首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pcnB gene product of Escherchia coli is required for copy number maintenance of plasmids related to ColE1 and also for that of the IncFII plasmid R1. Because PcnB is similar to the tRNA-binding protein tRNA nucleotidyltransferase, we have suggested that the protein would be required only for processes in which an RNA is a prominent regulatory component. This appears to be so; strains deleted for pcnB, although defective in ColE1 and R1 plasmid maintenance, maintain the iteron-regulated plasmids F and P1 normally. We also find that strains deleted for pcnB grow normally, demonstrating that PcnB has no essential cellular role under the conditions tested and suggesting that regulation by antisense RNAs similar to RNAI has no critical role in any essential host process. We confirm by immunological tests that PcnB is likely to be the commercially available enzyme poly(A) polymerase.  相似文献   

2.
The replication frequency of plasmid R1 is controlled by an unstable antisense RNA, CopA, which, by binding to its complementary target, blocks translation of the replication rate-limiting protein RepA. Since the degree of inhibition is directly correlated with the intracellular concentration of CopA, factors affecting CopA turnover can also alter plasmid copy number. We show here that PcnB (PAP I — a poly(A)polymerase of Escherichia coli  ) is such a factor. Previous studies have shown that the copy number of ColE1 is decreased in pcnB mutant strains because the stability of the RNase E processed form of RNAI, the antisense RNA regulator of ColE1 replication, is increased. We find that, analogously, the twofold reduction in R1 copy number caused by a pcnB lesion is associated with a corresponding increase in the stability of the RNase E-generated 3' cleavage product of CopA. These results suggest that CopA decay is initiated by RNase E cleavage and that PcnB is involved in the subsequent rapid decay of the 3' CopA stem-loop segment. We also find that, as predicted, under conditions in which CopA synthesis is unaffected, pcnB mutation reduces RepA translation and increases CopA stability to the same extent.  相似文献   

3.
The replication of CoIE1-related plasmids is controlled by an unstable antisense RNA, RNAI, which can interfere with the successful processing of the RNAII primer of replication. We show here that a host protein, PcnB, supports replication by promoting the decay of RNAI. In bacterial strains deleted for pcnB a stable, active form of RNAI, RNAI*, which appears to be identical to the product of 5′-end processing by RNAse E, accumulates. This leads to a reduction in plasmid copy number. We show, using a GST- PcnB fusion protein, that PcnB does not interfere with RNAI/RNAII binding in vitro. The fusion protein, like PcnB, has polyadenylating activity and is able to polyadenylate RNAI (and also another antisense RNA, CopA) in vitro.  相似文献   

4.
Summary The complete nucleotide sequences of the 1.5 kb regions of ColE2 and ColE3 plasmids containing the segments sufficient for autonomous replication have been determined. They are quite homologous (greater than 90%), indicating that these two plasmids share common mechanisms of initiation of replication and its regulation. An open reading frame with a coding capacity for a protein of about 300 amino acids is present in both ColE2 and ColE3 and it actually specifies the Rep (for replication) protein, which is the plasmid specific trans-acting factor required for autonomous replication. The amino acid sequences of the Rep proteins of ColE2 and ColE3 are quite homologous (greater than 90%). The cis-acting sites (origins) where replication initiates in the presence of the trans-acting factors consist of 32 bp for ColE2 and 33 bp for ColE3. They are the smallest of all the prokaryotic replication origins so far reported. They are nonhomologous only at two positions, one of which, a deletion of a single nucleotide in ColE2 (or an insertion in ColE3), determines the plasmid specificity in interaction of the origins with the Rep proteins. Both plasmids carry a region with an identical nucleotide sequence and the one in ColE2, the IncA region, has been shown to express incompatibility against both ColE2 and ColE3. These results indicate that these plasmids share a common IncA determinant. A possibility that a small antisense RNA is involved in copy number control and incompatibility (IncA function) was suggested.  相似文献   

5.
6.
A new plasmid pCASE1 was isolated from Gram-positive Corynebacterium casei JCM 12072. It comprised a 2.4-kb nucleotide sequence with three ORFs, two of which were indispensable for autonomous replication in Corynebacterium glutamicum. Homology search identified these two ORFs as repA and repB, areas coding proteins involved in plasmid replication. repA sequence showed high similarity to theta-replicating Escherichia coli ColE2-P9 plasmids and even higher similarity to plasmids derived from Gram-positive bacteria belonging to a subfamily of this ColE2-P9 group. An E. coliC. glutamicum shuttle vector was constructed with pCASE1 fragment including repA and repB to transform C. glutamicum and showed compatibility with corynebacterial plasmids from different plasmid families. The copy number of the shuttle vector in C. glutamicum was 13 and the vector showed stability for 102 generations with no selective pressure.  相似文献   

7.
A Real-Time PCR method was developed to monitor the plasmid copy number (PCN) in Escherichia coli and Chinese hamster ovary (CHO) cells. E. coli was transformed with plasmids containing a ColE1 or p15A origin of replication and CHO cells were transfected with a ColE1 derived plasmid used in DNA vaccination and carrying the green fluorescent protein (GFP) reporter gene. The procedure requires neither specific cell lysis nor DNA purification and can be performed in <30 min with dynamic ranges covering 0.9 pg–55 ng, and 5.0 pg–2.5 ng of plasmid DNA (pDNA) for E. coli and CHO cells, respectively. Analysis of PCN in E. coli batch cultures revealed that the maximum copy number per cell is attained in mid-exponential phase and that this number decreases on average 80% towards the end of cultivation for both types of plasmids. The plasmid content of CHO cells determined 24 h post-transfection was around 3 × 104 copies per cell although only 37% of the cells expressed GFP one day after transfection. The half-life of pDNA was 20 h and around 100 copies/cell were still detected 6 days after transfection.  相似文献   

8.
Nishio SY  Itoh T 《Plasmid》2008,59(2):102-110
Replication of the ColE2 plasmid requires a plasmid-coded initiator protein (Rep). Rep expression is controlled by antisense RNA (RNAI) against the Rep mRNA at a translational step. In this paper, we examined the effects of host RNA degradation enzymes on the degradation process of the Rep mRNA and its degradation intermediates especially those carrying the 5' untranslated region. We showed that the Rep mRNA is subjected to complex degradation pathways involving at least RNase I, RNase II, RNase III, RNase E, RNase G and PNPase. RNase II acts as a major exoribonuclease and PNPase plays a minor role. We also showed that the PcnB (polyA polymerase I) plays only a minor role in the Rep mRNA degradation process. The RNA degradation pathways of the Rep mRNA and RNAI of the ColE2 plasmid are quite different. Based on these results, we speculate that the ColE2 Rep mRNA and RNAI are endowed with individual RNA half lives required for the efficient copy number control by being subjected to different RNA degradation systems.  相似文献   

9.
Complete nucleotide sequence of a plasmid isolated fromEnterobacter agglomeranshas been determined. The plasmid, called pPIGDM1, consists of 2495 base pairs. The analysis of its nucleotide sequence suggested that pPIGDM1 may be a ColE1-like replicon. We confirmed this hypothesis by constructing a pPIGDM1-derived plasmid harboring thecatgene (pBW4), which could be introduced intoEscherichia colicells, and demonstrating that pBW4 cannot replicate in the absence of thepolAfunction and that its copy number is significantly decreased in thepcnBmutant. Like some other ColE1-type replicons (e.g., pBR322), pPIGDM1-derived plasmids can be amplified both by chloramphenicol method and in isoleucine-starvedrelAmutants but not inrelA+bacteria. Inactivation of the putativeromgene by insertion of an ampicillin-resistance gene resulted in significant increase in pPIGDM1-derived plasmid copy number inE. colidespite the fact that amino acid sequence of the putative RNA I modulator (Rom) protein is only 55.7% identical to the ColE1 analog. The pPIGDM1-derivedrom-like coding sequence is also homologous to therom-like gene present in theProteus vulgarisplasmid pPvu1. We suggest to group all these gene products into a new family called ROMS (RNA one modulators). Since a pPIGDM1-derived plasmid is compatible with other ColE1-like replicons (pMB1-, p15A, RSF1030-, and CloDF13-derived) inE. coli,one may consider pPIGDM1 as a progenitor of new cloning vehicles compatible with most (if not all) of currently used plasmid vectors. Moreover, this plasmid may serve as a source of the newrom-like gene coding for a protein useful in investigation of RNA–protein interactions. A role for the pPIGDM1 plasmid in the host strain is not known.  相似文献   

10.
11.
Mutations at the Escherichia coli pcnB locus reduce the copy number of ColE1-like plasmids. We isolated additional mutations in this gene and conducted a preliminary characterization of its product. F-prime elements carrying the pcnB region were constructed and used to show that the mutations were recessive. The wild-type pcnB gene was cloned into a low-copy-number plasmid, and its nucleotide sequence was determined. The sequence analysis indicated that pcnB is probably the first gene in an operon that contains one or more additional genes of unknown function. The pcnB locus should encode a polypeptide of 47,349 daltons (Da). A protein of this size was observed in minicells carrying a pcnB+ plasmid, and transposon insertions and deletions that truncated this protein generally abolished pcnB function. One exceptional transposon insertion at the promoter-distal end of the pcnB gene truncated the 47-kDa protein by about 20% but did not abolish complementation activity, indicating that the C-terminus of the PcnB product is dispensable. The deduced amino acid sequence of PcnB revealed numerous charged residues and, with 10% arginines, an overall basic character, suggesting that PcnB might interact with DNA or RNA in a structural capacity. Disruption of the pcnB gene by insertional mutagenesis caused a reduction in growth rate, indicating that PcnB has an important cellular function.  相似文献   

12.
Summary We have identified and localized two incompatibility determinants (IncA and IncB) within a 1.3 kb segment of ColE2 sufficient for autonomous replication. The IncA determinant is localized in a region shorter than 250 bp and expresses incompatibility against both ColE2 and ColE3. The region which determines sensitivity to the IncA determinant seems to overlap with the region specifying the IncA determinant. The expression of the trans-acting factor(s) specifically required for replication of ColE2 interferes with expression of the IncA determinant against ColE2 but not against ColE3. The IncA determinant might be at least partly responsible for the copy number control of the plasmid. The IncB determinant is localized in a 50 bp region (origin) which is sufficient for initiation of replication in the presence of the trans-acting factor(s). The IncB determinant is specific for ColE2 and seems to be due to titration of the trans-acting essential replication factor(s) by binding.  相似文献   

13.
Summary The presence of Clo DF13 copy mutants in Escherichia coli (Flac) cells results, in contrast to the presence of Clo DF13 wt plasmids, in a decreased transfer of Flac and a decrease in the efficiency of plating (EOP) of male specific RNA phages.The degree of reduction of these processes is correlated to the number of Clo DF13 copies per cell as was found by the use of copy mutants and a thermosensitive copy control mutant of Clo DF13. For instance, the presence of the Clo DF13 cop3 plasmid results in a hundredfold decrease in EOP of RNA phages and a tenfold decrease in transfer of the F plasmid. No interaction with the efficiency of plating of male specific RNA phages was measured when the wild type Clo DF13, ColE1, ColE2, ColE3 or ColK plasmid is present in the cell. Studies with both, insertion and deletion mutants of CLo DF13 cop3 showed that these effects are not due to a high number of plasmid DNA molecules itself but due to a high amount of plasmid gene products in the cell. Furthermore these studies enabled us to locate the genes involved in these interactions on the Clo DF13 physical map. It turned out that two Clo DF13 genes are involved in the observed phenomena: one gene, coding for polypeptide B (molecular weight 61,000 daltons) which is also involved in the mobilisation of Clo DF13, and one gene coding for polypeptide D (molecular weight 21,000 daltons). The possible role of these Clo DF13 gene products, involved in the decrease in transfer of Flac as well as the decrease in efficiency of plating of male specific RNA phages, is discussed.  相似文献   

14.
Mini-F is a fragment of the F plasmid, consisting of 9,000 base pairs, which carries all of the genes and sites required for replicon maintenance and control. Its copy number is one to two per chromosome. This plasmid is joined to ColE1, whose copy number is 16 to 20. Under normal circumstances the composite plasmid replication exhibited ColE1 characteristics, maintaining a high copy number. However, when ColE1 replication was inhibited by deoxyribonucleic acid polymerase I inactivation, its replication exhibited mini-F characteristics, maintaining a low copy number. These observations are in complete agreement with those of Timmis et al. (Proc. Natl. Acad. Sci. U.S.A. 71:4556-4560, 1974), who examined the behavior of a recombinant plasmid formed between pSC101 and ColE1. The transition from high to low copy number allowed us to examine the control system acting in cells carrying plasmids exhibiting intermediate copy numbers. The initiation of the mini-F replication system as represented by deoxyribonucleic acid synthesis of the composite plasmid was completely blocked when there were multiple copies of mini-F in a cell. It was not restored until the copy number was lowered to one to two, after which replication was first detected. ppF, a mini-F replicon packaged in a phage λ head behaved similarly: its replication was completely shut off when the resident mini-F genome copy number was high and was inhibited partially when the resident mini-F genome copy number was low. These experiments clearly demonstrate that there is a switch-off mechanism acting on deoxyribonucleic acid synthesis (initiation) in a cell carrying mini-F, and its intensity is related to the plasmid copy number. This result supports the “inhibitor dilution model” proposed by Pritchard et al. (Symp. Soc. Gen. Microbiol. 19:263-297, 1969). The nature of the hypothetical inhibitor is discussed.  相似文献   

15.
Wang Z  Le G  Shi Y  Wegrzyn G  Wrobel B 《Plasmid》2002,47(2):69-78
It has been previously observed that various ColE1-like plasmids replicate differentially in Escherichia coli cells during the relaxed response to amino acid starvation. Here we develop a kinetic model to explain these observations based on the possibility of interaction of the 3' CCA-OH sequence with the UGG triplets in loops of RNA I and RNA II encoded by ColE1-like plasmids. According to our model, when the interaction of uncharged CCA with RNA I is possible, the replication of the ColE1-like plasmid is affected by differences in the concentration of various tRNAs in the starved cell, but it is not affected by the tRNA concentration if the hypothetical pairing occurs between the CCA-OH and RNA II. Using the previously determined parameters for the pBR322 plasmid, the concentration of uncharged tRNAs in the amino acid starved relaxed strains and the assumed efficiency of binding of tRNA and RNA I, we show that our model explains the differences in pBR322 copy number in the relaxed strain starved for several amino acids.  相似文献   

16.
Summary We have localized the regions sufficient for autonomous replication on the genomes of the colicin E2 (ColE2) and colicin E3 (ColE3) plasmids and analyzed the replication functions carried by these regions. A 1.3 kb segment of each plasmid is sufficient for autonomous replication. Plasmids carrying this segment retain the replication properties of the original plasmid. The 1.3 kb segment consists of three functional portions. Firstly, a 0.9 kb region which specifies at least one trans-acting factor required for replication of each plasmid. Secondly, a 0.4 kb region located adjacent to one end of the 0.9 kb region, which is required for expression of the trans-acting factor(s) and probably contains the promoter. The region across the border of these two portions of ColE2 is involved in copy number control of the plasmid. The third portion is a 50 bp region adjacent to the other end of the 0.9 kb region, which contains a cis-acting site (origin) where replication initiates in the presence of the trans-acting factor(s). The action of the trans-acting factor(s) on the origin is plasmid specific. The 50 bp regions functioning as the origins of replication of ColE2 and ColE3 are the smallest among those in prokaryotic replicons so far identified and analyzed.  相似文献   

17.
Summary Thermal inactivation of the dnaA gene product leads to a considerable decrease in the rate of replication of ColE1-like plasmids. To test the possiblity that the dnaA protein may affect synthesis of RNA I, which is an inhibitor of primer formation, or synthesis of RNA II, which is the primer precursor for replication of ColE1 (Tomizawa and Itoh 1982), the effect of the dnaA46 mutation on the efficiency of the RNA I and the RNA II promoters was examined. It appears that thermal inactivation of the dnaA protein results in a considerable increase in the activity of the RNA I promoter. We suggest that overproduction of RNA I in dnaA mutants grown at the restrictive temperature is responsible for the reduced replication of ColE1-like plasmids.It has been found that addition of rifampicin to cultures of the dnaA46 or the dna + strain grown at 42°C results in a dramatic increase in the rate of replication of ColE1-like plasmids. We show that the activity of the RNA II promoter at 42°C is exceptionally resistant to rifampicin. In the presence of the drug, this leads, to an altered ratio of RNA I to RNA II, in favor of the latter RNA species.  相似文献   

18.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.  相似文献   

19.
Summary Physical maps of the two independently isolated Escherichia coli plasmids, pMB1 and ColE1, were prepared with 13 restriction endonucleases and compared. A 5.1 kilobase continuous region covering 55% of pMB1 and 75% of ColE1 was found to have similar, but non-identical, restriction maps. The differences in the maps of this region probably arose by localized mutational events rather than by major sequence rearrangements. The F-factor was found to mobilize pMB1 efficiently for conjugal transfer. A region on pMB1 required for its F-mediated transfer was mapped. Results of our study combined with results of other investigators suggest that pMB1 and ColE1 share functional properties such as colicin production, colicin immunity, mode of replication, and mobilization by the F-factor, and that the sequences required to code these functions are contained within the 5.1 kilobase homologous region.  相似文献   

20.
The complete nucleotide sequence of plasmid pAP4 isolated from Acetobacter pasteurianus 2374T has been determined. Plasmid pAP4 was analysed and found to be 3,870 bp in size with a G+C content of 50.1%. Computer assisted analysis of sequence data revealed 2 possible ORFs with typical promoter regions. ORF1 codes for a protein responsible for kanamycin resistance similar with Tn5 transposone, ORF2 encodes a resistance to ampicillin identical with Tn3 transposone. Plasmid has in A. pasteurianus five copies and in E. coli DH1 about 30 copies per chromosome and it segregation stability in both strains is very high. Based on the data on replication region, plasmid does not code for a replication protein and origin region is similar with ColE1-like plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号