首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The reverse genetics technology for bluetongue virus (BTV) has been used in combination with complementing cell lines to recover defective BTV-1 mutants. To generate a potential disabled infectious single cycle (DISC) vaccine strain, we used a reverse genetics system to rescue defective virus strains with large deletions in an essential BTV gene that encodes the VP6 protein (segment S9) of the internal core. Four VP6-deficient BTV-1 mutants were generated by using a complementing cell line that provided the VP6 protein in trans. Characterization of the growth properties of mutant viruses showed that each mutant has the necessary characteristics for a potential vaccine strain: (i) viral protein expression in noncomplementing mammalian cells, (ii) no infectious virus generated in noncomplementing cells, and (iii) efficient replication in the complementing VP6 cell line. Further, a defective BTV-8 strain was made by reassorting the two RNA segments that encode the two outer capsid proteins (VP2 and VP5) of a highly pathogenic BTV-8 with the remaining eight RNA segments of one of the BTV-1 DISC viruses. The protective capabilities of BTV-1 and BTV-8 DISC viruses were assessed in sheep by challenge with specific virulent strains using several assay systems. The data obtained from these studies demonstrated that the DISC viruses are highly protective and could offer a promising alternative to the currently available attenuated and killed virus vaccines and are also compliant as DIVA (differentiating infected from vaccinated animals) vaccines.  相似文献   

2.
Rift Valley fever virus (RVFV), a phlebovirus of the family Bunyaviridae, is a major public health threat in Egypt and sub-Saharan Africa. The viral and host cellular factors that contribute to RVFV virulence and pathogenicity are still poorly understood. All pathogenic RVFV strains direct the synthesis of a nonstructural phosphoprotein (NSs) that is encoded by the smallest (S) segment of the tripartite genome and has an undefined accessory function. In this report, we show that MP12 and clone 13, two attenuated RVFV strains with mutations in the NSs gene, were highly virulent in IFNAR(-/-) mice lacking the alpha/beta interferon (IFN-alpha/beta) receptor but remained attenuated in IFN-gamma receptor-deficient mice. Both attenuated strains proved to be excellent inducers of early IFN-alpha/beta production. In contrast, the virulent strain ZH548 failed to induce detectable amounts of IFN-alpha/beta and replicated extensively in both IFN-competent and IFN-deficient mice. Clone 13 has a defective NSs gene with a large in-frame deletion. This defect in the NSs gene results in expression of a truncated protein which is rapidly degraded. To investigate whether the presence of the wild-type NSs gene correlated with inhibition of IFN-alpha/beta production, we infected susceptible IFNAR(-/-) mice with S gene reassortant viruses. When the S segment of ZH548 was replaced by that of clone 13, the resulting reassortants became strong IFN inducers. When the defective S segment of clone 13 was exchanged with the wild-type S segment of ZH548, the reassortant virus lost the capacity to stimulate IFN-alpha/beta production. These results demonstrate that the ability of RVFV to inhibit IFN-alpha/beta production correlates with viral virulence and suggest that the accessory protein NSs is an IFN antagonist.  相似文献   

3.
Infectious bursal disease viruses (IBDVs), belonging to the family Birnaviridae, exhibit a wide range of immunosuppressive potential, pathogenicity, and virulence for chickens. The genomic segment A encodes all the structural (VP2, VP4, and VP3) and nonstructural proteins, whereas segment B encodes the viral RNA-dependent RNA polymerase (VP1). To identify the molecular determinants for the virulence, pathogenic phenotype, and cell tropism of IBDV, we prepared full-length cDNA clones of a virulent strain, Irwin Moulthrop (IM), and constructed several chimeric cDNA clones of segments A and B between the attenuated vaccine strain (D78) and the virulent IM or GLS variant strain. Using the cRNA-based reverse-genetics system developed for IBDV, we generated five chimeric viruses after transfection by electroporation procedures in Vero or chicken embryo fibroblast (CEF) cells, one of which was recovered after propagation in embryonated eggs. To evaluate the characteristics of the recovered viruses in vivo, we inoculated 3-week-old chickens with D78, IM, GLS, or chimeric viruses and analyzed their bursae for pathological lesions 3 days postinfection. Viruses in which VP4, VP4-VP3, and VP1 coding sequences of the virulent strain IM were substituted for the corresponding region in the vaccine strain failed to induce hemorrhagic lesions in the bursa. In contrast, viruses in which the VP2 coding region of the vaccine strain was replaced with the variant GLS or virulent IM strain caused rapid bursal atrophy or hemorrhagic lesions in the bursa, as seen with the variant or classical virulent strain, respectively. These results show that the virulence and pathogenic-phenotype markers of IBDV reside in VP2. Moreover, one of the chimeric viruses containing VP2 sequences of the virulent strain could not be recovered in Vero or CEF cells but was recovered in embryonated eggs, suggesting that VP2 contains the determinants for cell tropism. Similarly, one of the chimeric viruses containing the VP1 segment of the virulent strain could not be recovered in Vero cells but was recovered in CEF cells, suggesting that VP1 contains the determinants for cell-specific replication in Vero cells. By comparing the deduced amino acid sequences of the D78 and IM strains and their reactivities with monoclonal antibody 21, which binds specifically to virulent IBDV, the putative amino acids involved in virulence and cell tropism were identified. Our results indicate that residues Gln at position 253 (Gln253), Asp279, and Ala284 of VP2 are involved in the virulence, cell tropism, and pathogenic phenotype of virulent IBDV.  相似文献   

4.
Bluetongue virus (BTV) belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/-)) mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+) T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.  相似文献   

5.
用长距离RT PCR方法分别克隆了浙江地区传染性法氏囊病病毒 (IBDV)细胞致弱株HZ2、弱毒疫苗株JD1和野毒株ZJ2 0 0 0的A节段基因组全长 ,三毒株的A节段均长 32 59bp ,都包含两个相互重叠的开放阅读框架和两端的 5′ ,3′ 非编码区 (NCR)。它们在核苷酸和推导的四种病毒蛋白VP2、VP3、VP4、VP5的氨基酸水平上高度同源 ,并具有位于VP2高变区的特征性氨基酸H2 53、N2 79、T2 84、R330 ,这些氨基酸是弱毒株和几个强毒株的标志。野毒株ZJ2 0 0 0的高强毒力可能与VP2高变区和VP2 VP4剪切位点附近的几个突变有关。序列比较进一步支持VP2并非是决定IBDV毒力的唯一因素。不同毒力表型毒株的两端NCR序列高度保守提示NCR可能与IBDV毒力并不直接相关。另外 ,根据VP5在十种不同表型毒株中高度保守 ,作者提出了一种VP5与病毒毒力关系的推测  相似文献   

6.
This study describes the potential use of attenuated Salmonella enterica serovar Typhimurium strains to express and deliver VP1 of enterovirus 71 (EV71) as a vaccination strategy to prevent EV71 infection in mice. When orally administered to BALB/c mice, both attenuated carrier strains, CNP101 and SL7207, were able to efficiently invade livers and spleens, while only the virulence plasmid-carrying strain SL7207 persisted for more than 30 days in these organs. A recombinant in vivo-regulated promoter expression plasmid expressing VP1 antigen of EV71 was constructed. The expression of the VP1, directed by the pagC promoter, in attenuated Salmonella was confirmed by Western blot hybridization. Both humoral and cellular immune responses were elicited in mice by oral immunization with such Salmonella-based VP1 vaccines. We evaluated the protective efficacy of the vaccines in mice using a maternal immunization protocol. With a lethal challenge, ICR newborn mice born to dams immunized with Salmonella-based VP1 vaccine showed a 50-60% survival; in contrast, none of the mice in the control group survived the challenge. Our data indicated that Salmonella-based VP1 subunit vaccines are a promising vaccine strategy in the prevention of EV71 infection.  相似文献   

7.
Infectious bursal disease virus (IBDV) is the major viral pathogen in the poultry industry. Live attenuated serotype 1 vaccine strains are commonly used to protect susceptible chickens during their first 6 weeks of life. Wild-type serotype 1 IBDV strains are highly pathogenic only in chickens, whereas serotype 2 strains are apathogenic in chickens and other birds. Here we describe the replacement of the genomic double-stranded RNA (dsRNA) encoding the N- or C-terminal part of VP3 of serotype 1 very virulent IBDV (vvIBDV) (isolate D6948) with the corresponding part of serotype 2 (isolate TY89) genomic dsRNA. The modified virus containing the C-terminal part of serotype 2 VP3 significantly reduced the virulence in specific-pathogen-free chickens, without affecting the distinct bursa tropism of serotype 1 IBDV strains. Furthermore, by using serotype-specific antibodies we were able to distinguish bursas infected with wild-type vvIBDV from bursas infected with the modified vvIBDV. We are currently evaluating the potential of this recombinant strain as an attenuated live vaccine that induces a unique serological response (i.e., an IBDV marker vaccine).  相似文献   

8.
The propensity of RNA viruses to revert attenuating mutations contributes to disease and complicates vaccine development. Despite the presence of virulent revertant viruses in some live-attenuated vaccines, disease from vaccination is rare. This suggests that in mixed viral populations, attenuated viruses may limit the pathogenesis of virulent viruses, thus establishing a virulence threshold. Here we examined virulence thresholds using mixtures of virulent and attenuated viruses in a transgenic mouse model of poliovirus infection. We determined that a 1,000-fold excess of the attenuated Sabin strain of poliovirus was protective against disease induced by the virulent Mahoney strain. Protection was induced locally, and inactivated virus conferred protection. Treatment with a poliovirus receptor-blocking antibody phenocopied the protective effect of inactivated viruses in vitro and in vivo, suggesting that one mechanism controlling virulence thresholds may be competition for a viral receptor. Additionally, the type I interferon response reduces poliovirus pathogenesis; therefore, we examined virulence thresholds in mice lacking the alpha/beta interferon receptor. We found that the attenuated virus was virulent in immunodeficient mice due to the enhanced replication and reversion of attenuating mutations. Therefore, while the type I interferon response limits the virulence of the attenuated strain by reducing replication, protection from disease conferred by the attenuated strain in immunocompetent mice can occur independently of replication. Our results identified mechanisms controlling the virulence of mixed viral populations and indicate that live-attenuated vaccines containing virulent virus may be safe, as long as virulent viruses are present at levels below a critical threshold.  相似文献   

9.
Bluetongue virus (BTV) can infect most species of domestic and wild ruminants causing substantial morbidity and mortality and, consequently, high economic losses. In 2006, an epizootic of BTV serotype 8 (BTV-8) started in northern Europe that caused significant disease in cattle and sheep before comprehensive vaccination was introduced two years later. Here, we evaluate the potential of equine herpesvirus type 1 (EHV-1), an alphaherpesvirus, as a novel vectored DIVA (differentiating infected from vaccinated animals) vaccine expressing VP2 of BTV-8 alone or in combination with VP5. The EHV-1 recombinant viruses stably expressed the transgenes and grew with kinetics that were identical to those of parental virus in vitro. After immunization of mice, a BTV-8-specific neutralizing antibody response was elicited. In a challenge experiment using a lethal dose of BTV-8, 100% of interferon-receptor-deficient (IFNAR(-/-)) mice vaccinated with the recombinant EHV-1 carrying both VP2 and VP5, but not VP2 alone, survived. VP7 was not included in the vectored vaccines and was successfully used as a DIVA marker. In summary, we show that EHV-1 expressing BTV-8 VP2 and VP5 is capable of eliciting a protective immune response that is distinguishable from that after infection and as such may be an alternative for BTV vaccination strategies in which DIVA compatibility is of importance.  相似文献   

10.
Genetic reassortment of infectious bursal disease virus in nature   总被引:1,自引:0,他引:1  
Infectious bursal disease virus (IBDV), a double-stranded RNA virus, is a member of the Birnaviridae family. Four pathotypes of IBDV, attenuated, virulent, antigenic variant, and very virulent (vvIBDV), have been identified. We isolated and characterized the genomic reassortant IBDV strain ZJ2000 from severe field outbreaks in commercial flocks. Full-length genomic sequence analysis showed that ZJ2000 is a natural genetic reassortant virus with segments A and B derived from attenuated and very virulent strains of IBDV, respectively. ZJ2000 exhibited delayed replication kinetics as compared to attenuated strains. However, ZJ2000 was pathogenic to specific pathogen free (SPF) chickens and chicken embryos. Similar to a standard virulent IBDV strain, ZJ2000 caused 26.7% mortality, 100% morbidity, and severe bursal lesions at both gross and histopathological levels. Taken together, our data provide direct evidence for genetic reassortment of IBDV in nature, which may play an important role in the evolution, virulence, and host range of IBDV. Our data also suggest that VP2 is not the sole determinant of IBDV virulence, and that the RNA-dependent RNA polymerase protein, VP1, may play an important role in IBDV virulence. The discovery of reassortant viruses in nature suggests an additional risk of using live IBDV vaccines, which could act as genetic donors for genome reassortment.  相似文献   

11.
BackgroundMany ruminant diseases of viral aetiology can be effectively prevented using appropriate vaccination measures. For diseases such as Rift Valley fever (RVF) the long inter-epizootic periods make routine vaccination programs unfeasible. Coupling RVF prophylaxis with seasonal vaccination programmes by means of multivalent vaccine platforms would help to reduce the risk of new RVF outbreaks.Methodology/Principal findingsIn this work we generated recombinant attenuated Rift Valley fever viruses (RVFVs) encoding in place of the virulence factor NSs either the VP2 capsid protein or a truncated form of the non-structural NS1 protein of bluetongue virus serotype 4 (BTV-4). The recombinant viruses were able to carry and express the heterologous BTV genes upon consecutive passages in cell cultures. In murine models, a single immunization was sufficient to protect mice upon RVFV challenge and to elicit a specific immune response against BTV-4 antigens that was fully protective after a BTV-4 boost. In sheep, a natural host for RVFV and BTV, both vaccines proved immunogenic although conferred only partial protection after a virulent BTV-4 reassortant Morocco strain challenge.Conclusions/SignificanceThough additional optimization will be needed to improve the efficacy data against BTV in sheep, our findings warrant further developments of attenuated RVFV as a dual vaccine platform carrying heterologous immune relevant antigens for ruminant diseases in RVF risk areas.  相似文献   

12.
Bluetongue virus is the "type" species of the genus Orbivirus, family Reoviridae. Twenty four distinct bluetongue virus (BTV) serotypes have been recognized for decades, any of which is thought to be capable of causing "bluetongue" (BT), an insect-borne disease of ruminants. However, two further BTV serotypes, BTV-25 (Toggenburg orbivirus, from Switzerland) and BTV-26 (from Kuwait) have recently been identified in goats and sheep, respectively. The BTV genome is composed of ten segments of linear dsRNA, encoding 7 virus-structural proteins (VP1 to VP7) and four distinct non-structural (NS) proteins (NS1 to NS4). We report the entire BTV-26 genome sequence (isolate KUW2010/02) and comparisons to other orbiviruses. Highest identity levels were consistently detected with other BTV strains, identifying KUW2010/02 as BTV. The outer-core protein and major BTV serogroup-specific antigen "VP7" showed 98% aa sequence identity with BTV-25, indicating a common ancestry. However, higher level of variation in the nucleotide sequence of Seg-7 (81.2% identity) suggests strong conservation pressures on the protein of these two strains, and that they diverged a long time ago. Comparisons of Seg-2, encoding major outer-capsid component and cell-attachment protein "VP2" identified KUW2010/02 as 26th BTV, within a 12th Seg-2 nucleotype [nucleotype L]. Comparisons of Seg-6, encoding the smaller outer capsid protein VP5, also showed levels of nt/aa variation consistent with identification of KUW2010/02 as BTV-26 (within a 9th Seg-6 nucleotype - nucleotype I). Sequence data for Seg-2 of KUW2010/02 were used to design four sets of oligonucleotide primers for use in BTV-26, type-specific RT-PCR assays. Analyses of other more conserved genome segments placed KUW2010/02 and BTV-25/SWI2008/01 closer to each other than to other "eastern" or "western" BTV strains, but as representatives of two novel and distinct geographic groups (topotypes). Our analyses indicate that all of the BTV genome segments have evolved under strong purifying selection.  相似文献   

13.
Field-collected South African Culicoides (Diptera, Ceratopogonidae) were fed on sheep blood containing 16 live-attenuated vaccine strains of bluetongue virus (BTV) comprising serotypes -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -16 and -19. After 10 days extrinsic incubation at 23.5 degrees C, 11 and seven of the 16 BTV serotypes used were recovered from Culicoides (Avaritia) imicola Kieffer and Culicoides (A.) bolitinos Meiswinkel, respectively. One serotype was also recovered from Culicoides (Remmia) enderleini Cornet & Brunhes. Bluetongue virus recovery rates and the mean titres for most serotypes were significantly higher in C. bolitinos than in C. imicola. Significant differences were found in virus recovery rates from Culicoides species fed on blood containing similar or identical virus titres of different BTV serotypes. In addition, we demonstrated that a single passage of live-attenuated BTV-1, -2, -4, -9 and -16 through the insect vector, followed by passaging in insect cells, did not alter its infectivity for C. imicola and that the oral susceptibility of C. imicola to the attenuated vaccine strains of BTV-1, -4, -9 and -16 remained similar for at least three consecutive seasons.  相似文献   

14.
Many alphaviruses cause more severe disease in young animals than in older animals. The age-dependent resistance to severe disease is determined primarily by maturation of the host, but strains of virus can be selected that overcome the increased resistance of mature animals. Sindbis virus (SV) strain AR339 causes fatal encephalitis in newborn mice and nonfatal encephalitis in weanling mice, whereas NSV, a neuroadapted strain of SV, causes fatal encephalitis in weanling as well as newborn mice. We have previously shown that the E2 glycoprotein of NSV contained His-55, whereas AR339 E2 had Gln-55 (S. Lustig, A. C. Jackson, C. S. Hahn, D. E. Griffin, E. G. Strauss, and J. H. Strauss, J. Virol. 62:2329-2336, 1988) and that SV with E2 containing Gly-172 was more virulent for newborn mice than SV with E2 containing Arg-172 (P. C. Tucker and D. E. Griffin, J. Virol. 65:1551-1557, 1991). Here we tested the virulence for both newborn and older mice of SV containing a number of different amino acids at E2 position 55 (His, Gln, Lys, Arg, Glu, Gly) in combination with both Gly-172 and Arg-172. All the viruses were virulent for newborn mice, but the residues at both 55 and 172 influenced the virulence of the virus, and there were differences in virulence observed among the various viruses. However, only viruses with His-55 were fully virulent for 14-day-old mice, and this virulence was independent of the residue at position 172. Virus with Lys-55 was virulent for 7-day-old mice, although slightly attenuated relative to His-55. Viruses with His-55 grew more rapidly and to higher titer in the brains of 7- and 14-day-old mice, in N18 neuroblastoma cells, and in BHK cells. Our data suggest that His-55 is important for neurovirulence in older mice and acts by increasing the efficiency of virus replication.  相似文献   

15.
Eastern equine encephalitis virus (EEEV) causes sporadic epidemics of human and equine disease in North America, but South American strains have seldom been associated with human neurologic disease or mortality, despite serological evidence of infection. In mice, most North American and South American strains of EEEV produce neurologic disease that resembles that associated with human and equine infections. We identified a South American strain that is unable to replicate efficiently in the brain or cause fatal disease in mice yet produces 10-fold higher viremia than virulent EEEV strains. The avirulent South American strain was also sensitive to human interferon (IFN)-alpha, -beta, and -gamma, like most South American strains, in contrast to North American strains that were highly resistant. To identify genes associated with IFN sensitivity and virulence, infectious cDNA clones of a virulent North American strain and the avirulent South American strain were constructed. Two reciprocal chimeric viruses containing swapped structural and nonstructural protein gene regions of the North American and South American strains were also constructed and found to replicate efficiently in vitro. Both chimeras produced fatal disease in mice, similar to that caused by the virulent North American strain. Both chimeric viruses also exhibited intermediate sensitivity to human IFN-alpha, -beta, and -gamma compared to that of the North American and South American strains. Virulence 50% lethal dose assays and serial sacrifice experiments further demonstrated that both structural and nonstructural proteins are important contributors to neurovirulence and viral tissue tropism. Together, the results of this study emphasize the complex and important influences of structural and nonstructural protein gene regions on EEEV virulence.  相似文献   

16.
Infectious pancreatic necrosis viruses (IPNVs) exhibit a wide range of virulence in salmonid species. In previous studies, we have shown that the amino acid residues at positions 217 and 221 in VP2 are implicated in virulence. To pinpoint the molecular determinants of virulence in IPNV, we generated recombinant IPNV strains using the cRNA-based reverse-genetics system. In two virulent strains, residues at positions 217 and 247 were replaced by the corresponding amino acids of a low-virulence strain. The growth characteristics of the recovered chimeric strains in cell culture were similar to the low-virulence strains, and these viruses induced significantly lower mortality in Atlantic salmon fry than the parent strains did in in vivo challenge studies. Furthermore, the virulent strain was serially passaged in CHSE-214 cells 10 times and was completely characterized by nucleotide sequencing. Deduced amino acid sequence analyses revealed a single amino acid substitution of Ala to Thr at position 221 in VP2 of this virus, which became highly attenuated and induced 15% cumulative mortality in Atlantic salmon fry, compared to 68% mortality induced by the virulent parent strain. The attenuated strain grows to higher titers in CHSE cells and can be distinguished antigenically from the wild-type virus by use of a monoclonal antibody. However, the virulent strain passaged 10 times in RTG-2 cells was stable, and it retained its antigenicity and virulence. Our results indicate that residues Thr at position 217 (Thr217) and Ala221 of VP2 are the major determinants of virulence in IPNV of the Sp serotype. Highly virulent isolates possess residues Thr217 and Ala221; moderate- to low-virulence strains have Pro217 and Ala221; and strains containing Thr221 are almost avirulent, irrespective of the residue at position 217.  相似文献   

17.
The LID strain of polyomavirus differs from other laboratory strains in causing a rapidly lethal infection of newborn C3H/Bi mice. This virulent behavior of LID was attenuated by dilution, yet at sublethal doses LID was able to induce tumors at a high frequency, like its parent virus PTA. By constructing and assaying LID-PTA recombinant viruses and by DNA sequencing, the determinant of virulence in LID was mapped to the major viral capsid protein, VP1. The VP1s of LID and PTA differed at two positions: at 185, LID has phenylalanine and PTA has tyrosine, and at 296, LID has alanine and PTA has valine. Results obtained with viruses constructed by site-directed mutagenesis showed that alanine at position 296 is sufficient to confer a fully virulent phenotype regardless of which amino acid is at position 185. However, with valine at position 296, an effect of phenylalanine at position 185 is apparent, as this virus possesses an intermediate level of virulence. A crystal structure of polyomavirus complexed with 3'-sialyl lactose previously indicated van der Waals contacts between the side chain of valine 296 and the sialic acid ring (T. Stehle, Y. Yan, T. L. Benjamin, and S. C. Harrison, Nature [London] 369:160-163, 1994). When this interaction was modeled with alanine, these contacts were greatly reduced. Direct confirmation that the substitutions in VP1 affected receptor binding was obtained by studying virus hemagglutination behavior. The ensemble of results are discussed in terms of the idea that a lower affinity of the virus for its receptor can result in more rapid spread and increased pathogenicity.  相似文献   

18.
19.
The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism.  相似文献   

20.
The emergence of West Nile virus (WNV) in the Western Hemisphere is marked by the spread of pathogenic lineage I strains, which differ from typically avirulent lineage II strains. To begin to understand the virus-host interactions that may influence the phenotypic properties of divergent lineage I and II viruses, we compared the genetic, pathogenic, and alpha/beta interferon (IFN-alpha/beta)-regulatory properties of a lineage II isolate from Madagascar (MAD78) with those of a new lineage I isolate from Texas (TX02). Full genome sequence analysis revealed that MAD78 clustered, albeit distantly, with other lineage II strains, while TX02 clustered with emergent North American isolates, more specifically with other Texas strains. Compared to TX02, MAD78 replicated at low levels in cultured human cells, was highly sensitive to the antiviral actions of IFN in vitro, and demonstrated a completely avirulent phenotype in wild-type mice. In contrast to TX02 and other pathogenic forms of WNV, MAD78 was defective in its ability to disrupt IFN-induced JAK-STAT signaling, including the activation of Tyk2 and downstream phosphorylation and nuclear translocation of STAT1 and STAT2. However, replication of MAD78 was rescued in cells with a nonfunctional IFN-alpha/beta receptor (IFNAR). Consistent with this finding, the virulence of MAD78 was unmasked upon infection of mice lacking IFNAR. Thus, control of the innate host response and IFN actions is a key feature of WNV pathogenesis and replication fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号