首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
紫金山风景林保护区景观格局变化研究   总被引:5,自引:0,他引:5  
根据紫金山 1 975、1 988、2 0 0 2三个年度的森林二类调查资料 ,在ARCGIS支持下 ,对紫金山风景林保护区景观格局动态进行了研究。结果表明 ,近 30年来 ,保护区植被格局发生了显著变化 ,总体表现为针叶林向针阔混交林 ,进而向落叶阔叶林的演替。期间 ,针叶林占保护区的面积比例由 38 9%下降为 9 7% ,阔叶林则由 1 2 0 %上升至 4 8 6 %。各景观要素中转移为其它类型概率较小的是水体、苗圃 ,而最高的是未成林地 ,接近 1 0 0 %的转移。在保护区中最易发生变化的地类主要分布在人为干扰比较强烈或者人为活动较少而自然条件较好的区域。1 975~ 2 0 0 2年 ,保护区的景观多样性指数由 1 5 74下降至 1 4 6 2 ,而优势度由 0 6 30升高至0 735 ,景观破碎度略有增加 (0 781~ 0 795 ) ,森林覆盖率从 1 96 3年的 5 1 2 %上升到 2 0 0 2年的 70 2 % ,景观总形状系数则相对稳定 ,但各类景观要素有不同的变化规律。其中针叶林随着嵌块平均面积的减小 ,破碎度的不断增加 ,形状系数持续变小 ,而阔叶林则嵌块体平均面积不断增加 ,破碎度减少 ,形状系数持续增加。据Malkov链模型预测 ,至 2 0 1 6年 ,阔叶林面积将达保护区总面积的 5 5 2 3% ,森林覆被率将上升至 74 0 9%。  相似文献   

2.
余晨渝  肖作林  刘睿  赵浣玎  王科宇 《生态学报》2022,42(17):7177-7186
植被覆盖变化是生态环境变化的重要指标,定量解析其中的人类活动作用一直是生态领域研究的热点。以重庆市为例,基于遥感、气象以及统计数据,利用GIS技术和残差法,从归一化植被指数(NDVI)和土地利用/覆盖(LUCC)整合分析视角,探究西南山地2000-2020年植被覆盖变化的时空特征,深入解析人类活动影响。 研究表明:(1)近20年间研究区植被覆盖呈整体上升趋势且空间异质性强,渝东南和渝东北地区植被覆盖以及恢复趋势明显优于渝中地区。(2)残差分析表明人类活动对植被覆盖变化同时存在正向和负向两个方面的影响,以正向影响为主导。(3)林地未变区和耕地未变区对植被覆盖变化的贡献程度最大(两者共达到84.18%),退耕还林贡献率仅为1.24%。(4)封禁育林面积与林地未变区植被覆盖变化存在极显著正相关关系(R2=0.82),同时封禁育林生态工程能够较好地解释林地未变区残差变化。研究建立了LUCC对植被覆盖变化影响的贡献率清单,定量揭示封禁育林生态工程对植被覆盖恢复的重要作用,对丰富区域植被覆盖变化驱动研究具有一定参考价值。  相似文献   

3.
Our work evaluated the anthropic effects on the landscape structure of the Lençóis Maranhenses National Park (LMNP) and its Buffer Zone, and proposed strategies for the region’s conservation. LMNP is an important protected area in Brazilian north coast which protects a unique wetland ecosystem composed of sand dunes fields and a coastal vegetation called restinga. Supervised mapping of LMNP and a surrounding buffer of 3 km was carried out through high resolution and fine scale (1:5000) satellite images. The mapped area was subdivided in 1000 ha hexagonal Analysis Units (AU) and the following landscape metrics were calculated for each one of them: cover area (CA) of each soil cover class - dune fields (CA-DUNES), water bodies (CA-WATER), dense restinga (CADENSE), scattered restinga (CA-SCATTER), grassland (CA-SANDY), mangroves (CA-MANG), anthropogenic activity (CA-ANTRO) and, secondary vegetation (CA-SECOND); Landscape Shannon Diversity Index (SHDI), and; percentage of native vegetation cover (NV−COV). Pearson correlations were performed between the CA of each class and SHDI to identify the classes most correlated to CA-ANTRO. Our results showed that anthropic classes (crops, trails, and villages) had a stronger correlation (Pearson Correlation, r ≈ 0.65) with phytophysiognomies of dense restinga, secondary vegetation and SHDI, thus indicating that the land use conversion occurs in dense restinga areas and promotes vegetation secondarization, as well as increasing fragmentation. At least, 42% of the dense restinga habitats was destroyed due to human activities. Five conservation and restoration strategies were proposed in a local scale depending on the percentage of native vegetation cover on each AU, from the most to less conserved: (a) only conservation; (b) conservation with management; (c) management; (d) management and restoration; and, (e) restoration. The implementation of Agroforestry Systems with agro-successional restoration goals was recommended as an alternative for land use.  相似文献   

4.
拉萨藏雪鸡春季栖息地选择   总被引:2,自引:1,他引:1  
2005年3—4月,在拉萨曲水县雄色寺周围山上的灌丛地,对藏雪鸡栖息地选择,通过调查和测量与其有关的14个参数,发现雪鸡喜欢在灌丛盖度较低、距离民居近的地方觅食,并喜欢在灌丛盖度较低、草本种类较少、草本盖度较低、岩石较多、距民房距离较近的地方休息。另外还发现,人类保护和投食对雪鸡栖息地选择也有很大的影响。调查结果显示,研究地区的雪鸡活动在很大程度上依赖人类活动。  相似文献   

5.
徐凯健  曾宏达  任婕  谢锦升  杨玉盛 《生态学报》2016,36(21):6960-6968
福建省长汀县是中国南方最严重的水土流失区之一,在20世纪80年代初和2000年两次集中治理的推动下,当地生态环境已得到显著改善。基于Landsat系列卫星影像提取长汀县1975—2013年共6期植被覆盖度分布图,分析该区在不同时期植被覆盖度及其空间格局的时空动态,并探讨人类干扰与政策治理对植被覆盖度及景观格局的影响。结果表明:(1)近38年来,长汀县平均植被覆盖度由47.02%(1975)提升至71.47%(2013),在覆盖度结构上逐渐形成以中高和高植被覆盖度占主导的格局;县域中部河田盆地的植被覆盖度由30.83%(1975)提升至60.34%(2013)。(2)在景观格局上,研究期间长汀县极低、低和中低覆盖度斑块平均面积呈波动下降趋势、同时斑块密度增加,而中高、高植被覆盖度区域面积扩大,表明封禁、造林等治理措施导致植被覆盖度较高的区域不断汇聚成片。(3)植被覆盖度的提升在空间上主要集中在海拔600 m和坡度25°以下区域,尤其在海拔400—600 m和坡度5°—15°区域最显著,表明植被的破坏和恢复过程与人类活动的联系密切。(4)空间分析表明,在距离农户居民地边缘1.2 km的范围内,越接近居民地中心的区域植被覆盖度越低、破碎度越大且恢复缓慢,但这种空间差异伴随治理进行正在逐步减弱。总体上看,长汀县生态治理和人类干扰的长期驱动影响,其恢复速度在不断提升。  相似文献   

6.
Habitat fragmentation often results in significant degradation of the structure and composition of remnant natural vegetation, leading to substantial biodiversity decline. Ants are an ecologically dominant faunal group known to be sensitive to vegetation degradation following fragmentation. We examined ant diversity and composition in relation to changes in vegetation structure in remnant coastal vegetation in the global biodiversity hotspot of southwestern Western Australia. The key features of vegetation structure driving the species and functional diversity and composition of ant communities were measures of cover of vegetation and bare ground. However, these effects were highly idiosyncratic at the species level. Cluster analyses based on plant species composition classified plots into two groups corresponding to relatively intact and degraded vegetation respectively. Although systematic changes in plant diversity and vegetation structure were observed between the two groups, key features from an ant perspective (native plant cover and bare ground) remained unchanged. Vegetation degradation consequently had little overall effect on ant species composition and functional diversity. The major disturbance–related impact on ant communities was through invasion by exotic ants, especially Pheidole megacephala; however, this occurred only in close proximity to development. Our results suggest that the priority for conserving ant diversity in our coastal dune system is the prevention of invasion by exotic species.  相似文献   

7.
Long-distance dispersal (LDD) of plant seeds by wind is affected by functional traits of the species, specifically seed terminal velocity and height of seed release above the vegetation cover (HAC), as well as by the meteorological parameters wind speed and vertical turbulence. The relative importance of these parameters is still under debate and the importance of their variability in vegetation types, sites and years has only rarely been quantified. To address these topics, we performed simulation studies for different vegetation types, sites, years and plant species with PAPPUS, a process based trajectory model. We found that LDD (measured in terms of migration rates) was higher in forests compared to open landscapes. Forests also showed greater between-year variability in LDD. Terminal velocity had an effect on LDD in both vegetation types, while the effect of HAC was significant only in the open landscape. We found considerable differences in how vertical turbulence and wind speed affect LDD between species and vegetation types: In the open landscape the strength of the positive relationship between vertical turbulence and LDD generally decreases with terminal velocity, whereas it increases in forests. The strength of the predominantly positive effect of wind speed on LDD increases with terminal velocity in both vegetation types, while in forests we found even negative relationships for species with low terminal velocity. Our results generally suggest that the effects of vertical turbulence and wind speed on LDD by wind diverge for species with different functional traits as well as in different vegetation types.  相似文献   

8.
Pastures dominated by tall fescue (Schedonorus phoenix (Scop.) Holub) cover much of the eastern United States, and there are increasing efforts to restore native grassland plant species to some of these areas. Prescribed fire and herbicide are frequently used to limit the growth of tall fescue and other non‐natives, while encouraging native grasses and forbs. A fungal endophyte, commonly present in tall fescue, can confer competitive advantages to the host plant, and may play a role in determining the ability of tall fescue plants to persist in pastures following restoration practices. We compared vegetation composition among four actively restored subunits of a tall fescue pasture (each receiving different combinations of prescribed fire and/or herbicide) and a control. We also measured the rate of endophyte infection in tall fescue present within each restoration treatment and control to determine if restoration resulted in lower tall fescue cover but higher endophyte infection rates (i.e. selected for endophyte‐infected individuals). Tall fescue cover was low in all restoration treatments and the control (1.1–17.9%). The control (unmanaged) had higher species richness than restoration treatments and plant community composition was indicative of succession to forest. Restoration practices resulted in higher cover of native warm season grasses, but in some cases also promoted a different undesirable species. We found no evidence of higher fungal endophyte presence in tall fescue following restoration, as all subunits had low endophyte infection rates (2.2–9.3%). Restoration of tall fescue systems using prescribed fire and herbicide may be used to promote native grassland species.  相似文献   

9.

Aim

Studies investigating the determinants of plant invasions rarely examine multiple factors and often only focus on the role played by native plant species richness. By contrast, we explored how vegetation structure, landscape features and climate shape non-native plant invasions across New Zealand in mānuka and kānuka shrublands.

Location

New Zealand.

Method

We based our analysis on 247 permanent 20 × 20-m plots distributed across New Zealand surveyed between 2009 and 2014. We calculated native plant species richness and cumulative cover at ground, understorey and canopy tiers. We examined non-native species richness and mean species ground cover in relation to vegetation structure (native richness and cumulative cover), landscape features (proportion of adjacent anthropogenic land cover, distance to nearest road or river) and climate. We used generalized additive models (GAM) to assess which variables had greatest importance in determining non-native richness and mean ground cover and whether these variables had a similar effect on native species in the ground tier.

Results

A positive relationship between native and non-native plant species richness was not due to their similar responses to the variables examined in this study. Higher native canopy richness resulted in lower non-native richness and mean ground cover, whereas higher native ground richness was associated with higher native canopy richness. Non-native richness and mean ground cover increased with the proportion of adjacent anthropogenic land cover, whereas for native richness and mean ground cover, this relationship was negative. Non-native richness increased in drier areas, while native richness was more influenced by temperature.

Main Conclusions

Adjacent anthropogenic land cover seems to not only facilitate non-native species arrival by being a source of propagules but also aids their establishment as a result of fragmentation. Our results highlight the importance of examining both cover and richness in different vegetation tiers to better understand non-native plant invasions.  相似文献   

10.
陕北黄土高原景观破碎化的时空动态研究   总被引:5,自引:0,他引:5  
景观破碎化受到自然环境背景及社会经济活动的影响,并限制区域发展.为揭示景观破碎化的时空变化特征,整合了MODIS(中分辨率成像光谱仪)影像逐旬数据与多时段景观类型数据,并对其进行了分析.比较1987~2002年景观破碎化的年际差异表明,陕北黄土高原的景观破碎化过程较缓慢,但具有区域差异,且与景观类型组成息息相关.结果表明,林地的破碎化水平变化显著,而农、草地的破碎化水平变化相对缓慢.年际变化分析有助于说明区域景观破碎化的趋势,而年内季节变化则能帮助认识景观破碎化过程的周期规律.  相似文献   

11.
Land cover and land use changes affect ecological landscape functions and processes. Land use changes mainly caused by human activities, is a common reason for wetlands degradation worldwide. Lake Stymfalia, located at Peloponnese, southern Greece, is an ancient wetland with a great ecological value. Lake Stymfalia has been severely degraded and transformed during the past 60 years due to agricultural activities in the surrounding areas and watercourses alterations. In this context, we investigated the land cover/ use changes and the role of the reed beds in the terrestrialization process of this shallow wetland. This particular effort utilized remotely sensed data and Geographical Information Systems (GIS) techniques to estimate land use alterations for the period 1945–1996. Patch related landscape indices were generated to analyze impacts on landscape features. Spatial and thematic information concerning the surface area and the major land cover types of the lake for years 1945, 1960, 1972, 1987, 1992, and 1996 was obtained from aerial photographs and land surveys of the area, and was stored in the GIS database. The 1996 map was ground verified, corrected and updated to 2004 conditions. From the spatio-temporal analysis of the stored data, a permanent decrease of the open water surface has been observed between the years 1945 and 1996. The results indicated that the reed beds expanded dramatically, increasing by 89.3%, and is the predominant aquatic vegetation of the whole wetland. Open water areas and wet meadows decreased by 53.7 and 96.5% respectively. Landscape analyses and, in particular, the use of selected landscape metrics, proved useful for detecting and quantitatively characterising dynamic ecological processes. As land cover/use analysis of the wetland has shown much serious environmental degradation, conservation measures should be undertaken urgently.  相似文献   

12.
基于TM卫星影像数据的北京市植被变化及其原因分析   总被引:8,自引:0,他引:8  
贾宝全 《生态学报》2013,33(5):1654-1666
植被覆盖变化是全球变化研究的重要内容之一,由于NDVI与植被的分布密度呈线性相关,是指示大尺度植被覆盖的良好指标,因此在宏观植被盖度的估算中常被应用.利用1987年9月26日和2009年9月22日的Landsat TM卫星影像,以NDVI为桥梁,分别计算了北京市域的植被盖度和大于0.1的NDVI差值指数,北京市域与不同生态区域两个尺度对其植被变化情况进行了量化分析,结果表明,2009年与1987年相比,北京市极低覆盖度、中覆盖度和高覆盖度植被的面积均有所减少,其所占全市土地面积的比例从1987年到2009年分别降低了5.15%和0.54%和0.03%;而低覆盖度和极高覆盖度植被的面积比例则分别增加了5.71%和0.01%.大于0.1的植被差值指数统计结果显示,全市域植被质量以改善为主,全市植被发生改善变化的土地面积共919302.3 hm2,其中发生轻微改善的比例为28.31%,中度改善的为41.33%,极度改善的面积为30.36%;全市植被发生退化变化的面积326931.12 hm2,其中发生中度退化、轻微退化和极度退化的面积分别占到了退化变化土地面积的41.98%、43.20%和14.82%.从不同区域的植被差值指数看,植被发生退化变化最明显的区域为燕山山区北部、五环以内和五至六环间区域,这几个区域退化变化的植被面积占相应区域的面积比例分别达到了30.25%、58.17%和47.38%,而且均以严重退化与中度退化为主,两者合计的面积比例分别为15.79%、44.72%和34.19%.而发生退化变化面积比例最小的区域为太行山区和延庆盆地,其退化面积占该区域植被面积的比例分别为13.35%和17.02%,且退化程度均以轻微退化和中度退化为主,其面积比例介于5%-8%之间.从植被变化的驱动力看,目前还看不出北京这种植被变化结果与气候变化之间的直接关联.北京市植被变化的驱动力主要还是人为因素.这包括了区域性的大环境绿化生态工程建设(包括山区与平原区),城市绿化市政工程建设、平原区农业结构调整、新农村生态环境建设,以及由于降水而导致的山区河岸带变化等.其中河流水面变化对河岸带植被变化的影响范围在多年平均水面线外0-150 m范围内,0-100 m范围为受影响较大的区域.  相似文献   

13.
In this study, effect of ecological water diversion on vegetation restoration in the lower reaches of Tarim River is assessed by coupling remote sensing techniques and a field-based survey. Land use/cover and fractional vegetation coverage (Fvc) maps derived from remote sensing images, ground validation data, and hydrological observation data are adopted to analyze the responses of Ecological Water Diversion Project (EWDP). The results indicate that, the EWDP has showed a positive effect on vegetation restoration in the lower part of Tarim Basin. During 2001 to 2013, transformation from unused land to nature vegetation (i.e. forest land, grassland and scrubland) was the major process of land use/cover change; the area of natural vegetation showed a 4.7% increase, and the area of unused land reduced by 6.8%. Landscape patch size was decreased, the degree of fragmentation and diversity of landscape was increased, and landscape structure in the study area became more complex. Moreover, vegetation coverage promoted from 2001 to 2013; average Fvc in 2013 was 1.5 times greater than that in 2001. The results can provide not only an accurate assessment for the EWDP, but also a visual insight for the water resources management practices in the study area, such that the sustainability for local ecosystem can be facilitated.  相似文献   

14.
沙宏杰  张东  施顺杰  刘兴兴 《生态学报》2018,38(19):7102-7112
以生态系统健康理论为基础,从资源环境、景观生态、人类活动3个方面,按活力、组织力和恢复力3个子系统选取了10个代表性指标,构建了遥感技术支持下的海岸带陆域生态系统健康评价指标体系,并耦合TOPSIS模型和VOR生态系统健康度量模型对江苏中部海岸新洋港至川东港岸段进行了应用评价。研究结果表明:江苏中部海岸生态系统健康状态处于健康和良好的区域占27.62%,一般占60.94%,较差和差占11.44%,整体生态健康状况中等偏好。从地物类型和空间分布来看,斗龙港至四卯酉河岸段以滩涂植被、农田和围海养殖区为主,植被和水体对气候调节有积极作用,整体生态健康状况良好;四卯酉河至王港岸段由于大丰港建设,港区陆域植被覆盖率低、热岛效应强,建筑将原本连通的自然景观隔断,导致斑块数量增多,斑块面积减小,加剧了景观破碎化,对原有海岸带生态系统产生一定的破坏,生态健康状况相对较差;此外,新洋港至斗龙港岸段以及川东港岸段以自然保护区湿地为主,植被覆盖度高,人为干扰程度小,生态健康状况也较好。由于该耦合模型评价方法直接基于遥感监测数据,且无需赋予指标权重,因此研究结果相对更加客观,更能反映海岸带生态系统的实际健康状况。  相似文献   

15.
Climate change may amplify the adverse effects of fragmentation by also affecting interspecific interactions. Increased competition may reduce the ability of already stressed species to acquire resources (breeding sites and food), reducing recruitment and the long‐term viability of species. We assessed how measures of recruitment of native birds were influenced by the area of native vegetation, vegetation characteristics, vegetation change as an indication of degradation, and the occurrence of an increasingly prevalent native competitor (the noisy miner Manorina melanocephala). We recorded avian breeding behavior on 120 forest transects in the box‐ironbark forests of south‐eastern Australia, in 2010–2011. On the same transects, we measured vegetation characteristics that had previously been measured in 1995–1997 to assess vegetation change during a 13‐yr drought. Vegetation area and the abundance of the noisy miner had a greater effect on species’ breeding behavior than did local vegetation characteristics and vegetation degradation. Greater abundances of the noisy miner reduced breeding activities of species with a body mass smaller than the noisy miner (< 63 g), while breeding increased in some larger (> 63 g) species. Recruitment measures for the noisy miner were positively associated with smaller fragments and greater vegetation change indicating that fragmentation and vegetation degradation have facilitated the colonization or recruitment by the noisy miner. The interaction between climate change, fragmentation and vegetation degradation appears to have led to increased effects of interspecific competition in fragments of native vegetation, with potential adverse effects on the viability of many bird species. The spread and increasing abundance of a hyperaggressive native species suggests that species assemblages will be increasingly disrupted by the interacting effects of climate change, fragmentation, degradation and interspecific interactions.  相似文献   

16.
庙岛群岛北五岛景观格局特征及其生态效应   总被引:3,自引:0,他引:3  
海岛由于自然特征的空间差异、人类活动的日益增强以及生态系统的脆弱性,其景观格局空间分异性明显且生态效应趋于复杂。以庙岛群岛北五岛为研究区,基于现场调查和3S技术,从景观尺度、海岛尺度和区块尺度分析海岛景观格局空间特征,进而探讨景观格局与净初级生产力(NPP)、植物多样性和土壤性质的关系。结果显示:(1)不同尺度景观格局均表现出了空间差异。景观尺度上,针叶林、阔叶林和草地3类植被景观面积最大,斑块密度、边缘密度和平均形状指数总体较高,建筑用地也具有较大规模,其斑块密度较高,平均形状指数处于最低值,裸地也具有一定规模,其各项景观指标处于中间位置;海岛尺度上,随着海岛面积、人口和GDP的增加,斑块密度和人为干扰指数均明显增大;区块尺度上,斑块密度、边缘密度和平均形状指数与海拔呈显著正相关,人为干扰指数与海拔和坡度均呈显著负相关。海岛面积、地形和人类活动分别是北五岛景观格局的基本因子、重要限制因子和直接驱动因子。(2)海岛景观格局的生态效应与尺度密切相关。景观尺度上,各项生态效应指标在不同景观类型上均具有显著差异,海岛尺度上的生态效应指标对景观格局的响应不甚灵敏;区块尺度上,生态效应指标与景观格局指数表现出了显著的简单相关性和偏相关性,但二者结果具有差异。NPP和土壤水分主要受到景观类型和植被生长状况的影响,多样性和土壤养分同时受到景观类型和景观格局破碎度、边缘效应的影响,人为活动强度的增大地带来了各项生态效应指标的降低。控制建设规模、优化景观布局与改进开发利用方式是维系海岛生态系统稳定性的重要措施。  相似文献   

17.
Aim To determine how the distribution and cover of different vegetation types are affected by physical factors and livestock in a mountain range with a long evolutionary history of grazing. Location Upper vegetation belt of the Córdoba mountains (1700–2800 m a.s.l., 31º34′ S, 64º50′ W) in central Argentina. Methods Using GIS, we analysed the relationships of plant cover types to physical features (physiography and topography) and indicators of accumulated livestock pressure (distance to human settlements and roads) through multinomial logistic regression. We predicted a present vegetation map which was validated with a real map. We then constructed two maps simulating minimum and maximum values of accumulated livestock pressure for the whole area. Map comparisons allowed evaluation of the possible influence of livestock, both in extension and intensity. Results Both physical features and livestock pressure influenced the occurrence of vegetation units. The overall accuracy of the predicted map at the pixel level was low (26%) indicating low habitat specificity of the vegetation units. We suggest that some part of the unaccounted for variance was due to livestock pressure patterns that were not fully captured by our indicators. Our models proved adequate for predicting the total percentages of vegetation units at coarser scales. The extrapolations showed that under a history of low livestock pressure, such as in sites far away from human settlements and roads, the area would be dominated by woodlands, tussock grasslands and natural rock outcrops. Under a history of heavy livestock pressure, in turn, rock exposed by erosion, tussock grasslands and natural rock outcrops would dominate. Main conclusions Vegetation units showed low habitat specificity, and were associated with accumulated livestock pressure, indicating that livestock and its associated activities are important factors structuring the landscape and have important consequences for the integrity of the ecosystem. Results suggest that although this system evolved with large herbivores, it has experienced irreversible degradation processes, and intensification of current domestic livestock pressure is likely to lead to even more land degradation.  相似文献   

18.
Human landscape modification has led to habitat fragmentation for many species. Habitat fragmentation, leading to isolation, decrease in patch size and increased edge effect, is observed in fen ecosystems that comprise many endangered plant species. However, until now it has remained unclear whether habitat fragmentation per se has a significant additional negative effect on plant species persistence, besides habitat loss and degradation. We investigated the relative effect of isolation, habitat size, and habitat edge compared to the effect of habitat degradation by including both ‘fragmentation variables’ and abiotic variables in best subsets logistic regression analyses for six fen-plant species. For all but one species, besides abiotic variables one or more variables related to fragmentation were included in the regression model. For Carex lasiocarpa, isolation was the most important factor limiting species distribution, while for Juncus subnodulosus and Menyanthes trifoliata, isolation was the second most important factor. The effect of habitat size differed among species and an increasing edge had a negative effect on the occurrence of Carex lasiocarpa and Pedicularis palustris. Our results clearly show that even if abiotic conditions are suitable for certain species, isolation of habitat patches and an increased habitat edge caused by habitat fragmentation affect negatively the viability of characteristic fen plant species. Therefore, it is important not only to improve habitat quality but also to consider spatial characteristics of the habitat of target species when deciding on plant conservation strategies in intensively used landscapes, such as fen areas in Western Europe and North America.  相似文献   

19.
We examined survival of ring-necked pheasants (Phasianus colchicus) occupying fragmented landscapes within the Prairie Pothole Region in South Dakota, USA, where severe winter weather events historically limited pheasant population growth through increased mortality. Recent landscape transformations could further affect overwinter adult female survival by reducing critical winter resources. Assessing the influence of time-dependent landscape features on survival at small focal scales may reveal spatially important relationships. We captured and monitored 321 adult female pheasants from 2017–2019 and recorded 110 pheasant winter mortalities. Female pheasant winter survival was 0.66 (85% CI = 0.62–0.70) and was inversely correlated to snow depth. We generated Cox proportional hazard models to determine risk of mortality associated with landscape features. Pheasants using landscapes other than perennial cover (i.e., emergent wetland, tall vegetation, woody, food plots) experienced a 2.22 times greater risk of raptor predation than pheasants using perennial cover. Additionally, pheasants experienced a 58% reduced risk of weather mortality when using emergent wetlands. We analyzed resource selection ratios to understand how perceived landscape risks at the population level scaled down to land use selection at the individual level. Female pheasants selected for emergent wetlands, showed no selection for woody features, and avoided tall vegetation (non-aquatic herbaceous vegetation >75 cm) during severe winters. Pheasants would greatly benefit from conservation of emergent wetlands and integrating perennial cover into harvested cropland.  相似文献   

20.
Aim Woody plants affect vegetation–environment interactions by modifying microclimate, soil moisture dynamics and carbon cycling. In examining broad‐scale patterns in terrestrial vegetation dynamics, explicit consideration of variation in the amount of woody plant cover could provide additional explanatory power that might not be available when only considering landscape‐scale climate patterns or specific vegetation assemblages. Here we evaluate the interactive influence of woody plant cover on remotely sensed vegetation dynamics across a climatic gradient along a sky island. Location The Santa Rita Mountains, Arizona, USA. Methods Using a satellite‐measured normalized difference vegetation index (NDVI) from 2000 to 2008, we conducted time‐series and regression analyses to explain the variation in functional attributes of vegetation (productivity, seasonality and phenology) related to: (1) vegetation community, (2) elevation as a proxy for climate, and (3) woody plant cover, given the effects of the other environmental variables, as an additional ecological dimension that reflects potential vegetation–environment feedbacks at the local scale. Results NDVI metrics were well explained by interactions among elevation, vegetation community and woody plant cover. After accounting for elevation and vegetation community, woody plant cover explained up to 67% of variation in NDVI metrics and, notably, clarified elevation‐ and community‐specific patterns of vegetation dynamics across the gradient. Main conclusions In addition to the environmental factors usually considered – climate, reflecting resources and constraints, and vegetation community, reflecting species composition and relative dominance – woody plant cover, a broad‐scale proxy of many vegetation–environment interactions, represents an ecological dimension that provides additional process‐related understanding of landscape‐scale patterns of vegetation function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号