首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Summary Prolific shoot regeneration was achieved in mungbean Vigna radiata (L.) Wilczek from 3-d-old in vitro cotyledonary node and hypocotyl explants from seedlings derived from mature seeds on Murashige and Skoog (MS) medium supplemented with thidiazuron (TDZ) (0.9 μM). An initial exposure to TDZ for 20 d and three successive transfers to fresh medium with reduced thidiazuron levels (0.09 μM) resulted in the regeneration of 104 shoots/explant from the cotyledon and 30 shoots/explant from the hypocotyl. Thidiazuron-associated abnormalities such as short compact shoots, fasciation and leaf growth in the form of rosettes were observed in shoots regenerated from hypocotyl explants. Both axillary and adventitious shoot formation from the explants were confirmed by histology. Through repectitive cycles of regeneration in the presence of TDZ, the number of shoots that could be obtained from the two explant classes within 80 d was significantly higher than with previous reports in mungbean  相似文献   

2.
提高榨菜离体培养植株再生频率   总被引:11,自引:0,他引:11  
采用榨菜“浙桐1号”品种为材料,以MS为基本培养基,通过对不同植物生长调节剂的组合和不同外植体等主要因素的筛选,大幅度提高了榨菜离体培养植株再生频率。结果表明,2mg/L6.BA 0.2mg/L2,4-D的组合较为适宜,其不定芽再生频率可达50%,且外植体以下胚轴为好:而CPPU和2,4-D的适宜组合为1.5mg/L 0.2mg/L,其不定芽再生频率高达66.67%,最适外植体为带柄子叶。同时,研究结果显示,添加0.25~1mg/L的GA,对榨菜已分化的不定芽的伸长有抑制作用;子叶柄和下胚轴外植体的分化具有极性现象。  相似文献   

3.
In vitro regeneration of Trifolium glomeratum, a leguminous forage species, was attempted through leaf, petiole, cotyledon, hypocotyl, collar and root explants and two media combinations. Root and collar explants showed no callus induction. Medium with 0.05 mg dm−3 α-naphthaleneacetic acid (NAA) and 0.10 mg dm−3 N6-benzyladenine (BA) was more effective for hypocotyl explant whereas cotyledon and petiole explant were more responsive to 5.0 mg dm−3 NAA and 1.0 mg dm−3 BA. Friable, green calli obtained from petiole explant on this medium showed organogenetic potential. Modified root-inducing medium having 0.21 mg dm−3 indole-3-acetic acid and 2.5 % sucrose was successful for root induction and plantlets were successfully transferred to field after hardening and Rhizobium inoculation.  相似文献   

4.
Rapid-cycling fast plants (Brassica rapa; RCBr) is also known as Wisconsin Fast Plant and is widely used in K-12 and undergraduate studies. RCBr has a short generation time (seed-to-seed in 30–60 days), which allows for the completion of experiments in a semester. Previous studies have shown that cotyledonary explants with attached petioles are capable of generating shoots. However, there is no published adventitious shoot regeneration protocol to date. Sterile cotyledonary explants were excised; all edges and petioles were removed. Five-day-old cotyledonary explants produced shoots on a Murashige and Skoog medium containing 1.5 mg/L thiadiazuron (TDZ) and 0.5 mg/L 1-naphthaleneacetic acid (NAA) (FPM I) at a mean rate of 8.8%. This rate increased to 14.8% in explants placed on FPM I medium supplemented with 5.0 mg/L silver nitrate (AgNO3) (SRM 2). The rate increased to 32.5% when 5-day-old explants, excised from the part of the cotyledon nearest to the petiole, were placed adaxial side up on SRM 2 medium. The shoot regeneration rate increased to 44.5% using 4-day-old cotyledonary explants. A shoot regeneration rate of 23% was observed among 9-day-old leaf explants. Shoots from cotyledonary explants were elongated on basal medium with 0.5 mg/L NAA, rooted on basal medium, and later acclimatized. This is the first report of shoot regeneration from cotyledonary explants of rapid-cycling Brassica rapa without pre-existing meristematic tissues.  相似文献   

5.

Snapdragon (Antirrhinum majus L.) is a popular ornamental and model plant species, and the recently released reference genome could greatly boost its utilization in fundamental research. However, the lack of an efficient genetic transformation system is still a major limiting factor for its full application in genetic and molecular studies. In this study, a simple method for quick regeneration and efficient Agrobacterium-mediated transformation of snapdragon was developed. Cotyledon petiole and hypocotyl explants derived from two-week-old seedlings were cultured on MS media supplemented with 2 mg/L zeatin (ZT), 0.2 mg/L 1-naphthaleneacetic acid (NAA), and 2 mg/L AgNO3, and adventitious shoots were regenerated through organogenesis with an average regeneration of 48.00% and 41.33%, respectively. By contrast, the regeneration frequency was only 22.67% for cotyledon petiole and 25.67% for hypocotyl explants in the absence of AgNO3. Moreover, the application of AgNO3 promoted indirect shoot organogenesis, while direct shoot organogenesis occurred in the absence of AgNO3 from both hypocotyl or cotyledon petiole explants. Agrobacterium-mediated genetic transformation systems were developed with this high-efficient regeneration system. The transformation efficiency has been improved from 0 to 1% through the direct shoot organogenesis to 3 to 4% via the indirect shoot organogenesis. This efficient regeneration and genetic transformation method could be important for future use of snapdragon as a model plant to address some fundamental questions which are hard to be solved by using other model plant species, and to accelerate the breeding process through CRISPR/Cas9 genome editing.

  相似文献   

6.
Plumbago zeylanica is a unique model for studying flowering plant gametogenesis, heterospermy, and preferential fertilization, yet understanding the control of related molecular mechanisms is impossible without efficient and reproducible regeneration and stable genetic transformation. We found three key factors for enhancing successful regeneration: (1) tissue source of explants, (2) combination and concentration of growth regulators, and (3) culture conditions. The highest frequency of shoot regeneration was achieved using hypocotyl segments cultured on MS basal medium supplemented with BA 2.0 mg/l, NAA 0.75 mg/l, adenine 50 mg/l and 10% (v/v) coconut milk under subdued light at 25±2°C; under these conditions, each hypocotyl segment produced over 30 shoots, arising primarily through direct organogenesis after 3 weeks of culture. Regenerated shoots rooted easily on half-strength basal MS medium and were successfully established in the greenhouse. Using this tissue culture protocol, reporter gene GUS under the constitutive CaMV 35S promoter was introduced into P. zeylanica cells of petiole, cotyledon and hypocotyl with A. tumefaciens strains AGL1 and LBA4404. Transient expression was observed in all recipient tissues. Stable transgenic calli originating from petiole were obtained.  相似文献   

7.
Summary Hypocotyl explants of melon (Cucumis melo L.) are capable of regenerating multiple shoots on Murashige and Skoog (1962) medium, augmented with 4.4 μM benzylademne. Regeneration from the hypocotyl is much more rapid than the more commonly reported regeneration from cotyledonary explants, producing shoots within 2 wk compared to more than a month required for cotyledon explants. The rapid regeneration response depends on the presence of a fragment of the cotyledon remaining attached to the hypocotyl. Controls were performed to ensure that the regeneration was not due to the presence of the shoot apical bud of the melon seedling after explant production. Scanning electron microscopy revealed that microsurgery to remove the apical bud left no excess bud material. Regeneration from the proximal part of the hypocotyl was due to production of a new shoot apical meristem, observed by histology. The apical meristem can be produced before leaf primordia in regeneration from the hypocotyl, in contrast to the regeneration process from the melon cotyledon.  相似文献   

8.
The effects of a two-stage pretreatment of seedlings on the subsequent shoot regeneration capacity were investigated. Pretreated seedlings were obtained by germinating seeds on three different germination media and then further culturing on six different growth media. Lamina and petiole explants of two sugar beet (Beta vulgaris L.) breeding lines were then excised from the pretreated seedlings and cultured on five different shoot regeneration media. In both breeding lines, petiole explants produced significantly more shoots than lamina explants with higher frequencies of organogenic capacities; petiole explants of the lines M1195 and ELK345 produced a mean of 2.1 and 2.7 shoots per explant while their lamina explants produced 1.5 and 2.2 shoots per explant, respectively. A genotypic variation was evident as the line ELK345 was more productive for shoot development from both types of explants. In overall comparisons of different germination, growth and regeneration media, germination medium was most effective when supplemented with 0.5 mg/l 6-benzyladenine (BA) while both growth and regeneration media were most productive when contained a combination of 0.25 mg/l BA and 0.10 mg/l indole-3-butyric acid (IBA). Of all the treatments tested, the highest mean number of shoots per explant (8.3 shoots) and frequency of organogenic explants (75.6%) were obtained on regeneration medium supplemented with 0.25 mg/l BA and 0.10 mg/l IBA when petiole explants of the line ELK345 were excised from the seedlings that had been germinated on medium containing 0.5 mg/l BA followed by further growth on medium containing 0.25 mg/l BA and 0.10 mg/l IBA.  相似文献   

9.
We have achieved high-frequency shoot regeneration in radish(Raphanus sativus). Cotyledon explants from four-day-old seedlings were suitable for the effective induction of shoots on Murashige and Skoog’s (MS) medium containing 3.0 mg/L kinetin. We also determined that it was essential to include 1- to 2-ram petiole segments with the cotyledons for efficient induction. When the regenerated shoots were transferred to an MS liquid medium containing 0.1 mg/L NAA, roots formed within four weeks, and normal plant development ensued. We established a transformation protocol using anAgrobacterium binary vector that carries the GUS reporter gene. Preculturing the explants for I d in an MS medium containing 3.0 mg/L kinetin also increased efficiency. Five days of cocultivation proved best for delivering T-DNA into radish. Transformation frequencies of up to 52% were obtained in shoot induction media that contained 3.0 mg/L kinetin.  相似文献   

10.
Root, hypocotyl and cotyledonary explants of niger (Guizotia abyssinica Cass) CV. Sahyadri were aseptically cultured on Murashige and Skoog's basal medium (MS) containing BAP and kinetin. Multiple shoot regeneration was induced from hypocotyl and cotyledonary explants while root explants produced only callus on MS medium supplemented with BAP. BAP (1 mg l-1) was optimum for shoot regeneration. Regenerated shoots were transferred to MS medium without auxins, with auxins and with increasing concentrations of sucrose for rooting. Complete plantlets were obtained in all cases; however, 0.5 mg l-1 NAA was the best for induction of roots. Ninety-seven per cent of the plantlets survived and completed their life cycle when transferred to natural conditions.Abbreviations BAP 6-benzylamino purine - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid  相似文献   

11.
Leaf, root, stem, petiole, hypocotyl, and zygotic embryo explants, as well as pollen embryoids, and redifferentiated tissues from pollen embryoid-derived plantlets of Hyoscyamus niger L. (black henbane) were inoculated with Agrobacterium tumefaciens, harboring binary vectors (pGS Gluc1) and then cultured on media containing kanamycin. Transient -glucuronidase activity and kanamycin resistant callus formation were influenced by explant origin. Transgenic calluses were obtained at a frequency of up to 30% from all the explants tested. However, transgenic shoots were obtained only from the hypocotyl of plantlets derived from pollen embryoids. Transformation was confirmed by the ability of leaf segments to produce kanamycin resistant calluses, -glucuronidase histochemical and flurometric assays, polymerase chain reaction and Southern blot analysis. The results show that pollen embryoid-derived explants may be an alternative source for both efficient transformation and regeneration of transgenic plants in recalcitrant species.  相似文献   

12.
A very efficient and rapid regeneration system via multiple shoot formation was developed for Cichorium intybus L. when leaf explants excised from sterile seedlings were cultured on medium supplemented with different concentrations and combinations of various plant growth regulators. In a comparison of leaf lamina and petiole explants, lamina explants produced over three times more shoots than petiole explants, with a mean of 7.5 shoots compared to 2.4. Of the combinations of KIN/IAA, KIN/NAA, BAP/IAA, or BAP/NAA, 0.5 mg l−1 KIN combined with 0.3 mg l−1 IAA was the most effective, producing a mean of 19.7 shoots per lamina explant while the control treatment involving no plant growth regulators produced no shoots at all. When either cytokinin was used alone, BAP was found nearly twice more successful than KIN. However, the most effective treatment of all was the combination of 0.01 mg l−1 TDZ and 1.0 mg l−1 IAA, producing as many as 35.8 shoots per lamina explant. This rate of shoot regeneration is remarkably higher than those previously reported for C. intybus, most likely due to the highly inductive effect of TDZ, which was tested for the first time in this species. Rooting of the shoots was readily achieved on medium containing different concentrations of IAA or IBA. IAA was more effective than IBA and resulted in the highest frequency of shoots that rooted (100%) and mean number of roots per shoot (4.2) when used at 0.5 mg l−1. Hardening off process resulted in a production of more than 80% healthy plantlets.  相似文献   

13.
A reliable and reproducible method for plant regeneration in vitro of two important temperate eucalypts, Eucalyptus nitens and E. globulus, has been developed which utilises seedling explants. Highly regenerative callus was obtained from individual cotyledon and hypocotyledon explants of both species following cultivation on Murashige and Skoog’s (MS) basal nutrient medium supplemented with 30 g l−1 sucrose, 5–10% (v/v) coconut water, 0.8% agar, 1 mg l−1 -naphthalene-acetic acid (NAA) and 0.5 mg l−1 N6 benzylaminopurine (BAP). Shoot differentiation was observed 7–8 weeks after transfer of callus onto regeneration medium containing 0.5 mg l−1 NAA and 1 mg l−1 BAP. In a few instances, direct shoot regeneration occurred without an intervening callus phase in both species. The frequency of plant regeneration was higher for callus derived from hypocotyl segments (30–35%) compared to cotyledonary explants (20–25%) though the average number of shoots per cotyledonary explant was generally higher than for hypocotyl explants. Somatic embryos were observed occasionally in E. nitens, arising from the surface of organogenic callus. Organised structures closely resembling somatic embryos were also observed in E. globulus. Regenerated shoots (30–40%) of both species could be rooted in modified MS media containing indole-3-butyric acid (IBA) and plantlets were successfully transferred to soil.  相似文献   

14.
To develop an efficient procedure for Agrobacterium tumefaciens-mediated genetic transformation of carrot (Daucus carota L.) the effects of several factors were studied. Parameters which significantly affected the transformation frequency were the variety, the explant type, and the co-cultivation period. Under optimal conditions, using the A. tumefaciens C58C1 containing either pGSTRN943 or pGSGluc1 and 3 days of co-cultivation, the frequency of transformation of petiole explants of the variety Nanco was greater than 45%. This procedure does not require acetosyringone or prolonged precultivation period. Using kanamycin (100 mg l-1) for selection, a large number of transgenic plantlets developed from the embryogenic calli within 8–10 weeks of culture on hormone-free medium. Transformation was confirmed by histochemical detection of -glucuronidase activity in the transformed cells, by the ability of petiole segments to produce embryogenic calli in presence of kanamycin, and by Southern hybridization analyses.  相似文献   

15.
Among the major factors affected plant regeneration in Brasica parachinensis, a combination of BAP (bacterial alhaline phosphatase) and NAA, at a concentration of 2 mg/L and 1 mg/L respectively, could raise 26.8% of the regeneration rate. It was also found that Ag- NO3 or ABA when supplemented in the culture medium could increase the plant regeneration rate by 79. 0% and 32.30% respectively, indicating that AgNO3 was superior to ABA as a single factor. With a combination of AgNO3 (4 mg/L) and ABA (0. 5 mg/L) added to MS medium already supplemented with ABA 2.0 mg/L and NAA 1.0 mg/L the authors had achieved remarkable results in frequency increase of 89.0%, 84.3% and 86.0% in three explant varieties of B. parachinensis, viz "49-19', "60D' and "70D', respectively. Among the three explants (cotyledon, hypocotyl and petiole with cotyledon), petiole with cotyledon possessed the highest capability for plant regeneration. In addition the age of seedlings and mode of inoculations also influenced the frequency of plant regeneration.' Histological observation evidenced that the mode of plant regeneration in B. parachinensis was of organogenesis. Adventitions buds derived from the cells of vascular parenchyma at the cut surface of petioles. Mature plants were developed after the plantlets were transferred into the plot.  相似文献   

16.
The efficiency of any plant regeneration system lies in part in its wide applicability to diverse genotypes. In Asiatic Vigna, cotyledon and cotyledonary node explants from 4-day-old seedlings of 27 genotypes were cultured in a medium consisting of MS salts, B5 vitamins, 3.0% sucrose and 1.0 mg l-1 BA. Direct and efficient multiple shoot regeneration (80–100%) from the cotyledonary nodes was obtained in all epigeal species namely radiata, mungo, aconitifolia, subspecies radiata var. sublobata, mungo var. silvestris and in the hypogeal but allotetraploid glabrescens. In contrast, two other hypogeal species V. angularis and V. umbellata failed to initiate shoots from the nodes. However, adventititious shoots developed at the basipetal cut (hypocotyl) in 35–67% of V. angularis explants. These results provide evidence in support of the existing genomic grouping within subgenus Ceratotropis, which designates AA, A1A1 and A1A1/- to epigeal, hypogeal and the allotetraploid species, respectively. Mean shoot production ranged from 3.3 to 10.4 shoots per explant during the first subculture and varied significantly among the responsive genotypes within 4 species. Additional shoots were obtained in all genotypes after subsequent subculture. However, cotyledons were not as regenerable as cotyledonary node explants. Although significant differences in rooting were observed among the shoots of the 15 genotypes, the response was generally higher in MS basal medium (MSO) than in MS with 1.0 mg l-1 IAA. Regenerated plants were successfully transferred to soil (50–100% survival rate) and all surviving plants were reproductively fertile. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Broccoli (Brassica oleracea var. italica) deteriorates rapidly following harvest. Postharvest treatment of broccoli with 6-benzylaminopurine delays senescence, whilst exogenous ethylene has been shown to accelerate this process following harvest. To alter ethylene biosynthesis, broccoli was transformed, using Agrobacterium tumefaciens-mediated transformation, with an antisense ACC oxidase gene from broccoli driven by the asparagine synthetase promoter from asparagus. In addition, broccoli was transformed with the chimeric gene construct SAG12-IPT to alter cytokinin biosynthesis during harvest-induced senescence. Transformation was achieved using both hypocotyl and cotyledonary petiole explants. The presence of an antisense ACC oxidase gene enhanced transformation efficiency, but Ag+ incorporated into the medium did not. The transgenic nature of these plants was confirmed by PCR and Southern analyses.  相似文献   

18.
Summary Regeneration of adventitious shoots was obtained in over 80% of explants, consisting of wounded cotyledonary nodes of Acacia mangium, by culturing germinated seedlings on DKW medium with combinations of N6-benzyladenine and either thidiazuron or N-(2-chloro-4-pyridyl)-N-phenylurea. Electron microscopy showed the presence of adventitious buds arising from wound tissue of the cotyledons and cotyledonary nodes. Shoot regeneration was also obtained at lower frequency in isolated cotyledon explants cultured with 6% sucrose alone (10%), or with 3% sucrose and 30.0 mg l−1 (0.1 μM) 2–4-dichlorophenoxyacetic acid (2,4-D; 16%). With 2,4-D,>60% of explants produced organized structures but these did not develop into shoots or somatic embryos. Shoot formation was not induced in either hypocotyl or root explants.  相似文献   

19.
Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.  相似文献   

20.
Summary The in vitro plant regeneration potential of vegetatively propagated geraniums (Pelargonium x hortorum) has been investigated. Using various combinations of growth regulators and a choice of different explants, a regeneration protocol has been developed to raise in vitro plantlets from young petiole and leaf explants from three different cultivars of geraniums. In all three cultivars, very young petiole explants exhibited a higher regeneration potential as compared with leaf explants. Regeneration efficiencies were found to be highly dependent on the cultivar, with cv. Samba showing the highest regeneration potential, followed by cvs. Yours Truly and then Sincerity. Samba also showed the highest number of shoots from both the petiole [57 shoot buds per petiole explant in the presence of 3 μM zeatin and 1 μM indole-3-acetic acid (IAA) and leaf explants (43 shoots per leaf explant with 10 μM zeatin and 2 μM IAA). Shoot buds transferred to Murashige and Skoog (MS) medium supplemented with 0.44 μM N6-benzyladenine and 0.11 μM IAA grew vigorously and attained 1–2 cm in length in 3–4 wk. These shoots rooted with 100% efficiency on MS basal medium, and plants developed that showed normal growth and flowering under greenhouse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号