首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
PTEN is one of the most frequently mutated or deleted tumor suppressors in human cancers. NEDD4-1 was recently identified as the E3 ubiquitin ligase for PTEN; however, a number of important questions remain regarding the role of ubiquitination in regulating PTEN function and the mechanisms by which PTEN ubiquitination is regulated. In the present study, we demonstrated that p34, which was identified as a binding partner of NEDD4-1, controls PTEN ubiquitination by regulating NEDD4-1 protein stability. p34 interacts with the WW1 domain of NEDD4-1, an interaction that enhances NEDD4-1 stability. Expression of p34 promotes PTEN poly-ubiquitination, leading to PTEN protein degradation, whereas p34 knockdown results in PTEN mono-ubiquitination. Notably, an inverse correlation between PTEN and p34/NEDD4-1 levels was confirmed in tumor samples from colon cancer patients. Thus, p34 acts as a key regulator of the oncogenic behavior of NEDD4-1 and PTEN.  相似文献   

2.
3.
The critical tumor suppressor PTEN is regulated by numerous post-translational modifications including phosphorylation, acetylation and ubiquitination. Ubiquitination of PTEN was reported to control both PTEN stability and nuclear localization. Notably, the HECT E3-ligase NEDD4–1 was identified as the ubiquitin ligase for PTEN, mediating its degradation and down-stream events. However, the mechanisms how NEDD4–1 is regulated by up-stream signaling pathways or interaction with other proteins in promoting PTEN degradation remain largely unclear. In the present study, we identified that the adaptor protein Numb, which is demonstrated to be a novel binding partner of NEDD4–1, plays important roles in controlling PTEN ubiquitination through regulating NEDD4–1 activity and the association between PTEN and NEDD4–1. Furthermore, we provided data to show that Numb regulates cell proliferation and glucose metabolism in a PTEN-dependent manner. Overall, our study revealed a novel regulation of the well-documented NEDD4–1/PTEN pathway and its oncogenic behavior.  相似文献   

4.
5.
Histone deacetylases (HDACs) play important roles in fundamental cellular processes, and HDAC inhibitors are emerging as promising cancer therapeutics. p73, a member of the p53 family, plays a critical role in tumor suppression and neural development. Interestingly, p73 produces two classes of proteins with opposing functions: the full-length TAp73 and the N-terminally truncated ΔNp73. In the current study, we sought to characterize the potential regulation of p73 by HDACs and found that histone deacetylase 1 (HDAC1) is a key regulator of TAp73 protein stability. Specifically, we showed that HDAC1 inhibition by HDAC inhibitors or by siRNA shortened the half-life of TAp73 protein and subsequently decreased TAp73 expression under normal and DNA damage-induced conditions. Mechanistically, we found that HDAC1 knockdown resulted in hyperacetylation and inactivation of heat shock protein 90, which disrupted the interaction between heat shock protein 90 and TAp73 and thus promoted the proteasomal degradation of TAp73. Functionally, we found that down-regulation of TAp73 was required for the enhanced cell migration mediated by HDAC1 knockdown. Together, we uncover a novel regulation of TAp73 protein stability by HDAC1-heat shock protein 90 chaperone complex, and our data suggest that TAp73 is a critical downstream mediator of HDAC1-regulated cell migration.  相似文献   

6.
The NEDD8 protein and neddylation levels in cells are modulated by NUB1L or NUB1 through proteasomal degradation, but the underlying molecular mechanism is not well understood. Here, we report that NUB1L down-regulated the protein levels of NEDD8 and neddylation through specifically recognizing NEDD8 and P97/VCP. NUB1L directly interacted with NEDD8, but not with ubiquitin, on the key residue Asn-51 of NEDD8 and with P97/VCP on its positively charged VCP binding motif. In coordination with the P97-UFD1-NPL4 complex (P97UFD1/NPL4), NUB1L promotes transfer of NEDD8 to proteasome for degradation. This mechanism is also exemplified by the canonical neddylation of cullin 1 for SCF (SKP1-cullin1-F-box) ubiquitin E3 ligases that is exquisitely regulated by the turnover of NEDD8.  相似文献   

7.
8.
TAp73, a homologous of tumor suppressor p53, regulates apoptosis in a p53-independent manner and its suppressive as well as stimulatory role in promoting angiogenesis has been reported. It exists in multiple isoforms which varies structurally in their N-terminus and C-terminus region and crucial interplay among them guides the decision of cell survival and death. As molecular chaperones control both stability and degradation of TAp73, selective regulation of p73 isoforms has implication upon developing new therapeutic for hypoxic tumor. We have discovered that under DNA damage carboxy terminus Hsp70 interacting protein (CHIP's) antiapoptotic function is displayed via its E3 ligase activity that inhibits exclusively TAp73α-mediated apoptosis in cancer cell. The decrease in TAp73α level by CHIP as it is supported by increased ubiquitination pattern is reverted back by sh-CHIP. Further, the transactivation of p53-downstream apoptotic genes BAX, PUMA and PIG3 by TAp73α is also shown to be subsequently inhibited by CHIP. The tetratricopeptide TPR-domain of CHIP in its amino-terminus interacts with the carboxy-terminus of TAp73α and ΔNp73α and as a result, U-BOX domain of CHIP in the carboxy-terminus is able to ubiquitinate TAp73α for proteasomal degradation. Due to lack of C-terminus in TAp73β, CHIP fails to interact with and degrade it. In conclusion, we have thus uncovered for the first time a novel mechanism of chaperone-assisted regulation of p73 stability as well as its apoptotic functions by CHIP that might be utilized to develop new anticancer strategies.  相似文献   

9.
10.
Cellular maintenance of protein homeostasis is essential for normal cellular function. The ubiquitin-proteasome system (UPS) plays a central role in processing cellular proteins destined for degradation, but little is currently known about how misfolded cytosolic proteins are recognized by protein quality control machinery and targeted to the UPS for degradation in mammalian cells. Destabilizing domains (DDs) are small protein domains that are unstable and degraded in the absence of ligand, but whose stability is rescued by binding to a high affinity cell-permeable ligand. In the work presented here, we investigate the biophysical properties and cellular fates of a panel of FKBP12 mutants displaying a range of stabilities when expressed in mammalian cells. Our findings correlate observed cellular instability to both the propensity of the protein domain to unfold in vitro and the extent of ubiquitination of the protein in the non-permissive (ligand-free) state. We propose a model in which removal of stabilizing ligand causes the DD to unfold and be rapidly ubiquitinated by the UPS for degradation at the proteasome. The conditional nature of DD stability allows a rapid and non-perturbing switch from stable protein to unstable UPS substrate unlike other methods currently used to interrogate protein quality control, providing tunable control of degradation rates.  相似文献   

11.
12.
13.
NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN   总被引:18,自引:0,他引:18  
The tumor suppressor PTEN, a critical regulator for multiple cellular processes, is mutated or deleted frequently in various human cancers. Subtle reductions in PTEN expression levels have profound impacts on carcinogenesis. Here we show that PTEN level is regulated by ubiquitin-mediated proteasomal degradation, and purified its ubiquitin ligase as HECT-domain protein NEDD4-1. In cells NEDD4-1 negatively regulates PTEN stability by catalyzing PTEN polyubiquitination. Consistent with the tumor-suppressive role of PTEN, overexpression of NEDD4-1 potentiated cellular transformation. Strikingly, in a mouse cancer model and multiple human cancer samples where the genetic background of PTEN was normal but its protein levels were low, NEDD4-1 was highly expressed, suggesting that aberrant upregulation of NEDD4-1 can posttranslationally suppress PTEN in cancers. Elimination of NEDD4-1 expression inhibited xenotransplanted tumor growth in a PTEN-dependent manner. Therefore, NEDD4-1 is a potential proto-oncogene that negatively regulates PTEN via ubiquitination, a paradigm analogous to that of Mdm2 and p53.  相似文献   

14.
p63足p53家族成员的核转录因子,根据N端及C端的不同,已经发现TAp630α、TAp63β、rap63y、ANp630α、△Np63β、△Np63β、△Np63δ、△Np63δ种亚型。p63的表达受到多种转录因子的调控,其mRNA的稳定性由RNPCI调节,蛋白的稳定性主要由HECT家族成员Itch/AIP4、WWPI调节。p63在上皮细胞分化、组织发育过程中起着关键性作用,因此,p63基因突变可以导致外胚层发育不良的相关疾病,同时,p63在肿瘤的形成和转移的过程中具有重要的调控作用。  相似文献   

15.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   

16.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   

17.
18.
泛素化能够促使底物蛋白降解或调节其它生理过程,在生命活动中具有极其重要的作用。E3即泛素连接酶,在泛素化过程中决定底物分子的特异性,因此,E3的功能研究一直是蛋白质泛素化研究领域的一个热点。NEDL1和NEDL2是HECT类泛素连接酶NEDD4家族中同源性较高的两个成员。它们通过不同的方式分别增强p53和p73的转录活性。NEDL1又与多种肿瘤(如神经母细胞瘤、结直肠癌、乳腺癌)和神经退行性疾病(如脊髓侧索硬化病)的发生发展密切相关。因此,对NEDL1和NEDL2的研究对于揭示相关疾病机理具有非常重要的意义。  相似文献   

19.
The TP53 tumour-suppressor gene is expressed as several protein isoforms generated by different mechanisms, including use of alternative promoters, splicing sites and translational initiation sites, that are conserved through evolution and within the TP53 homologues, TP63 and TP73. Although first described in the eighties, the importance of p53 isoforms in regulating the suppressive functions of p53 has only become evident in the last 10 years, by analogy with observations that p63 and p73 isoforms appeared indispensable to fully understand the biological functions of TP63 and TP73. This review summarizes recent advances in the field of 'p53 isoforms', including new data on p63 and p73 isoforms. Details of the alternative mechanisms that produce p53 isoforms and cis- and trans-regulators identified are provided. The main focus is on their biological functions (apoptosis, cell cycle, aging and so on) in cellular and animal models, including mouse, zebrafish and Drosophila. Finally, the deregulation of p53 isoform expression in human cancers is reviewed. Based on these latest results, several developments are expected in the future: the identification of drugs modulating p53 isoform expression; the generation of animal models and the evaluation of the use of p53 isoform as biomarkers in human cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号