首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Long-lived species show delayed maturity and generally skip breeding sites on a given year, causing difficulties in estimating demographic parameters. A novel multi-state capture – recapture model (model G for general) is proposed to estimate survival and recruitment. Model G considers long and short periods of non-attendance at the breeding site. Model G is compared against a reduced model (model R) to test if pre-breeders skip the studied site a given year, potentially prospecting other breeding habitats.
This model is applied to the vulnerable Cory's shearwaters seabird species. As for many species, natal philopatry, pre-breeding attendance and prospecting play an important role for recruitment into the breeding population. Model G shows that all Cory's shearwaters come back to their natal colony, and attend the colony before recruiting into the breeding population. Moreover, model G is preferred against model R, highlighting that prospecting plays a potentially role in the recruitment processes. Return and recruitment probabilities show similar time variation, suggesting an environmental forcing. The maximum probability of the first breeding is reached at the age of seven years. During the first year the annual survival rate is 0.52 (IC95%=[0.40, 0.64]) and pre-breeders and adult annual survival rates do not differ, being respectively 0.88, IC95%=[0.83, 0.92] and 0.89, IC95%=[0.88, 0.9].
Model G provides an improvement to estimate demographic parameters for long-lived species life cycle and an adequate framework to test the influence of covariates. Model G is structured by age and breeding status categories, allowing easy further population models.  相似文献   

2.
Costs of reproduction on survival have captured the attention of researchers since life history theory was formulated. Adults of long-lived species may increase survival by reducing their breeding effort or even skipping reproduction. In this study, we aimed to evaluate the costs of current reproduction on survival and whether skipping reproduction increases adult survival in a long-lived seabird. We used capture–mark–recapture data (1450 encounters) from two populations of Bulwer''s petrel (Bulweria bulwerii), breeding in the Azores and Canary Islands, North Atlantic Ocean. Using a multi-event model with two different breeding statuses (breeders versus non-breeders), we calculated probabilities of survival and of transitions between breeding statuses, evaluating potential differences between sexes. Females had lower survival probabilities than males, independent of their breeding status. When considering breeding status, breeding females had lower survival probabilities than non-breeding females, suggesting costs of reproduction on survival. Breeding males had higher survival probabilities than non-breeding males, suggesting that males do not incur costs of reproduction on survival and that only the highest quality males have access to breeding. The highest and the lowest probabilities of skipping reproduction were found in breeding males from the Azores and in breeding males from the Canary Islands, respectively. Intermediate values were observed in the females from both populations. This result is probably due to differences in the external factors affecting both populations, essentially predation pressure and competition. The existence of sex-specific costs of reproduction on survival in several populations of this long-lived species may have important implications for species population dynamics.  相似文献   

3.
Shearwaters are nocturnal burrowing seabirds. They return to their colony at dusk and exhibit high vocal activity, underlining the usefulness of acoustic cues to nocturnal communication. The present study aimed to test whether acoustic communication systems of two sympatric shearwater species, the Yelkouan shearwater Puffinus yelkouan and the Mediterranean Cory's shearwater Calonectris diomedea diomedea , converge to similar strategies. Inter-annual mate fidelity and incubation relays led us to focus on sex and individual acoustic signatures. We first characterized those two signatures by analysing the major call emitted by incubating birds. Second, we performed playback experiments to assess ability of birds to vocally discriminate between sexes and mate versus non-mate. The results obtained show that both species use a reliable sex vocal signature supported by frequency and energy features, enabling sex identification of the emitter. By responding only to conspecific same-sex calls, birds may ensure burrow and mate guarding. Conversely, individual vocal signature was mainly supported by temporal parameters, and was more reliable in the Cory's shearwater. Moreover, this species uses vocal exchanges to identify the mate during incubation relays, whereas Yelkouan shearwaters probably need additional cues. In conclusion, we observe an evolutionary convergence in intra-sex communication process but a divergence in mate greeting strategy.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 115–134.  相似文献   

4.
Parasite communities can be structured at different spatial scales depending on the level of organization of the hosts; hence, examining this structure should be a multiscale process. We investigated ectoparasite community structure in three closely related seabird hosts, the Mediterranean Cory's shearwater Calonectris diomedea diomedea , the Atlantic Cory's shearwater C. d. borealis and the Cape Verde shearwater C. edwardsii . This community was composed of three lice ( Halipeurus abnormis , Austromenopon echinatum and Saemundssonia peusi) and one flea species ( Xenopsylla gratiosa ), and was considered at the infra-, component and regional community levels. We examined temporal and spatial structuring of the infracommunities, the influence of host aggregation and body condition on the component community, and the effect of genetic and geographic connectivity among host populations on the regional community. Ectoparasite infracommunities showed substantial species overlaps in temporal patterns of abundance, but species were spatially segregated within the host body. Within component communities, all ectoparasite species showed an aggregated distribution in abundance. However, aggregation patterns and their relationships with the spatial distribution of hosts within the breeding colony differed among ectoparasite species, mainly reflecting ecological differences between fleas and lice. At the regional scale, similarity in ectoparasite communities correlated with geographic distances among host colonies, but not with genetic distances. This result suggests differences in climate and habitat characteristics among host localities as a major determinant of regional communities, rather than host connectivity. Taken together, our results highlight the importance of the geographic distribution of host breeding colonies and the spatial segregation within the host body as key factors in determining ectoparasite community structure in Calonectris shearwaters.  相似文献   

5.
We investigated phylogenetic relationships and the biogeographic history of the Calonectris species complex, using both molecular and biometric data from one population of the Cape Verde shearwater Calonectris edwardsii (Cape Verde Islands), one from the streaked shearwater C. leucomelas (western Pacific Ocean) and 26 from Cory's shearwater populations distributed across the Atlantic (C. d. borealis) and the Mediterranean (C. d. diomedea). The streaked shearwater appeared as the most basal and distant clades, whereas the genetic divergences among the three main clades within the Palearctic were similar. Clock calibrations match the first speciation event within Calonectris to the Panama Isthmus formation, suggesting a vicariant scenario for the divergence of the Pacific and the Palearctic clades. The separation between the Atlantic and Mediterranean clades would have occurred in allopatry by range contraction followed by local adaptation during the major biogeographic events of the Pleistocene. The endemic form from Cape Verde probably evolved as a result of ecological divergence from the Mediterranean subspecies. Finally, one Mediterranean population (Almeria) was unexpectedly grouped into the Atlantic subspecies clade, both by genetic and by morphometric analyses, pointing out the Almeria-Oran oceanographic front (AOOF) as the actual divide between the two Cory's shearwater subspecies. Our results highlight the importance of oceanographic boundaries as potentially effective barriers shaping population and species phylogeographical structure in pelagic seabirds.  相似文献   

6.
Comparisons among populations from different localities represent an important tool in the study of evolution. Medflies have colonized many temperate and tropical areas all over the world during the last few centuries. In a common garden environment, we examined whether medfly populations obtained from six global regions [Africa (Kenya), Pacific (Hawaii), Central America (Guatemala), South America (Brazil), Extra-Mediterranean (Portugal) and Mediterranean (Greece)] have evolved different survival and reproductive schedules. Whereas females were either short-lived [life expectancy at eclosion (e0) 48–58 days; Kenya, Hawaii and Guatemala] or long-lived (e0 72–76 days; Greece, Portugal and Brazil], males with one exception (Guatemala) were generally long-lived (e0 106–122 days). Although males universally outlived females in all populations, the longevity gender gap was highly variable (20–58 days). Lifetime fecundity rates were similar among populations. However, large differences were observed in their age-specific reproductive patterns. Short-lived populations mature at earlier ages and allocate more of their resources to reproduction early in life compared with long-lived ones. In all populations, females experienced a post-reproductive lifespan, with this segment being significantly longer in Kenyan flies. Therefore, it seems plausible that medfly populations, inhabiting ecologically diverse habitats, have evolved different life history strategies to cope with local environmental conditions.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 106–117.  相似文献   

7.
W. U. Blanckenhorn 《Oecologia》1997,109(3):342-352
 Field phenologies of high- (ca. 1500 m) and low- (ca. 500 m) altitude populations of the two most common European species of dung flies, Scathophaga stercoraria and Sepsis cynipsea, differ quite markedly due to differences in climate. To differentiate genetic adaptation due to natural selection and phenotypic plasticity, I compared standard life history characters of pairs of high- and low-altitude populations from three disjunctive sites in Switzerland in a laboratory experiment. The F1 rearing environment did not affect any of the variables of the F2 generation with which all experiments were conducted; hence, there were no carry-over or maternal effects. In Sc. stercoraria, high-altitude individuals were smaller but laid larger eggs; the latter may be advantageous in the more extreme (i.e. more variable and less predictable) high-altitude climate. Higher rearing temperature strongly decreased development time, body size and the size difference between males and females (males are larger), produced female-biased sex ratios and led to suboptimal adult emergence rates. Several of these variables also varied among the three sites, producing some interactions complicating the patterns. In Se. cynipsea, high-altitude females were marginally smaller, less long-lived and laid fewer clutches. Higher rearing temperature strongly decreased development time and body size but tended to increase the size difference between males and females (males are smaller); it also increased clutch size but decreased physiological longevity. Again, interpretation is complicated by variation across sites and some significant interactions. Overall, genetic adaptation to high-altitude conditions appears weak, probably prevented by substantial gene flow, and may be swamped by the effects of other geographic variables among populations. In contrast, phenotypic plasticity is extensive. This may be due to selection of flexible, multi-purpose genotypes. The results suggest that differences in season length between high- and low-altitude locations alone do not explain well the patterns of variation in phenology and body size. Received: 21 March 1996 / Accepted: 1 September 1996  相似文献   

8.
Detailed studies on mammals and birds have shown that the effects of climate variation on population dynamics often depend on population composition, because weather affects different subsets of a population differently. It is presently unknown whether this is also true for ectothermic animals such as reptiles. Here we show such an interaction between weather and demography for an ectothermic vertebrate by examining patterns of survival and reproduction in six populations of a threatened European snake, the asp viper ( Vipera aspis ), over six to 17 years. Survival was lowest among juvenile and highest among adult snakes. The estimated annual probability for females to become gravid ranged from 26% to 60%, and was independent of whether females had reproduced in the year before or not. Variation in juvenile survival was strongly affected by winter temperature, whereas adult survival was unaffected by winter harshness. A matrix population model showed that winter weather affected population dynamics predominantly through variation in juvenile survival, although the sensitivity of the population growth rate to juvenile survival was lower than to adult survival. This study on ectothermic vipers revealed very similar patterns to those found in long-lived endothermic birds and mammals. Our results thus show that climate and life history can interact in similar ways across biologically very different vertebrate species, and suggest that these patterns may be very general.  相似文献   

9.
Predicting the impact of human activities and their derivable consequences, such as global warming or direct wildlife mortality, is increasingly relevant in our changing world. Due to their particular life history traits, long-lived migrants are amongst the most endangered and sensitive group of animals to these harming effects. Our ability to identify and quantify such anthropogenic threats in both breeding and wintering grounds is, therefore, of key importance in the field of conservation biology. Using long-term capture-recapture data (34 years, 4557 individuals) and year-round tracking data (4 years, 100 individuals) of a trans-equatorial migrant, the Cory's shearwater (Calonectris diomedea), we investigated the impact of longline fisheries and climatic variables in both breeding and wintering areas on the most important demographic trait of this seabird, i.e. adult survival. Annual adult survival probability was estimated at 0.914±0.022 on average, declining throughout 1978-1999 but recovering during the last decade (2005-2011). Our results suggest that both the incidental bycatch associated with longline fisheries and high sea surface temperatures (indirectly linked to food availability; SST) increased mortality rates during the long breeding season (March-October). Shearwater survival was also negatively affected during the short non-breeding season (December-February) by positive episodes of the Southern Oscillation Index (SOI). Indirect negative effects of climate at both breeding (SST) and wintering grounds (SOI) had a greater impact on survival than longliner activity, and indeed these climatic factors are those which are expected to present more unfavourable trends in the future. Our work underlines the importance of considering both breeding and wintering habitats as well as precise schedules/phenology when assessing the global role of the local impacts on the dynamics of migratory species.  相似文献   

10.
We describe, for the first time, nest-cavities selected by the Mediterranean endemic yelkouan shearwater Puffinus yelkouan on French islands, comparing it with the sympatric Cory's shearwater Calonectris diomedea. By monitoring 179 suitable cavities during four years, we show that yelkouan shearwaters select deeper cavities and with more winding tunnels than those selected by Cory's shearwaters or unoccupied cavities. Logistic regression modelling indicates that cavities with nest-like characteristics are not limited. We show that breeding success is enhanced in deeper cavities, with winding tunnels and higher block covers. We do not find any apparent competition between the two shearwater species.  相似文献   

11.
In long-lived animals, adult survival is among the most important determinants of population dynamics. Although it may show considerable variation both in time and among populations and sites, a single survival estimate per species is often used in comparative evolutionary studies or in conservation management to identify threatened populations. We estimated adult survival of the isabelline serotine bat Eptesicus isabellinus using capture–recapture data collected on six maternity colonies scattered over a large area (distance 8–103 km) during periods varying from 8 to 26 years. We modelled temporal and inter-colony variations as random effects in a Bayesian framework and estimated mean annual adult survival of females on two scales and a single survival value across all colonies. On a coarse scale, we grouped colonies according to two different habitat types and investigated the effect on survival. A difference in adult survival was detected between the two habitat types [posterior mean of annual survival probability 0.71; 95% credible interval (CI) 0.51–0.86 vs. 0.60; 0.28–0.89], but it was not statistically supported. On a fine scale, survival of the six colonies ranged between 0.58 (95% CI 0.23–0.92) and 0.81 (0.73–0.88), with variation between only two colonies being statistically supported. Overall survival was 0.72 (95% CI 0.57–0.93) with important inter-colony variability (on a logit scale 0.98; 95% CI 0.00–8.16). Survival varied temporally in a random fashion across colonies. Our results show that inference based solely on single colonies should be treated with caution and that a representative unbiased estimate of survival for any species should ideally be based on multiple populations.  相似文献   

12.
The Little Bustard Tetrax tetrax is one of the most threatened steppe bird species in Europe, due mainly to agricultural intensification. Despite the relative importance of the Iberian population (approximately 50% of the global population) little is known about its dynamics and trends, especially in core distribution areas. This study evaluates the influences of meteorological factors and land management on the oscillations and medium-term trends of two Little Bustard populations in Central Spain. During 2001–2007, surveys of breeding male and female Little Bustards were carried out in two central Spanish locations: Valdetorres, in Special Protection Area (SPA) no. 139 (1600 ha), and Campo Real, in Important Bird Area (IBA) no. 075 (1150 ha). Densities were 3.3–4.0 and 1.1–2.1 males/km2 in Campo Real, and 1.8–2.2 and 0.6–1.3 females/km2 in Valdetorres. The sex ratio was biased towards males in both cases. Both populations declined during 2001–2007, especially in Valdetorres (60%). Variation in habitat composition did not explain variation in the numbers of males. Both populations were influenced by total precipitation in the preceding October–May period. Results suggest that the Little Bustard may be sensitive to future climate trends in Europe. Finally, different simulated demographic scenarios suggest that low female survival and productivity may be the immediate cause of the decline in Little Bustard populations, which is consistent with their sensitivity to climatic conditions.  相似文献   

13.
Variability in juvenile survival rate is expected to be an important component of the dynamics of long-lived animal populations. Across a range of species, individual variation in juvenile body mass has been shown to be an important cause of variation in fates of juveniles. Our goal in this paper was to estimate age-specific apparent survival rates for Weddell seals ( Leptonychotes weddellii ) in Erebus Bay, Antarctica, and to investigate hypotheses about relationships between body mass at weaning and apparent survival rate for juveniles. Mark–resighting models found average apparent juvenile survival rate (survival from weaning to age 3) was similar between males and females, and revealed positive relationships between body mass at weaning and apparent juvenile survival rate. The effects of body mass on juvenile survival rate differed between the sexes and the relationship between body mass and survival rate was stronger in males. These results indicate that the magnitude of energy transferred from mother to pup during lactation likely has important consequences on offspring survival rate and maternal fitness.  相似文献   

14.
Studies of population dynamics of long-lived species have generally focused on adult survival because population growth should be most sensitive to this parameter. However, actual variations in population size can often be driven by other demographic parameters, such as juvenile survival, when they show high temporal variability. We used capture–recapture data from a long-term study of a hunted, migratory species, the greater snow goose (Chen caerulescens atlantica), to assess temporal variability in first-year survival and the relative importance of natural and hunting mortality. We also conducted a parasite-removal experiment to determine the effect of internal parasites and body condition on temporal variation in juvenile survival. We found that juvenile survival showed a higher temporal variability than adult survival and that natural mortality was more important than hunting mortality, unlike in adults. Parasite removal increased first-year survival and reduced its annual variability in females only. Body condition at fledging was also positively correlated with first-year survival in treated females. With reduced parasite load, females, which are thought to invest more in their immune system than males according to Bateman’s principle, could probably reallocate more energy to growth than males, leading to a higher survival. Treated birds also had a higher survival than control ones during their second year, suggesting a developmental effect that manifested later in life. Our study shows that natural factors such as internal parasites may be a major source of variation in juvenile survival of a long-lived, migratory bird, which has implications for its population dynamics.  相似文献   

15.
A wide range of threats affect populations of Pacific island birds and conservationists have been challenged to identify factors upon which to focus management. The Tuamotu kingfisher (Todiramphus gambieri) is one of the most endangered vertebrate species in the world, yet little has been published about basic biology or causes of the population decline. We used 4 years of mark-resight and territory resource information to model survival in juvenile and adult Tuamotu kingfishers. Annual survival of adult males (ϕ = 0.77) was similar to congeneric species, whereas survival of adult females (ϕ = 0.40) and juveniles (ϕ = 0.12) was much lower. The best-supported survival model indicated adult female survival was positively related to territory size, whereas adult male survival was negatively related to atoll forest within territories. We used parameter estimates from survival models in a life-stage simulation analysis to evaluate the relative influence of vital rates and territory habitats on population processes. Results indicated that adult female and juvenile survival had the greatest impact on Tuamotu kingfisher populations, accounting for 58% and 32% of variation in the finite rate of population increase, respectively. Nocturnal predation by rats (Rattus spp.) on incubating kingfishers may explain the lower survival of females than males, whereas juvenile birds may be especially vulnerable to predation by cats (Felis catus). Thus, conservation management for Tuamotu kingfishers should include use of metal guards on cavity trees to protect nests and incubating females, and control predator access during fledging periods. © 2012 The Wildlife Society.  相似文献   

16.
In long-lived species, any negative effect of pollution on adult survival may pose serious hazards to breeding populations. In this study, we measured concentrations of various organochlorines (OCs) (polychlorinated biphenyl and OC pesticides) in the blood of a large number of adult glaucous gulls (Larus hyperboreus) breeding on Bjørnøya (Bear Island) in the Norwegian Arctic, and modelled their local survival using capture–recapture analysis. Survival was negatively associated with concentrations of OCs in the blood. The effect of OCs was nonlinear and evident only among birds with the highest concentrations (the uppermost deciles of contamination). The threshold for depressed survival differed between the sexes, with females being more sensitive to contamination. For birds with lower OC concentration, survival was very high, i.e. at the upper range of survival rates reported from glaucous and other large gull species in other, presumably less contaminated populations. We propose two non-exclusive explanations. First, at some threshold of OC concentration, parents (especially males) may abandon reproduction to maximize their own survival. Second, high contamination of OC may eliminate the most sensitive individuals from the population (especially among females), inducing a strong selection towards high-quality and less sensitive phenotypes.  相似文献   

17.
The bill is a sexually dimorphic structure in many bird species and implicated in numerous functions. Sexual differences may arise from sexual selection or ecological divergence. Here, we examined differences in bill size and shape between males and females and explored to what extent these relate to feeding ecology of each sex in Cory's shearwater (Calonectris diomedea). We applied linear measurements and geometric morphometric methods to examine sexual differences in bill size and shape. We investigated feeding ecology by tracking foraging movements during the breeding period and by analysing stable isotope signatures in blood during the breeding period and in feathers grown during the non-breeding period. Bill traits were all sexually dimorphic, both in absolute and relative terms, and scaled hypermetrically with body mass in several characters in males. However, males and females did not differ in their feeding areas or isotopic signatures and no significant correlation was observed between these traits and bill dimorphism. Therefore, we discard the foraging-niche divergence hypothesis, and suggest that sexual dimorphism in bill size in this species is more likely driven by sexual selection related to antagonistic interactions.  相似文献   

18.
Determining demographic rates in wild animal populations and understanding why rates vary are important challenges in population ecology and conservation. Whereas reproductive success is reported frequently for many songbird species, there are relatively few corresponding estimates of annual survival for widespread populations of the same migratory species. We incorporated mark–recapture data into Cormack–Jolly–Seber models to estimate annual apparent survival and recapture rates of adult male and female tree swallows Tachycineta bicolor in eight local breeding populations across North America for periods of 7–33 yr. We found strong site‐specific and annual variation in apparent survival rates of adult swallows, and evidence of higher survival or site fidelity among males than females. There were no strong associations between putative overwintering region and survival. Strength and patterns of winter climate‐apparent survival relationships varied across four sites monitored for >15 yr; at one site, spring pond conditions, local spring precipitation and, to a lesser extent, winter North Atlantic Oscillation Index were credible predictors of annual apparent survival. Further work is needed to evaluate how survival is related to environmental conditions throughout the annual cycle and how these factors affect population dynamics of swallows and related species of conservation concern.  相似文献   

19.
Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range‐wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back‐cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long‐term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long‐term demographic decline and range contraction for a species of high‐conservation concern. Range‐wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal‐limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management.  相似文献   

20.
Sex differences in ageing in natural populations of vertebrates   总被引:3,自引:0,他引:3  
In many long-lived vertebrates (including humans), adult males have shorter lifespans than adult females, partly as a result of higher annual rates of mortality in males and partly owing to sex differences in the rate of ageing. A probable explanation of the evolution of sex differences in ageing is that, in polygynous species, intense intrasexual competition between males restricts the number of seasons for which individual males are able to breed successfully, weakening selection pressures favouring adult longevity in males relative to females. If this is the case, sex differences in adult longevity and in the onset and rate of senescence should be greater in polygynous species than in monogamous ones and their magnitude should be related to the duration of effective breeding males compared with females. Here, we use data from longitudinal studies of vertebrates to show that reduced longevity in adult males (relative to females) is commonly associated with a more rapid decline in male than female survival with increasing age and is largely confined to polygynous species. The magnitude of sex differences in adult longevity in different species is consistently related to the magnitude of sex differences in the duration of effective breeding, calculated across surviving adults. Our results are consistent with the suggestion that sex differences in senescence in polygynous species are a consequence of weaker selection for longevity in males than females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号