduced, but did not abolish, DNA replication in permeable cells. BuPdGTP, as well as anti-polymerase alpha antibodies, inhibited DNA replication in a nonlinear manner as a function of time. Depending upon the initial or final rates of inhibition of replication by BuPdGTP and anti-alpha antibodies, as little as 50%, or as much as 80%, of the replication activity can be attributed to polymerase alpha. The remaining replication activity (20-50%) is tentatively attributed to polymerase delta, because it was aphidicolin sensitive and resistant to both anti-polymerase alpha antibodies and low concentrations of BuPdGTP. A concentration of BuPdGTP which abolished polymerase alpha activity reduced, but did not abolish, both the synthesis and maturation of nascent DNA fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
F W Perrino  L A Loeb 《Biochemistry》1990,29(22):5226-5231
Purified DNA polymerase alpha, the major replicating enzyme found in mammalian cells, lacks an associated 3'----5' proofreading exonuclease that, in bacteria, contributes significantly to the accuracy of DNA replication. Calf thymus DNA polymerase alpha cannot remove mispaired 3'-termini, nor can it extend them efficiently. We designed a biochemical assay to search in cell extracts for a putative proofreading exonuclease that might function in concert with DNA polymerase alpha in vivo but dissociates from it during purification. Using this assay, we purified a 3'----5' exonuclease from calf thymus that preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by DNA polymerase alpha. This exonuclease copurifies with a DNA polymerase activity that is biochemically distinct from DNA polymerase alpha and exhibits characteristics described for a second replicative DNA polymerase, DNA polymerase delta. In related studies, we showed that the 3'----5' exonuclease of authentic DNA polymerase delta, like the purified exonuclease, removes terminal mispairs, allowing extension by DNA polymerase alpha. These data suggest that a single proofreading exonuclease could be shared by DNA polymerases alpha and delta, functioning at the site of DNA replication in mammalian cells.  相似文献   

5.
A procedure is described for the purification from cultured mouse cells of two DNA polymerase "delta-like" enzymes, as defined by intrinsic 3'-exonuclease activity, inhibition by aphidicolin, and relative insensitivity to N2-(p-n-butylphenyl)-dGTP. One of the two enzymes has been purified to near homogeneity and, similar to the DNA polymerase delta from calf thymus described by Lee et al. (Lee, M. Y. W. T., Tan, C. K., Downey, K. M., and So, A. G. (1984) Biochemistry 23, 1906-1913), it has a total molecular mass of 178 kDa (from sedimentation velocity of 8.0 S and Stokes radius of 54 A) and is composed of one each of 125- and 50-kDa polypeptides. It also resembles the DNA polymerase delta of Lee et al. in being stimulated by proliferating cell nuclear antigen (PCNA). It is the first clear structural and functional counterpart of the calf thymus enzyme. The major difference between the mouse DNA polymerase delta and the calf thymus enzyme of Lee et al. is that, under specific conditions, the mouse enzyme is active with poly(dA).oligo(dT) in the absence of PCNA, whereas the activity of the calf thymus enzyme with this template is reported to be completely dependent on PCNA. The reason for this difference is not known at this time. The second mouse cell enzyme has a molecular mass of 112 kDa (from sedimentation velocity of 6.3 S and Stokes radius of 43.0 A) and consists of a single polypeptide of 123-125 kDa in denaturing gels (p125). On the basis of its apparent formation by dissociation of DNA polymerase delta, and multiple similarities with DNA polymerase delta in enzymatic properties, the p125 is provisionally identified as the 125-kDa polypeptide of DNA polymerase delta. The p125 does not respond to PCNA, suggesting that the 50-kDa polypeptide is required for the stimulation of DNA polymerase delta by PCNA. The presence of the p125 in cell extracts would explain reports that DNA polymerase delta consists of a single polypeptide of approximately 125 kDa and/or thast it has a smaller molecular mass than DNA polymerase delta of Lee et al. and is not affected by PCNA (this does not apply to PCNA-independent DNA polymerase delta-like enzymes with higher molecular mass than the polymerase delta of Lee et al., which have recently been named DNA polymerases epsilon).  相似文献   

6.
The activities of DNA polymerases alpha and delta, in extracts from Chinese hamster ovary (CHO) cells, were assayed in order to determine whether these polymerases are regulated during the cell cycle. An exponential population of CHO cells was separated into enriched populations of G-1, S, and G-2/M phases of cell cycle by centrifugal elutriation. Total cell homogenates from each population were assayed for DNA polymerase activity by measuring labeled nucleotide incorporation into the exogenous templates oligo(dT).poly(dA) and DNase I activated calf thymus DNA. In these experiments, specific DNA polymerase inhibitors were added to assays of the cellular extracts to allow for the independent measurement of activities of DNA polymerases alpha and delta. Comparisons of total DNA polymerase activity from cellular extracts, sampled from each portion of the cell cycle, demonstrated no significant change with respect to the concentration of total protein. However, results indicate that the activity of DNA polymerase delta increases with respect to that of DNA polymerase alpha in the G-2/M portion of the cell cycle. This difference in relative activities of DNA polymerases alpha and delta suggests a coordinate regulation of a specific species of DNA polymerase during the cell cycle.  相似文献   

7.
Most, although not all, samples of commercial calf thymus DNA were strongly inhibitory to DNA polymerase alpha; the inhibition made the DNA useless as a template for this enzyme. In a pre-assembled DNA polymerase assay mixture (minus enzyme but including activated DNA) the inhibition tended to diminish with time but at a rate that was not predictable, and some inhibition usually persisted. It was concluded that the inhibition was the result of contamination of the DNA by a heparin-like material on the basis of the following: 1) the inhibition could be reversed by treatment of the DNA with heparinase; 2) both the endogenous inhibitory effect of calf thymus DNA as well as the inhibitory effect of heparin on DNA polymerase alpha are reversed by protamine (which is known to prevent the antithrombin activity of heparin); 3) both the endogenous inhibition and inhibition by heparin are also reversed by ampholyte (which also prevents the antithrombin activity of heparin); and 4) both the endogenous and the heparin-induced inhibitory effects display the same spectrum of activity against mammalian DNA polymerases, i.e. both DNA polymerases alpha and delta are extremely sensitive whereas, DNA polymerases beta and gamma are resistant. The last result also suggests the use of heparin as a specific inhibitor of purified mammalian DNA polymerases alpha and delta, similar to the use of aphidicolin.  相似文献   

8.
9.
We have purified yeast DNA polymerase II to near homogeneity as a 145-kDa polypeptide. During the course of this purification we have detected and purified a novel form of DNA polymerase II that we designate as DNA polymerase II. The most highly purified preparations of DNA polymerase II are composed of polypeptides with molecular masses of 200, 80, 34, 30, and 29 kDa. Immunological analysis and peptide mapping of DNA polymerase II and the 200-kDa subunit of DNA polymerase II indicate that the 145-kDa DNA polymerase II polypeptide is derived from the 200-kDa polypeptide of DNA polymerase II. Activity gel analysis shows that the 145- and the 200-kDa polypeptides have catalytic function. The polypeptides present in the DNA polymerase II preparation copurify with the polymerase activity with a constant relative stoichiometry during chromatography over five columns and co-sediment with the activity during glycerol gradient centrifugation, suggesting that this complex may be a holoenzyme form of DNA polymerase II. Both forms of DNA polymerase II possess a 3'-5' exonuclease activity that remains tightly associated with the polymerase activity during purification. DNA polymerase II is similar to the proliferating cell nuclear antigen (PCNA)-independent form of mammalian DNA polymerase delta in its resistance to butylpheny-dGTP, template specificity, stimulation of polymerase and exonuclease activity by KCl, and high processivity. Although calf thymus PCNA does not stimulate the activity of DNA polymerase II on poly(dA):oligo(dT), possibly due to the limited length of the template, the high processivity of yeast DNA polymerase II on this template can be further increased by the addition of PCNA, suggesting that conditions may exist for interactions between PCNA and yeast DNA polymerase II.  相似文献   

10.
DNA polymerase alpha, delta and epsilon can be isolated simultaneously from calf thymus. DNA polymerase delta was purified to apparent homogeneity by a four-column procedure including DEAE-Sephacel, phenyl-Sepharose, phosphocellulose, and hydroxylapatite, yielding two polypeptides of 125 and 48 kDa, respectively. On hydroxylapatite DNA polymerase delta can completely be separated from DNA polymerase epsilon. By KCl DNA polymerase delta is eluted first, while addition of potassium phosphate elutes DNA polymerase epsilon. DNA polymerases delta and epsilon could be distinguished from DNA polymerase alpha by their (i) resistance to the monoclonal antibody SJK 132-20, (ii) relative resistance to N2-[p-(n-butyl)phenyl]-2-deoxyguanosine triphosphate and 2-[p-(n-butyl)anilino]-2-deoxyadenosine triphosphate, (iii) presence of a 3'----5' exonuclease, (iv) polypeptide composition, (v) template requirements, (vi) processivities on the homopolymer poly(dA)/oligo(dT12-18), and (vii) lack of primase. The following differences of DNA polymerase delta to DNA polymerase epsilon were evident: (i) the independence of DNA polymerase epsilon to proliferating cell nuclear antigen for processivity, (ii) utilization of deoxy- and ribonucleotide primers, (iii) template requirements in the absence of proliferating cell nuclear antigen, (iv) mode of elution from hydroxylapatite, and (v) sensitivity to d2TTP and to dimethyl sulfoxide. Both enzymes contain a 3'----5' exonuclease, but are devoid of endonuclease, RNase H, DNA helicase, DNA dependent ATPase, DNA primase, and poly(ADP-ribose) polymerase. DNA polymerase delta is 100-150 fold dependent on proliferating cell nuclear antigen for activity and processivity on poly(dA)/oligo(dT12-18) at base ratios between 1:1 to 100:1. The activity of DNA polymerase delta requires an acidic pH of 6.5 and is also found on poly(dT)/oligo(dA12-18) and on poly(dT)/oligo(A12-18) but not on 10 other templates tested. All three DNA polymerases can be classified according to the revised nomenclature for eukaryotic DNA polymerases (Burgers, P.M. J., Bambara, R. A., Campbell, J. L., Chang, L. M. S., Downey, K. M., Hübscher, U., Lee, M. Y. W. T., Linn, S. M., So, A. G., and Spadari, S. (1990) Eur. J. Biochem. 191, 617-618).  相似文献   

11.
Vitamin B(6) compounds such as pyridoxal 5(')-phosphate (PLP), pyridoxal (PL), pyridoxine (PN), and pyridoxamine (PM), which reportedly have anti-angiogenic and anti-cancer effects, were thought to be inhibitors of some types of eukaryotic DNA polymerases. PL moderately inhibited only the activities of calf DNA polymerase alpha (pol alpha), while PN and PM had no inhibitory effects on any of the polymerases tested. On the other hand, PLP, a phosphated form of PL, was potentially a strong inhibitor of pol alpha and epsilon from phylogenetic-wide organisms including mammals, fish, insects, plants, and protists. PLP did not suppress the activities of prokaryotic DNA polymerases such as Escherichia coli DNA polymerase I and Taq DNA polymerase, or DNA-metabolic enzymes such as deoxyribonuclease I. For pol alpha and epsilon, PLP acted non-competitively with the DNA template-primer and competitively with the nucleotide substrate. Since PL was converted to PLP in vivo after being incorporated into human cancer cells, the anti-angiogenic and anti-cancer effects caused by PL must have been caused by the inhibition of pol alpha and epsilon activities after conversion to PLP.  相似文献   

12.
13.
The relationship between DNA polymerases alpha and delta are evaluated immunologically by monoclonal antibody specifically against DNA polymerase alpha and murine polyclonal antiserum against calf thymus DNA polymerase delta. DNA polymerases alpha and delta are found to be immunologically distinct. The structural relationship between the proliferating cell nuclear antigen (PCNA)-dependent calf DNA polymerase delta and DNA polymerase alpha from human and calf was analyzed by two-dimensional tryptic peptide mapping of the catalytic polypeptides. The results demonstrate that the catalytic polypeptides of the PCNA-dependent calf polymerase delta and DNA polymerase alpha are distinct, unrelated, and do not share any common structural determinants. The immunological and structural relationship between a recently identified PCNA-independent form of DNA polymerase delta from HeLa cells was also assessed. This PCNA-independent human polymerase delta was found to be immunologically unrelated to human polymerase alpha but to share some immunological and structural determinants with the PCNA-dependent calf thymus polymerase delta.  相似文献   

14.
It is shown, that DNA hydrolysis catalyzed by E. coli DNA polymerase I is inhibited, when a reaction mixture contains one type of deoxynucleoside 5'-triphosphate (dNTP). When the reaction mixture contains [32P]dNTP, then [32P] is incorporated into DNA and v. v. (32P) from DNA is transferred into dNTP. The nucleotide exchange between DNA and dNTP in the assay mixture is observed only in the case, when the chemical nature of nucleotide residue of dNTP and that of the 3'-terminus of DNA is the same. Analysis of products of DNA hydrolysis in the presence of one type of dNTP using electrophoresis in polyacrylamide gel shows that most of the DNA molecules are terminated at the 3'-termini by the dNMP residue of the same chemical nature as the dNTP in the assay mixture. However, in some cases DNA molecules contain one additional nucleotide residue. This phenomenon can be explained by incorporation of one additional dNMP residue originating from dNTP only in those cases, when a non-typical base pairing of this nucleotide residue with a template residue readily takes place. The above-mentioned facts can be interpreted within the model for DNA hydrolysis with involvement of two intermediate covalent forms of dNMP residues with DNA polymerase I; one dNMP-intermediate should be placed at the elongation center and the other--at the hydrolysis center. The DNA hydrolysis by 3'----5' exonuclease activity of DNA polymerase I proceeds through these two covalent forms. DNA polymerases alpha from calf thymus and T4 phage do not catalyze the nucleotide exchange between DNA and dNTP from the reaction media.  相似文献   

15.
DNA polymerases from bakers' yeast.   总被引:21,自引:0,他引:21  
Two DNA polymerases are present in extracts of commercial bakers' yeast and wild type Saccharomyces cerevisiae grown aerobically to late log phase. Yeast DNA polymerase I and yeast DNA polymerase II can be separated by DEAE-cellulose, hydroxylapatite, and denatured DNA-cellulose chromatography from the postmitochondrial supernatants of yeast lysates. The yeast polymerases are both of high molecular weight (greater than 100,000) but are clearly separate species by the lack of immunological cross-reactivity. Analysis of associated enzyme activities and other reaction properties of yeast DNA polymerases provides additional evidence for distinguishing the two species. Enzyme I has no associated nuclease activity but does carry out pyrophosphate exchange and pyrophosphorolysis reactions, and has an associated 3'-exonuclease activity. Enzyme I does not degrade deoxynucleoside triphosphates and cannot utilize a mismatched template. Enzyme II does carry out a template-dependent deoxynucleoside triphosphate degradation reaction and can excise mismatched 3'-nucleotides from suitable template systems. Earlier studies have shown that both Enzyme I and Enzyme II are inhibited by N-ethylmaleimide. The yeast enzymes are not identical to any known eukaryotic or prokaryotic DNA polymerases. In general, Enzyme I appears to be most similar to eukaryotic DNA polymerase alpha and Ezyme II exhibits properties of prokaryotic DNA polymerases II and III.  相似文献   

16.
The use of 5'-AMP as a ligand for the affinity chromatography of DNA polymerases with intrinsic 3' to 5' exonuclease activities was investigated. The basis for this is that 5'-AMP would be expected to act as a ligand for the associated 3' to 5' exonuclease. The requirements for binding of Escherichia coli DNA polymerase I, T4 DNA polymerase, and calf thymus DNA polymerase delta, all of which have associated 3' to 5' exonuclease activities, to several commercially available 5'-AMP supports with different linkages of 5'-AMP to either agarose or cellulose were examined. The DNA polymerases which possessed 3' to 5' exonuclease activities were bound to agarose types in which the 5'-phosphoryl group and the 3'-hydroxyl group of the AMP were unsubstituted. Bound enzyme could be eluted by either an increase in ionic strength or competitive binding of nucleoside 5'-monophosphates. Magnesium was found to reinforce the binding of the enzyme to these affinity supports. DNA polymerase alpha, which does not have an associated 3' to 5' exonuclease activity, did not bind to any of these columns. These differences can be used to advantage for the purification of DNA polymerases that have associated 3' to 5' exonuclease activities, as well as a means for establishing the association of 3' to 5' exonuclease activities with DNA polymerases.  相似文献   

17.
Yeast DNA polymerases I and III have been well characterized physically, biochemically, genetically and immunologically. DNA polymerase II is present in very small amounts, and only partially purified preparations have been available for characterization, making comparison with DNA polymerases I and III difficult. Recently, we have shown that DNA polymerases II and III are genetically distinct (Sitney et al., 1989). In this work, we show that polymerase II is also genetically distinct from polymerase I, since polymerase II can be purified in equal amounts from wild-type and mutant strains completely lacking DNA polymerase I activity. Thus, yeast contains three major nuclear DNA polymerases. The core catalytic subunit of DNA polymerase II was purified to near homogeneity using a reconstitution assay. Two factors that stimulate the core polymerase were identified and used to monitor activity during purification and analysis. The predominant species of the most highly purified preparation of polymerase II is 132,000 Da. However, polymerase activity gels suggest that the 132,000-Da form of DNA polymerase II is probably an active proteolytic fragment derived from a 170,000-Da protein. The highly purified polymerase fractions contain a 3'----5'-exonuclease activity that purifies at a constant ratio with polymerase during the final two purification steps. However, DNA polymerase II does not copurify with a DNA primase activity.  相似文献   

18.
19.
Yeast DNA-dependent RNA polymerases I, II, and III are phosphorylated in vivo. Yeast cells were grown continuously in 32Pi and the RNA polymerases were isolated by a new procedure which allows the simultaneous purification of these enzymes from small quantities (35 to 60 g) of cells. Each of the RNA polymerases was phosphorylated. The following phosphorylated polymerase polypeptides were identified: polymerase I subunits of 185,000, 44,000, 36,000, 24,000, and 20,000 daltons; a polymerase II subunit of 24,000 daltons; and polymerase III subunits of 24,000 and 20,000 daltons. The incorporated 32P was acid-stable but base-labile. Phosphoserine and phosphothreonine were identified after partial acid hydrolysis of purified [32P]polymerase I. A yeast protein kinase that co-purifies with polymerase I during part of the isolation procedure was partially purified and characterized. This protein kinase phosphorylates the subunits of the purified polymerases that are phosphorylated in vivo and, in addition, a polymerase I subunit of 48,000 daltons and a polymerase II subunit of 33,500 daltons. Phosphorylation of the purified enzymes with this protein kinase had no substantial effect on polymerase activity in simple assays using native yeast DNA as a template. Preincubation of purified polymerase I with acid or alkaline phosphatase also had no detectable effect on polymerase activity.  相似文献   

20.
An 18mer oligodeoxyribonucleotide containing a N2-(p-n-butylphenyl)-2'-deoxyguanosine (BuPdG) residue at the 3' end has been synthesized by both chemical and enzymatic methods. Chemical synthesis involved attachment of 5'-DMT-BuPdG as the 3'-H-phosphonate to uridine-controlled pore glass (CPG), followed by extension via H-phosphonate chemistry. After oxidation of the backbone, deprotection of bases, and removal from CPG, the uridine residue was removed by periodate cleavage and beta-elimination. The resulting oligomer 3'-phosphate was digested with alkaline phosphatase to give the free BuPdG-18mer. E.coli DNA polymerase I (Klenow) incorporated BuPdGTP at the 3' end of the corresponding 17mer primer annealed to a complementary 29mer template, and the properties of this product were identical to those of chemically synthesized BuPdG-18mer. E.coli DNA polymerase I (Klenow) was unable to extend the BuPdG-18mer, and the 3' to 5' exonuclease activity of the enzyme was unable to remove the modified nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号