首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the pandemic influenza A (H1N1) 2009 ((H1N1)pdm09) virus spread all over the world, the (H1N1)pdm09 virus has been circulating with seasonal influenza viruses. We developed rapid and sensitive one-step multiplex real-time RT-PCR assays (rRT-PCR) for simultaneous detection of influenza viruses currently circulating in humans, and the avian A/H5 virus. The detection limit of each assay was 4.8 to 1 copies per reaction and no cross-reactivity with other major respiratory pathogens was found. Analytical positive predictive value (PPV), negative predictive value (NPV) sensitivity and specificity were 100%, 94.1%, 93.7% and 100%, respectively. Clinical evaluation revealed that 1,976 (16.5%) of 11,963 throat swabs from patients with respiratory symptoms were confirmed as 1,651 (83.6%) A/H1pdm09, 308 (15.6%) A/H3 and 17 (0.8%) B virus during the 2010–2011 influenza season. Collectively, the multiplex rRT-PCR assays described here provide a practical tool for reliable implementation of influenza surveillance and diagnosis.  相似文献   

2.
To determine the role of the pandemic influenza A/H1N1 2009 (A/H1N1 2009pdm) in acute respiratory tract infections (ARTIs) and its impact on the epidemic of seasonal influenza viruses and other common respiratory viruses, nasal and throat swabs taken from 7,776 patients with suspected viral ARTIs from 2006 through 2010 in Beijing, China were screened by real-time PCR for influenza virus typing and subtyping and by multiplex or single PCR tests for other common respiratory viruses. We observed a distinctive dual peak pattern of influenza epidemic during the A/H1N1 2009pdm in Beijing, China, which was formed by the A/H1N1 2009pdm, and a subsequent influenza B epidemic in year 2009/2010. Our analysis also shows a small peak formed by a seasonal H3N2 epidemic prior to the A/H1N1 2009pdm peak. Parallel detection of multiple respiratory viruses shows that the epidemic of common respiratory viruses, except human rhinovirus, was delayed during the pandemic of the A/H1N1 2009pdm. The H1N1 2009pdm mainly caused upper respiratory tract infections in the sampled patients; patients infected with H1N1 2009pdm had a higher percentage of cough than those infected with seasonal influenza or other respiratory viruses. Our findings indicate that A/H1N1 2009pdm and other respiratory viruses except human rhinovirus could interfere with each other during their transmission between human beings. Understanding the mechanisms and effects of such interference is needed for effective control of future influenza epidemics.  相似文献   

3.

Background

The 2009 H1N1 influenza pandemic caused offseason peaks in temperate regions but coincided with the summer epidemic of seasonal influenza and other common respiratory viruses in subtropical Hong Kong. This study was aimed to investigate the impact of the pandemic on age-specific epidemic curves of other respiratory viruses.

Methods

Weekly laboratory-confirmed cases of influenza A (subtypes seasonal A(H1N1), A(H3N2), pandemic virus A(H1N1)pdm09), influenza B, respiratory syncytial virus (RSV), adenovirus and parainfluenza were obtained from 2004 to 2013. Age-specific epidemic curves of viruses other than A(H1N1)pdm09 were compared between the pre-pandemic (May 2004 – April 2009), pandemic (May 2009 – April 2010) and post-pandemic periods (May 2010 – April 2013).

Results

There were two peaks of A(H1N1)pdm09 in Hong Kong, the first in September 2009 and the second in February 2011. The infection rate was found highest in young children in both waves, but markedly fewer cases in school children were recorded in the second wave than in the first wave. Positive proportions of viruses other than A(H1N1)pdm09 markedly decreased in all age groups during the first pandemic wave. After the first wave of the pandemic, the positive proportion of A(H3N2) increased, but those of B and RSV remained slightly lower than their pre-pandemic proportions. Changes in seasonal pattern and epidemic peak time were also observed, but inconsistent across virus-age groups.

Conclusion

Our findings provide some evidence that age distribution, seasonal pattern and peak time of other respiratory viruses have changed since the pandemic. These changes could be the result of immune interference and changing health seeking behavior, but the mechanism behind still needs further investigations.  相似文献   

4.

Background

Data on the burden of the 2009 influenza pandemic in Asia are limited. Influenza A(H1N1)pdm09 was first reported in Thailand in May 2009. We assessed incidence and epidemiology of influenza-associated hospitalizations during 2009–2010.

Methods

We conducted active, population-based surveillance for hospitalized cases of acute lower respiratory infection (ALRI) in all 20 hospitals in two rural provinces. ALRI patients were sampled 1∶2 for participation in an etiology study in which nasopharyngeal swabs were collected for influenza virus testing by PCR.

Results

Of 7,207 patients tested, 902 (12.5%) were influenza-positive, including 190 (7.8%) of 2,436 children aged <5 years; 86% were influenza A virus (46% A(H1N1)pdm09, 30% H3N2, 6.5% H1N1, 3.5% not subtyped) and 13% were influenza B virus. Cases of influenza A(H1N1)pdm09 first peaked in August 2009 when 17% of tested patients were positive. Subsequent peaks during 2009 and 2010 represented a mix of influenza A(H1N1)pdm09, H3N2, and influenza B viruses. The estimated annual incidence of hospitalized influenza cases was 136 per 100,000, highest in ages <5 years (477 per 100,000) and >75 years (407 per 100,000). The incidence of influenza A(H1N1)pdm09 was 62 per 100,000 (214 per 100,000 in children <5 years). Eleven influenza-infected patients required mechanical ventilation, and four patients died, all adults with influenza A(H1N1)pdm09 (1) or H3N2 (3).

Conclusions

Influenza-associated hospitalization rates in Thailand during 2009–10 were substantial and exceeded rates described in western countries. Influenza A(H1N1)pdm09 predominated, but H3N2 also caused notable morbidity. Expanded influenza vaccination coverage could have considerable public health impact, especially in young children.  相似文献   

5.
Zhu H  Zhou B  Fan X  Lam TT  Wang J  Chen A  Chen X  Chen H  Webster RG  Webby R  Peiris JS  Smith DK  Guan Y 《Journal of virology》2011,85(20):10432-10439
Pigs are considered to be intermediate hosts and "mixing vessels," facilitating the genesis of pandemic influenza viruses, as demonstrated by the emergence of the 2009 H1N1 pandemic (pdm/09) virus. The prevalence and repeated introduction of the pdm/09 virus into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. To address this, an active influenza surveillance program was conducted with slaughtered pigs in abattoirs in southern China. Over 50% of the pigs tested were found to be seropositive for one or more H1 influenza viruses, most commonly pdm/09-like viruses. Out of 36 virus isolates detected, one group of novel reassortants had Eurasian avian-like swine H1N1 surface genes and pdm/09 internal genes. Animal experiments showed that this virus transmitted effectively from pig to pig and from pig to ferret, and it could also replicate in ex vivo human lung tissue. Immunization against the 2009 pandemic virus gave only partial protection to ferrets. The continuing prevalence of the pdm/09 virus in pigs could lead to the genesis of novel swine reassortant viruses with the potential to infect humans.  相似文献   

6.
To study genetic evolution of Moroccan influenza A(H1N1)pdm09 virus strains, we conducted a molecular characterization of the hemagglutinin gene subunit 1 (HA1) of 36 influenza A(H1N1)pdm09 virus strains. The stains were collected from patients in Rabat and Casablanca during two influenza seasons 2009–2010 and 2010–2011. Nucleotide and amino acid sequences of 14 influenza A(H1N1)pdm09 virus strains from 2009 to 2010 were ~97 and 99 %, respectively, similar to the reference strain A/California/07/2009 (H1N1). Phylogenetic analysis of 22 influenza A(H1N1)pdm09 virus strains from 2010 to 2011 revealed a co-circulation of three well-described different genetic groups. Most important, none of the identified groups showed significant changes at the antigenic site of the virus HA1 subunit which may alter the efficacy of California/07/2009 (H1N1) vaccine.  相似文献   

7.
2009年A(H1N1)pdm09亚型流感病毒在墨西哥暴发,之后在全世界流行。为了解海南省2016-2018年A(H1N1)pdm09亚型流感病毒流行态势,分析血凝素(HA)与神经氨酸酶(NA)基因遗传进化特征与变异情况,本研究从中国流感监测信息系统获取海南省2016-2018年流感病毒病原学监测数据,选取5家流感监测网络实验室分离鉴定的37株A(H1N1)pdm09亚型流感毒株进行HA与NA基因测序,利用MEGA 10.1.8构建HA与NA基因种系进化树,并分析其氨基酸变异情况。结果显示,2016-2018年共出现3次A(H1N1)pdm09亚型流感病毒活动高峰。2017年10月份以后的分离株(4/8)与2018年大部分分离株(21/22)独立于疫苗株A/Michigan/45/2015聚为一个小支,发生20余处HA与NA氨基酸位点变异。与疫苗株A/California/7/2009(2010-2016)相比,2016-2018年流感病毒分离株在HA基因抗原决定簇上发生7处氨基酸变异并有一个潜在糖基化位点,未发现HA基因受体结合位点变异与NA基因耐药性变异。本研究提示,2016-2018年,A(H1N1)pdm09亚型流感病毒逐步发生规律性进化,氨基酸变异频率有增加趋势,今后应持续加强流感病毒病原学监测,密切追踪A(H1N1)pdm09亚型流感病毒基因变异情况,为科学防控提供理论依据。  相似文献   

8.
The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.  相似文献   

9.
The hemagglutinin genes (HA1 subunit) from human and animal 2009 pandemic H1N1 virus isolates were expressed with a baculovirus vector. Recombinant HA1 (rHA1) protein‐based ELISA was evaluated for detection of specific influenza A(H1N1)pdm09 antibodies in serum samples from vaccinated humans. It was found that rHA1 ELISA consistently differentiated between antibodies recognizing the seasonal influenza H1N1 and pdm09 viruses, with a concordance of 94% as compared to the hemagglutination inhibition test. This study suggests the utility of rHA1 ELISA in serosurveillance.  相似文献   

10.
Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide.  相似文献   

11.

Background

Pandemic influenza A(H1N1)pdm09 emerged in Thailand in 2009. A prospective longitudinal adult cohort and household transmission study of influenza-like illness (ILI) was ongoing in rural Thailand at the time of emergence. Symptomatic and subclinical A(H1N1)pdm09 infection rates in the cohort and among household members were evaluated.

Methods

A cohort of 800 Thai adults underwent active community-based surveillance for ILI from 2008–2010. Acute respiratory samples from ILI episodes were tested for A(H1N1)pdm09 by qRT-PCR; acute and 60-day convalescent blood samples were tested by A(H1N1)pdm09 hemagglutination inhibition assay (HI). Enrollment, 12-month and 24-month follow-up blood samples were tested for A(H1N1)pdm09 seroconversion by HI. Household members of influenza A-infected cohort subjects with ILI were enrolled in household transmission investigations in which day 0 and 60 blood samples and acute respiratory samples were tested by either qRT-PCR or HI for A(H1N1)pdm09. Seroconversion between annual blood samples without A(H1N1)pdm09-positive ILI was considered as subclinical infection.

Results

The 2-yr cumulative incidence of A(H1N1)pdm09 infection in the cohort in 2009/2010 was 10.8% (84/781) with an annual incidence of 1.2% in 2009 and 9.7% in 2010; 83.3% of infections were subclinical (50% in 2009 and 85.9% in 2010). The 2-yr cumulative incidence was lowest (5%) in adults born ≤1957. The A(H1N1)pdm09 secondary attack rate among household contacts was 47.2% (17/36); 47.1% of these infections were subclinical. The highest A(H1N1)pdm09 secondary attack rate among household contacts (70.6%, 12/17) occurred among children born between 1990 and 2003.

Conclusion

Subclinical A(H1N1)pdm09 infections in Thai adults occurred frequently and accounted for a greater proportion of all A(H1N1)pdm09 infections than previously estimated. The role of subclinical infections in A(H1N1)pdm09 transmission has important implications in formulating strategies to predict and prevent the spread of A(H1N1)pdm09 and other influenza virus strains.  相似文献   

12.
Eleven swine influenza viruses (SIVs) isolated from pigs in Japanese institutions between 2009 and 2012 were genetically characterized. Seven H1N1 were shown to have originated from A(H1N1)pdm09 viruses. Two H1N2 viruses contained H1 and N2 genes of Japanese H1N2 SIV origin together with internal genes of A(H1N1)pdm09 viruses. Two H3N2 viruses isolated during animal quarantine were identified as triple reassortant H3N2 viruses maintained among pigs in North America. This study shows that A(H1N1)pdm09 viruses and their reassortant strains are already present in domestic pigs in Japan and that novel SIVs are possibly being imported from abroad.  相似文献   

13.
14.
【目的】为了解中国地区2009?2015年甲型H1N1流感病毒流行态势,分析血凝素(Hemagglutinin,HA)基因的变异情况及其遗传进化特征。【方法】汇集国家流感中心2009?2015年流感周报的流感流行数据,分析甲型H1N1流感的流行病学特征;从全球共享禽流感数据倡议组织数据库及美国国家生物技术中心数据库下载甲型H1N1流感病毒HA基因序列,采用生物学软件进行系统进化和遗传特性的分析。【结果】2009?2015年全国共发生4次甲型H1N1流感的流行高峰。2009?2015年毒株与参考毒株A/California/07/2009(H1N1)的HA基因同源性逐年降低。遗传进化分析显示同一年份的毒株在系统进化树上基本呈现集中分布,2011年的毒株独立形成2个分支。分子特征表现为HA基因的4个抗原决定簇氨基酸位点均有变异,其中Ca区的203位、Sa区的163位和Sb区的185位氨基酸位点逐渐替换为新的氨基酸。除2010年与2012年,其他年份的毒株通过不同模型均得到正向压力选择HA氨基酸位点240。【结论】甲型H1N1流感在中国地区成为主要流行的亚型之一。HA基因与其编码的氨基酸逐年变异,未来进一步的流感监测能力还需加强。  相似文献   

15.

Background

The Cambodian National Influenza Center (NIC) monitored and characterized circulating influenza strains from 2009 to 2011.

Methodology/Principal Findings

Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009–2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade.

Conclusions/Significance

In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for influenza treatment and chemoprophylaxis in Cambodia, as adamantanes are no longer expected to be effective.  相似文献   

16.

Background

Swine influenza is an infectious acute respiratory disease of pigs caused by influenza A virus. We investigated the time of entry of swine influenza into the Finnish pig population. We also describe the molecular detection of two types of influenza A (H1N1) viruses in porcine samples submitted in 2009 and 2010.This retrospective study was based on three categories of samples: blood samples collected for disease monitoring from pigs at major slaughterhouses from 2007 to 2009; blood samples from pigs in farms with a special health status taken in 2008 and 2009; and diagnostic blood samples from pigs in farms with clinical signs of respiratory disease in 2008 and 2009.The blood samples were tested for influenza A antibodies with an antibody ELISA. Positive samples were further analyzed for H1N1, H3N2, and H1N2 antibodies with a hemagglutination inhibition test.Diagnostic samples for virus detection were subjected to influenza A M-gene-specific real-time RT-PCR and to pandemic influenza A H1N1-specific real-time RT-PCR. Positive samples were further analyzed with RT-PCRs designed for this purpose, and the PCR products were sequenced and sequences analyzed phylogenetically.

Results

In the blood samples from pigs in special health class farms producing replacement animals and in diagnostic blood samples, the first serologically positive samples originated from the period July–August 2008. In samples collected for disease monitoring, < 0.1%, 0% and 16% were positive for antibodies against influenza A H1N1 in the HI test in 2007, 2008, and 2009, respectively.Swine influenza A virus of avian-like H1N1 was first detected in diagnostic samples in February 2009. In 2009 and 2010, the avian-like H1N1 virus was detected on 12 and two farms, respectively. The pandemic H1N1 virus (A(H1N1)pdm09) was detected on one pig farm in 2009 and on two farms in 2010.

Conclusions

Based on our study, swine influenza of avian-like H1N1 virus was introduced into the Finnish pig population in 2008 and A(H1N1)pdm09 virus in 2009. The source of avian-like H1N1 infection could not be determined. Cases of pandemic H1N1 in pigs coincided with the period when the A(H1N1)pdm09 virus was spread in humans in Finland.
  相似文献   

17.

Background

In early 2009, a novel influenza A(H1N1) virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.

Methods/Results

The first case of human infection with A(H1N1)pdm09 in Pakistan was detected on 18th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31st August 2010). The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.

Conclusions

Influenza A(H1N1)pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.  相似文献   

18.
Influenza A(H1N1)pdm09 viruses cause sporadically very severe disease including fatal clinical outcomes associated with pneumonia, viremia and myocarditis. A mutation characterized by the substitution of aspartic acid (wild-type) to glycine at position 222 within the haemagglutinin gene (HA-D222G) was recorded during the 2009 H1N1 pandemic in Germany and other countries with significant frequency in fatal and severe cases. Additionally, A(H1N1)pdm09 viruses exhibiting the polymorphism HA-222D/G/N were detected both in the respiratory tract and in blood. Specimens from mild, fatal and severe cases were collected to study the heterogeneity of HA-222 in A(H1N1)pdm09 viruses circulating in Germany between 2009 and 2011. In order to enable rapid and large scale analysis we designed a pyrosequencing (PSQ) assay. In 2009/2010, the 222D wild-type of A(H1N1)pdm09 viruses predominated in fatal and severe outcomes. Moreover, co-circulating virus mutants exhibiting a D222G or D222E substitution (8/6%) as well as HA-222 quasispecies were identified (10%). Both the 222D/G and the 222D/G/N/V/Y polymorphisms were confirmed by TA cloning. PSQ analyses of viruses associated with mild outcomes revealed mainly the wild-type 222D and no D222G change in both seasons. However, an increase of variants with 222D/G polymorphism (60%) was characteristic for A(H1N1)pdm09 viruses causing fatal and severe cases in the season 2010/2011. Pure 222G viruses were not observed. Our results support the hypothesis that the D222G change may result from adaptation of viral receptor specificity to the lower respiratory tract. This could explain why transmission of the 222G variant is less frequent among humans. Thus, amino acid changes at HA position 222 may be the result of viral intra-host evolution leading to the generation of variants with an altered viral tropism.  相似文献   

19.
The neuraminidase (NA) genes of A(H1N1)pdm09 influenza virus isolates from 306 infected patients were analysed. The circulation of oseltamivir-resistant viruses in Brazil has not been reported previously. Clinical samples were collected in the state of Rio Grande do Sul (RS) from 2009-2011 and two NA inhibitor-resistant mutants were identified, one in 2009 (H275Y) and the other in 2011 (S247N). This study revealed a low prevalence of resistant viruses (0.8%) with no spread of the resistant mutants throughout RS.  相似文献   

20.
Feng  Zhaomin  Zhu  Wenfei  Yang  Lei  Liu  Jia  Zhou  Lijuan  Wang  Dayan  Shu  Yuelong 《中国病毒学》2021,36(1):43-51
Eurasian avian-like H1 N1(EA H1 N1) swine influenza virus(SIV) outside European countries was first detected in Hong Kong Special Administrative Region(Hong Kong, SAR) of China in 2001. Afterwards, EA H1 N1 SIVs have become predominant in pig population in this country. However, the epidemiology and genotypic diversity of EA H1 N1 SIVs in China are still unknown. Here, we collected the EA H1 N1 SIVs sequences from China between 2001 and 2018 and analyzed the epidemic and phylogenic features, and key molecular markers of these EA H1 N1 SIVs. Our results showed that EA H1 N1 SIVs distributed in nineteen provinces/municipalities of China. After a long-time evolution and transmission, EA H1 N1 SIVs were continuously reassorted with other co-circulated influenza viruses, including 2009 pandemic H1 N1(A(H1 N1)pdm09), and triple reassortment H1 N2(TR H1 N2) influenza viruses, generated 11 genotypes. Genotype 3 and 5, both of which were the reassortments among EA H1 N1, A(H1 N1)pdm09 and TR H1 N2 viruses with different origins of M genes, have become predominant in pig population. Furthermore, key molecular signatures were identified in EA H1 N1 SIVs. Our study has drawn a genotypic diversity image of EA H1 N1 viruses, and could help to evaluate the potential risk of EA H1 N1 for pandemic preparedness and response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号