首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The protective efficacy of and immune response to heat‐killed cells of monovalent and hexavalent mixtures of six serogroups/serotypes of Shigella strains (Shigella dysenteriae 1, Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, Shigella boydii 4, and Shigella sonnei) were examined in a guinea pig colitis model. A monovalent or hexavalent mixture containing 1 × 107 of each serogroup/serotype of heat‐killed Shigella cells was administered orally on Days 0, 7, 14 and 21. On Day 28, the immunized animals were challenged rectally with 1 × 109 live virulent cells of each of the six Shigella serogroups/serotypes. In all immunized groups, significant levels of protection were observed after these challenges. The serum titers of IgG and IgA against the lipopolysaccharide of each of the six Shigella serogroups/serotypes increased exponential during the course of immunization. High IgA titers against the lipopolysaccharide of each of the six Shigella serogroups/serotypes were also observed in intestinal lavage fluid from all immunized animals. These data indicate that a hexavalent mixture of heat‐killed cells of the six Shigella serogroups/serotypes studied would be a possible broad‐spectrum candidate vaccine against shigellosis.  相似文献   

2.
3.
通过体外重组的方法,将asd基因插入重组表达质粒,使抗生素抗性失活,并与弗氏志贺氏菌FWL01构成宿主-载体平衡致死系统. 通过蛋白质印迹结果表明,在没有抗生素条件选择的情况下,可稳定表达肠毒素大肠杆菌定居因子抗原CS6. 重组菌通过口服和鼻饲免疫小鼠后,可以诱生CS6血清IgG抗体;同时可以检测到分泌型IgA产生,表明重组菌可以诱导相应的黏膜免疫反应.  相似文献   

4.
A trivalent liveShigella vaccine candidate FSD01 against S.flexneri 2a, S.sonnei and S.dysenteriae I was constructed. This candidate strain was based on the S.flexneri 2a vaccine T32. By homologous recombination exchange, the chromosomalasd gene of T32 was site-specifically inactivated, resulting in the strain unable to grow normally in LB broth, while anotherasd gene of S.mutans was employed to construct an Asd+ complementary vector. This combination ofasd - host/Asd+ vector formed a balanced-lethal expression system in T32 strain. By use of this system, two important protective antigen genes coding for S.sonnei Form I antigen and Shiga toxin B subunit were cloned and expressed in T32, which led to the construction of trivalent candidate vaccine FSD01. Experimental results showed that this strain was genetically stable, but its recombinant plasmid was non-resistant. Moreover, it was able to effectively express trivalent antigens in one host and induce protective responses in mice against the challenges of the above threeShigella strains.  相似文献   

5.
Shigella, which infects primates, can be transmitted via fresh vegetables; however, its molecular interactions with plants have not been elucidated. Here, we show that four Shigella strains, Shigella boydii, Shigella sonnei, Shigella flexneri 2a, and S. flexneri 5a, proliferate at different levels in Arabidopsis thaliana. Microscopic studies revealed that these bacteria were present inside leaves and damaged plant cells. Green fluorescent protein (GFP)‐tagged S. boydii and S. flexneri 5a colonized leaves only, whereas S. flexneri 2a colonized both leaves and roots. Using Shigella mutants lacking type III secretion systems (T3SSs), we found that T3SSs that regulate the pathogenesis of shigellosis in humans also play a central role in bacterial proliferation in Arabidopsis. Strikingly, the immunosuppressive activity of two T3S effectors, OspF and OspG, was required for proliferation of Shigella in Arabidopsis. Of note, delivery of OspF or OspG effectors inside plant cells upon Shigella inoculation was confirmed using a split GFP system. These findings demonstrate that the human pathogen Shigella can proliferate in plants by adapting immunosuppressive machinery used in the original host human.  相似文献   

6.
Shigella spp. are water-borne pathogens responsible for mild to severe cases bacilli dysentery all around the world known as Shigellosis. The progressively increasing of antibiotic resistance among Shigella calls for developing and establishing novel alternative therapeutic methods. The present study aimed to evaluate a novel phage cocktail of lytic phages against extended spectrum beta lactamase isolates of Shigella species in an aquatic environment. The phage cocktail containing six novel Shigella specific phages showed a broad host spectrum. The cocktail was very stable in aquatic environment. The cocktail resulted in about 99% decrease in the bacterial counts in the contaminated water by several species and strains of Shigella such as Shigella sonnei, Shigella flexneri and Shigella dysenteriae. Achieving such a high efficiency in this in-vitro study demonstrates a high potential for in-vivo and in-situ application of this phage cocktail as a bio-controlling agent against Shigella spp. contamination and infections.  相似文献   

7.
Little is known about the distribution, survival, and transmission of Shigella in environmental surface waters. To gain more insight into the environmental biology of Shigella we isolated five bacterial strains serotyped as Shigella flexneri 2b from a freshwater lake in Bangladesh using a modified nutrient broth supplemented with nucleic acid bases. The biochemical properties of the isolates, including inability to ferment lactose and a negative lysine decarboxylase test, indicated common physiological characteristics with Shigella, but differed significantly from that of standard clinical strains. The isolates possessed the ipaH virulence gene and a megaplasmid, but lacked other Shigella-related virulence marker genes. Genetic fingerprinting and sequence analysis of housekeeping genes confirmed the strains as S. flexneri isolates. An apparent clonal origin of strains recovered with a one-year interval indicates a strong environmental selection pressure on Shigella for persistence in the freshwater environment. The lack of a complete set of virulence genes as well as uncommon biochemical properties suggest that these strains might represent a group of non-invasive and atypical environmental Shigella variants, with the potential for further elucidation of the survival mechanism, diversity, and emergence of virulent Shigella in tropical freshwater environments.  相似文献   

8.
Summary Plasmid profiling was used to characterize 219 strains of Shigellaspecies isolated from sporadic cases of shigellosis in Malaysia during the period 1994–2000. Heterogeneous plasmid patterns were observed in all Shigella spp. There was a correlation between plasmid patterns and serotypes of S. flexneri, S. dysenteriaeand S. sonnei. Five common small plasmids (>20.0 kb) were observed in S. flexneri1b and 2a, whereas six common small plasmids were found in serotype 3a. Some of these plasmids appeared to maintain their existence stably in each individual serotype. Plasmids of size 11.40 and 4.20 kb were present only in S. flexneri2a isolates, whereas the 4.40 kb plasmid was unique for serotype 3a. Large (>150 kb) or mid-range plasmid (20.0–150 kb) was not observed from any S. flexneri1b isolates. Eighty-nine percent of S. flexneriof various serotypes harboured the plasmid of 3.20 kb. All S. dysenteriaetype 2 isolates harboured the 9.00 kb plasmid, while four common small plasmids were found in S. sonneiisolates. The 2.10 kb plasmid was only seen in S. sonnei. Streptomycin resistance in S. dysenteriaetype 2 and multi-drug resistance in S. sonneimay be associated with the 9.00 and 14.8 kb plasmids, respectively. Plasmid profiling provided a further discrimination beyond serotyping and a useful alternative genotypic marker for differentiation of Shigellaspecies. To the best of our knowledge, this is the first report on the plasmid prevalence of the Malaysian Shigellaspecies.  相似文献   

9.
Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N‐terminal fragment of streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N‐ terminal fragment is hypervariable: there are more than 200 different M types. In this study, an intranasal live bacterial vaccine comprising 10 strains of Lactococcus lactis, each expressing one N‐terminal fragment of M protein, has been developed. Live bacterial‐vectored vaccines cost less to manufacture because the processes involved are less complex than those required for production of protein subunit vaccines. Moreover, intranasal administration does not require syringes or specialized personnel. Evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All 10 strains combined in a 10‐valent vaccine (M×10) induced serum and bronchoalveolar lavage IgG titers that ranged from three‐ to 10‐fold those of unimmunized mice. After intranasal challenge with M28 streptococci, survival of M×10‐immunized mice was significantly higher than that of unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of M×10‐immunized mice did not differ significantly from that of unimmunized mice. Mx‐10 immunized mice had significantly less S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge than did unimmunized mice. Our L. lactis‐based vaccine may provide an alternative solution to development of broadly protective group A streptococcal vaccines.
  相似文献   

10.
11.
Septins, cytoskeletal proteins with well‐characterised roles in cytokinesis, form cage‐like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single‐cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri‐infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin‐related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin‐polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti‐Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria.  相似文献   

12.
The X‐linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti‐apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase‐mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP‐mediated immune response by inducing the BID‐dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain‐dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.  相似文献   

13.
The intracellular pathogen Shigella flexneri forms membrane protrusions to spread from cell to cell. As protrusions form, myosin‐X (Myo10) localizes to Shigella. Electron micrographs of immunogold‐labelled Shigella‐infected HeLa cells reveal that Myo10 concentrates at the bases and along the sides of bacteria within membrane protrusions. Time‐lapse video microscopy shows that a full‐length Myo10 GFP‐construct cycles along the sides of Shigella within the membrane protrusions as these structures progressively lengthen. RNAi knock‐down of Myo10 is associated with shorter protrusions with thicker stalks, and causes a >80% decrease in confluent cell plaque formation. Myo10 also concentrates in membrane protrusions formed by another intracellular bacteria, Listeria, and knock‐down of Myo10 also impairs Listeria plaque formation. In Cos7 cells (contain low concentrations of Myo10), the expression of full‐length Myo10 nearly doubles Shigella‐induced protrusion length, and lengthening requires the head domain, as well as the tail‐PH domain, but not the FERM domain. The GFP‐Myo10‐HMM domain localizes to the sides of Shigella within membrane protrusions and the GFP‐Myo10‐PH domain localizes to host cell membranes. We conclude thatMyo10 generates the force to enhance bacterial‐induced protrusions by binding its head region to actin filaments and its PH tail domain to the peripheral membrane.  相似文献   

14.
Amplified fragment length polymorphism (AFLP) can be used to assess the genetic diversity of closely related microbial genomes. In this study, the first of its kind for identification of Shigella, the high discriminatory power of AFLP has been used to determine the genetic relatedness of 230 isolates of Shigella flexneri and Shigella sonnei strains. An AFLP database was generated to demonstrate its utility in the discrimination of closely related strains. Based on AFLP, S. flexneri strains could be grouped into separate clusters according to their serotypes. Within each serotype, strains demonstrated 80–100% similarity indicating that identical strains and closely related strains could be distinguished by this technique. S. flexneri 6 formed a distinct cluster with 55% similarity to the rest of the S. flexneri strains showing significant divergence from the rest of the S. flexneri strains. Significantly, S. sonnei isolates formed a distinct group and showed approximately the same level of genetic linkage to S. flexneri as Escherichia coli strains. Untypable isolates that showed conflicting agglutination reactions with conventional typing sera were identifiable by AFLP. Thus AFLP can be used for genetic fingerprinting of Shigella strains and aid in the identification of variant untypable isolates.  相似文献   

15.
Aims: The aim of this study was to develop a real‐time PCR test for differentiation between Shigella spp. and E. coli, in particular enteroinvasive Escherichia coli (EIEC). Methods and Results: A duplex real‐time PCR specific for the genes encoding for β‐glucuronidase (uidA) and lactose permease (lacY) was developed. Ninety‐six isolates including 11 EIEC isolates of different serotypes and at least three representatives of each Shigella species were used for selectivity testing. All isolates tested were positive for the uidA gene. Additionally, all E. coli isolates were positive for the lacY gene, whereas no Shigella isolate tested harboured lacY. Conclusions: The duplex real‐time PCR assay was found to be simple, rapid, reliable and specific. Significance and Impact of the Study: If possible at all, delineation of so‐called inactive EIEC from Shigella spp. is cumbersome. Biochemical and serological methods are limited to specific pheno‐ and serotypes. This assay clearly simplifies the differentiation of both.  相似文献   

16.
Shigella flexneri is an intracellular pathogen that disseminates in colonic epithelial cells through actin‐based motility and formation of membrane protrusions at cell–cell contacts, that project into adjacent cells and resolve into vacuoles, from which the pathogen escapes, thereby achieving cell‐to‐cell spread. Actin nucleation at the bacterial pole relies on the recruitment of the nucleation‐promoting factor N‐WASP, which activates the actin nucleator ARP2/3. In cells, the vast majority of N‐WASP exists as a complex with WIP. The involvement of WIP in N‐WASP‐dependent actin‐based motility of various pathogens, including vaccinia virus and S. flexneri, has been highly controversial. Here, we show that WIPF2 was the only WIP family member expressed in the human colonic epithelial cell line HT‐29, and its depletion impaired S. flexneri dissemination. WIPF2 depletion increased the number of cytosolic bacteria lacking actin tails (non‐motile) and decreased the velocity of motile bacteria. This correlated with a decrease in the recruitment of N‐WASP to the bacterial pole, and among N‐WASP‐positive bacteria, a decrease in actin tail‐positive bacteria, suggesting that WIPF2 is required for N‐WASP recruitment and activation at the bacterial pole. In addition, when motile bacteria formed protrusions, WIPF2 depletion decreased the number of membrane protrusions that successfully resolved into vacuoles.  相似文献   

17.
In this work asd gene of Shigella flexneri 2a strain T32 was replaced by Vibrio cholerae toxin B subunit (ctxB) gene with DNA recombination in vivo and in vitro. The resulting derivative of T32, designed as FWL01, could stably express CtxB, but its growth in LB medium depended on the presence of diaminopimelic acid (DAP). Then form I plasmid of Shigella sonnei strain S7 was labeled with strain T32 asd gene and mobilized into FWL01. Thus a trivalent candidate oral vaccine strain, designed as FSW01, was constructed. In this candidate strain, a balanced-lethal system was constituted between the host strain and the form I plasmid expressing S. sonnei O antigen. Therefore the candidate strain can express stably not only its own O antigen but also CtxB and O antigen of S. sonnei in the absence of any antibiotic. Experiments showed that FSW01 did not invade HeLa cells or cause keratoconjunctivitis in guinea pigs. However, rabbits immunized FSW01 can elicit significant immune responses. In mice and rhesus monkey models, vaccinated animals were protected against the challenges of wild S. flexneri 2a strain 2457T and S. sonnei strain S9.  相似文献   

18.
As an important foodborne pathogen, Shigella flexneri can cause widespread enteric infection with bacteria as few as hundreds. This is, at least in part, attributed to its robust anti‐acid strategies because passage through the highly acidic human digestive tract is a prerequisite for successful bacterial infection. Nevertheless, our understanding of these mechanisms and the impact of acid stress on Shigella protein expression still remains largely incomplete. Herein we conducted a proteomic survey of Shigella spp. under acid stress. Out of 1754 protein identifications, we found 131 altered proteins, most of which were down‐regulated, including virulence factors and cell envelope proteins. Rather, many metabolic enzymes and pyrimidine/amino acid biosynthesis proteins were up‐regulated. In addition to induction of many known anti‐acid systems, we also found marked increase of 2‐oxoglutarate dehydrogenase (SucAB), a metabolic enzyme in the tricarboxylic acid cycle. Importantly, overproduction of this enzyme significantly enhanced Shigella acid resistance and hence SucAB‐mediated metabolic pathways may represent novel anti‐acid strategies.  相似文献   

19.
Aims: This study was designed to isolate Shigella spp. strains from food and stool samples by a combination of PCR and culture methods and characterize their serotypes, antibiotic resistance profiles, virulence genes and pulsed‐field gel electrophoresis (PFGE) patterns to investigate possible clonal relationships amongst strains circulating. Methods and Results: Six Shigella spp. strains were isolated from 280 food samples against 16 Shigella isolates from 236 stool samples of symptomatic patients and asymptomatic food handlers during the period from January 2007 to December 2009 in Public Health Regional Laboratory of Nabeul. The detection of ipaH, ipaBCD, ial, ShET‐1 and ShET‐2 was performed by a PCR technique with specific primers. Conclusions: The use of PCR technique improved the rate of detecting Shigella in stool samples from 6·7 to 14% and in food samples from 2·1 to 8·6%. Percentage of Shigella isolates and ipaH‐specific PCR demonstrated a marked pattern of seasonality, increasing in summer and fall seasons for human and food isolates. Amongst the environmental strains, 50% of isolates were invasive. However, for the 16 clinical strains isolated, nine were found to be positive for both ial and ipaBCD gene and 11 were found to produce ShET‐1 and/or ShET‐2. XbaI PFGE analysis revealed the presence of a predominant clone amongst Shigella sonnei strains recovered from different sources circulating in Nabeul, Tunisia, throughout the years 2007–2009. Significance and Impact of the Study: This study demonstrated the existence of Shigella in food samples and dispersion of different virulence genes amongst these isolates, which appear to constitute an environmental source of epidemic spread. The clonal relationships amongst strains isolated from food elements and human stools indicate the incrimination of different kinds of foods as vehicle of transmission of Shigella, which are usually escaped from detection by traditional culture methods.  相似文献   

20.
This study examined arginine vasotocin (AVT) expression in the brains of dominant and subordinate male medaka Oryzias latipes after short‐ and long‐term competition. High AVT expression in distinct preoptic regions was found in dominants and subordinates within minutes of encountering each other. During long‐term competition, AVT expression remained high in dominants but not in subordinates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号