首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tobacco cells adapted to grow in high concentrations of NaCl exhibit a drastically altered growth physiology that results in cells whose fully expanded volume is only one-fifth to one-eighth those of unadapted cells. Comparison between NaCl-adapted and unadapted tobacco cells provides an opportunity to evaluate current concepts of the structural and mechanical determinants of cell wall expansion. Both biochemical studies of pectic polymers and the ultrastructural localization of pectic epitopes at three specific phases of cell culture, maximal cell division, maximal elongation, and stationary phase are reported here. One-half of the galactosyluronic acid units in wall polymers of NaCl-adapted cells are esterified throughout the culture period, while wall polymers of unadapted cells show a rise in esterified polygalacturonic acid from 50 to 80% during elongation and then a decrease to 70% at stationary phase. Methyl esters account for only a proportion of the total esterified polygalacturonic acid at any stage in both unadapted and NaCl-adapted cell walls. Using monoclonal antibodies, we show differences in the localization of relatively methyl-esterified and unesterified pectic epitopes at different stages of growth and corroborate the chemical determinations. Fourier transform infrared (FTIR) microspectroscopy of representative walls of both NaCl-adapted and unadapted cells confirms, at the single cell wall level, that results obtained from chemical analysis of bulk samples are applicable to the entire cell population. FTIR microspectroscopy also reveals an increase in wall protein in the walls of adapted cells. Images obtained by the fast-freeze, deep-etch, rotary-shadowed replica technique show clearly different cell wall architectures in NaCl-adapted compared with unadapted cells; walls of elongating unadapted cells contain long, thin fibres that show a net orientation with respect to the long axis of the cell, whereas walls of adapted cells have thicker, flatter bundles of fibres with no clear net orientation. Polarized FTIR microspectroscopy indicates that, in unadapted tobacco cells during elongation, pectin molecules may be oriented within the wall in a similar manner to cellulose. Possible ways in which pectin structure and conformation may affect the behaviour of the cellulose-xyloglucan network are discussed.  相似文献   

2.
Carbon use efficiencies (gram cell organic dry weight accumulated per gram sugar assimilated from the medium) of unadapted and NaCl-adapted (428 millimolar) cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) were determined to evaluate metabolic costs associated with growth and survival in a saline environment. No net increase in carbon costs was associated with salt adaptation. At low substrate levels, carbon use efficiencies of unadapted and NaCl-adapted cells were not appreciably different (0.495 and 0.422, respectively) and at higher substrate levels carbon use efficiency of NaCl-adapted cells was clearly higher than that of unadapted cells. These results indicate that a homeostasis of metabolic efficiency is established after cells have adapted to NaCl. Altered carbon availability does not cause the reduced cell volume that results from adaptation to NaCl. This does not preclude, however, the possibility that altered intracellular partitioning of carbon affects cell expansion.  相似文献   

3.
Osmotin is a major protein which accumulates in tobacco cells (Nicotiana tabacum L. var Wisconsin 38) adapted to low water potentials. Quantitation of osmotin levels by immunoblots indicated that cells adapted to 428 millimolar NaCl contained 4 to 30 times the level of osmotin found in unadapted cells, depending on the stage of growth. Unadapted cells accumulated low levels of osmotin with apparent isoelectric points, (pl) of 7.8 and >8.2. Upon transfer of NaCl-adapted cells to medium without NaCl and subsequent growth for many cell generations, the amount of osmotin declined gradually to a level intermediate between that found in adapted and unadapted cells. NaCl-adapted cells grown in the absence of NaCl accumulated both pl forms; however, the form accumulated by cells adapted to NaCl (pl > 8.2) was most abundant. Adapted cells grown in the absence of NaCl exhibited absolute growth rates and NaCl tolerance levels which were intermediate to those of NaCl-adapted and unadapted cells. The association between osmotin accumulation and stable NaCl tolerance indicates that cells with a stable genetic change affecting the accumulation of osmotin are selected during prolonged exposure to high levels of NaCl. This stable alteration in gene expression probably affects salt tolerance.  相似文献   

4.
The chemical composition of extracellular polymers released by cells of tobacco (Nicotiana tabacum L. cv W38) adapted to a medium containing 30% polyethylene glycol 8000 (−28 bar) or 428 millimolar NaCl (−23 bar) was compared to the composition of those released by unadapted cells. Unadapted cells released uronic acid-rich material of high molecular weight, arabinogalactan-proteins, low molecular weight fragments of hemicellulosic polysaccharides, and a small amount of protein. Cells adapted to grow in medium containing NaCl released arabinogalactan and large amounts of protein but not the uronic acid-rich material, and cells adapted to grow in polyethylene glycol released only small amounts of an arabinogalactan of much lower molecular weight and some protein. Secretion of all material was nearly blocked by polyethylene glycol, but when cells were transferred to a medium containing iso-osmolar mannitol, they again released extracellular polymers at rates similar to those of unadapted cells. Like cells adapted to NaCl, however, these cells released arabinogalactan and large amounts of protein but only small amounts of the uronic acid-rich material. Media of NaCl-adapted cells were enriched in 40, 29, and 11 kilodalton polypeptides. CaCl2 extracted the 40 and 11 kilodalton polypeptides from walls of unadapted cells, but the 29 kilodalton polypeptide was found only in the medium of the NaCl-adapted cells. Accumulation of low molecular weight polysaccharide fragments in the medium was also substantially reduced in both NaCl- and polyethylene glycol-adapted cells, and specifically, the material was composed of lower proportions of xyloglucan fragments. Our results indicate that adaptation to saline or water stress results in inhibition of both the hydrolysis of hemicellulosic xyloglucan and release of uronic acid-rich material into the culture medium.  相似文献   

5.
A line of cultured tobacco cells (Nicotiana tabacum cv. SamsunNN) was established that was able to grow photoautotrophicallyin a medium that contained 0.2 M NaCl or in a medium withoutNaCl. Thylakoid membranes of the NaCl-adapted cells had higheroxygen-evolving activities, on the basis of chlorophyll, thanthose of unadapted cells. Furthermore, the oxygen-evolving activitiesof thylakoid membranes from NaCl-adapted cells were more tolerantto high concentrations of NaCl than those from unadapted cells. Glycinebetaine at 1 M protected the oxygen-evolving activityof thylakoid membranes from unadapted cells but not that fromadapted cells. Examination of the dissociation of 23-kDa and33-kDa polypeptides from the water-splitting complex of photosystemII at high concentrations of NaCl indicated that the affinitywith which the 23-kDa polypeptide was bound to thylakoid membranesof salt-adapted cells had been altered. (Received March 22, 1993; Accepted November 15, 1993)  相似文献   

6.
Cells of tobacco (Nicotiana tabacum L.) adapted to grow in severe osmotic stress of 428 millimolar NaCl (−23 bar) or 30% polyethylene glycol 8000 (−28 bar) exhibit a drastically altered growth physiology that results in slower cell expansion and fully expanded cells with volumes only one-fifth to one-eighth those of unadapted cells. This reduced cell volume occurs despite maintenance of turgor pressures sometimes severalfold higher than those of unadapted cells. This report and others (NM Iraki et al [1989] Plant Physiol 90: 000-000 and 000-000) document physical and biochemical alterations of the cell walls which might explain how adapted cells decrease the ability of the wall to expand despite diversion of carbon used for osmotic adjustment away from synthesis of cell wall polysaccharides. Tensile strength measured by a gas decompression technique showed empirically that walls of NaCl-adapted cells are much weaker than those of unadapted cells. Correlated with this weakening was a substantial decrease in the proportion of crystalline cellulose in the primary cell wall. Even though the amount of insoluble protein associated with the wall was increased relative to other wall components, the amount of hydroxyproline in the insoluble protein of the wall was only about 10% that of unadapted cells. These results indicate that a cellulosic-extensin framework is a primary determinant of absolute wall tensile strength, but complete formation of this framework apparently is sacrificed to divert carbon to substances needed for osmotic adjustment. We propose that the absolute mass of this framework is not a principal determinant of the ability of the cell wall to extend.  相似文献   

7.
8.
Electrophoresis was used to study effects of salinity on the characteristics of Ca2+ binding to the outer surface of plasma membrane (PM) of protoplasts isolated from two types of tobacco (Nicotiana tabacum L., cv. Bright Yellow) cultured cells that were adapted (tolerant) and unadapted (sensitive) to 50 mM NaCl stress. Electrophoretic analysis of salt-sensitive NaCl-unadapted cells shows that Na+ induced an appreciably higher degree of reduction in the amount of Ca2+ bound to PM compared with K+ with increasing concentration from 0.1 to 30 mM. In salt-tolerant NaCl-adapted cells, however, both Na+ and K+ ions induced almost the same degree of reduction in the amount of Ca2+ bound to PM in the physiological concentration range of Ca2+ in the medium between 2 and 4 mM. These results suggest that, under the physiological conditions, PM of salt-sensitive NaCl-unadapted cells has an appreciable amount of PM-bound Ca2+ that is desorbed much easier by Na+ than K+, whereas PM of salt-tolerant NaCl-adapted cells has the PM-bound Ca2+ that can be equally desorbed by Na+ and K+.  相似文献   

9.
10.
Tobacco (Nicotiana tabacum L.) cells growing heterotrophically in the light on supplied sucrose (S0) have previously been adapted to grow in 428 mM NaCl (S25). Among the changes occurring in salinity-adapted cell cultures are (a) elevated levels of chlorophyll compared to unadapted cells; (b) decreased levels of starch; (c) alterations in chloroplast ultrastructure, including loss of starch grains, increased thylakoid membrane structure, and the presence of plastoglobules; and (d) increased rates of O2 evolution, CO2 fixation, and photophosphorylation relative to S0 cells. These latter changes apparently derive from the fact that thylakoid membranes in S25 cells contain higher levels of photosystem I- and II-associated proteins as well as thylakoid ATPase components. S25 chloroplasts contain immunologically detectable levels of ribulose-1,5-bisphosphate carboxylase/oxygenase, whereas S0 completely lack the enzyme. These changes taken together suggest that even in the presence of sucrose, S25 cells have acquired a significant degree of salt-tolerant photosynthetic competence. This salt-tolerant photoysynthetic capability manifests itself in plants backcrossed with normal plants for three generations. These plants contain chloroplasts that demonstrate in vitro more salt-tolerant CO2 fixation, O2 evolution, and photophosphorylation than do backcross progeny of plants regenerated from S0 cultures.  相似文献   

11.
Enhanced Net K Uptake Capacity of NaCl-Adapted Cells   总被引:1,自引:0,他引:1  
Maintenance of intracellular K+ concentrations that are not growth-limiting, in an environment of high Na+, is characteristic of NaCl-adapted cells of the glycophyte, tobacco (Nicotiana tabacum/gossii). These cells exhibited a substantially greater uptake of 86Rb+ (i.e. an indicator of K+) relative to unadapted cells. Potassium uptake into NaCl-adapted cells was 1.5-fold greater than unadapted cells at 0 NaCl and 3.5-fold greater when cells were exposed to 160 millimolar NaCl. The difference in net K+ uptake between unadapted and NaCl-adapted cells was due primarily to higher rates of entry rather than to reduced K+ leakage. Presumably, enhanced K+ uptake into adapted cells is a result of electrophoretic flux, and a component of uptake may be linked to vanadate-sensitive H+ extrusion.  相似文献   

12.
The relative mass of the cell walls of tobacco (Nicotiana tabacum L.) cells adapted to grow in medium containing 30% polyethylene glycol 8000 or 428 millimolar NaCl was reduced to about 50% of that of the walls of unadapted cells. Cellulose synthesis was inhibited substantially in adapted cells. The proportions of total pectin in walls of unadapted and adapted cells were about the same, but substantial amount of uronic acid-rich material from walls of cells adapted to either NaCl or polyethylene glycol was more easily extracted with cold sodium ethylenediamine tetraacetic acid solutions (NM Iraki et al. [1989] Plant Physiol. 91: 39-47). We examined the linkage composition of the pectic and hemicellulosic polysaccharides to ascertain chemical factors that may explain this difference in physical behavior. Adaptation to stress resulted in the formation of a loosely bound shell of polygalacturonic acid and rhamnogalacturonan. Pectins extracted from walls of adapted cells by either cold sodium ethylenediamine tetraacetic acid or hot ammonium oxalate were particularly enriched in rhamnose. Compared to pectins of unadapted cells, rhamnosyl units of the rhamnogalacturonans of adapted cells were more highly substituted with polymers containing arabinose and galactose, but the side groups were of greatly reduced molecular size. Possible functional roles of these modifications in cell wall metabolism related to adaptation to osmotic stress are discussed.  相似文献   

13.
Tobacco (Nicotiana tabacum L. var Wisconsin 38) cells that are adapted to 428 millimolar NaCl accumulate proline mainly due to increased synthesis from glutamate. These cells were used to evaluate the possible role of Δ1-pyrroline-5-carboxylate reductase in the regulation of proline biosynthesis. No increase in the specific activity of Δ1-pyrroline-5-carboxylate reductase in crude extracts throughout the growth cycle was observed in NaCl-adapted cells compared to unadapted cells. The enzyme from both cell types was purified extensively. On the basis of affinity for the substrates NADPH, NADH, and Δ1-pyrroline-5-carboxylate, pH profiles, chromatographic behavior during purification, and electrophoretic mobility of the native enzyme, the activities of the enzyme from the two sources were similar. These data suggest that the NaCl-dependent regulation of proline synthesis in tobacco cells does not involve induction of pyrroline-5-carboxylate isozymes or changes in its kinetic properties.  相似文献   

14.
Higher plant proteins immunologically related to the animal substrate adhesion molecule vitronectin have recently been observed and implicated in a variety of biological processes, such as plasma membrane-cell wall adhesion, pollen tube extension, and bacterium-plant interaction. We provide evidence that, similar to vitronectin, one of these proteins, PVN1 (plant vitronectin-like 1), isolated from 428 mM NaCl-adapted tobacco cells binds to glass surfaces an heparin. PVN1 was isolated by glass bead affinity chromatography. Isolated PVN1 has adhesive activity based on results from a baby hamster kidney cell-spreading assay. This plant adhesion protein was detected in all tissues examined but was most abundant in roots and salt-adapted cultured cells. Immunogold labeling indicated that PVN1 is localized in the cell wall of cortical and transmitting tissue cells of pollinated mature styles. A partial amino acid sequence of PVN1 revealed no similarity with vitronectin but, instead, was nearly identical to the translational elongation factor-1 alpha (EF-1 alpha). A clone isolated by screening a tobacco cDNA expression library with anti-PVN1 encoded a protein with greater than 93% identity to sequences of EF-1 alpha from plants of numerous species. Immunological cross-reactivity between tobacco PVN1 and EF-1 alpha as well as the reaction between the EF-1 alpha antibody and the 65- and 75-kD vitronectin-like proteins of a fucoidal alga supported the conclusion that the plant extracellular adhesion protein PVN1 is related to EF-1 alpha.  相似文献   

15.
K. Ueda  Y. Suzuki 《Protoplasma》1985,125(3):205-213
Summary The behavior of gamete cells ofClosterium ehrenbergii in hypertonic solutions was observed and the significance of changes in osmotic pressure of the protoplasts is discussed in relation to zygote formation. The osmotic pressure of fusing gamete protoplasts was calculated to be 0.063 Osm at the original cell volume. The osmotic pressure of immature gamete protoplasts was 0.24 Osm at incipient plasmolysis. This lowering of cell osmotic pressure may serve to protect the rupture of the plasma membrane during migration of protoplasts in the conjugation tube after dissolution of cell walls. During maturation of gamete cells, chloroplasts and dictyosomes differed greatly in their ultrastructure from those of vegetative cells. These structural changes may be induced by changes of the physiological condition including osmotic pressure in the cells.  相似文献   

16.
Cell suspension cultures of Acer pseudoplatanus L. (Bligny cell line) adapted to growth in the presence of NaCl, are a useful tool for investigating mechanisms for cellular salt tolerance. We compared the activities of vanadate-sensitive (plasma membrane) and nitrate-sensitive (tonoplast) ATPases, and tonoplast K+-stimulated PPase in microsomal fractions (8000–108 000 g) from unadapted and NaCl-adapted (80 m M ) cells of A. pseudoplatanus . Since NaCl reduces the growth rate of the culture, the two cell lines were harvested and compared at both the same cellular density and at the same growth phase (middle exponential phase or beginning of the stationary phase). The ATPase activity of the plasma membrane (expressed both on the basis of protoplast number and in relation to protein content) was not affected by the adaptation to salinity. The two enzyme activities of the tonoplast (mainly as expressed on a protein basis) were higher in adapted than in unadapted cells. However, a preferential increase in PPase activity took place, although the pH dependence, ionic requirements, and apparent Km of the PPase activity were the same in the two cell lines. The three enzyme activities showed different sensitivities to detergents such as Triton X-100, Brij 58 and lysophosphatidylcholine (LPC). The stimulation of K+-stimulated PPase activity by detergents was higher in adapted than in unadapted cells. This suggests that the salt-induced enhancement of the PPase activity might partially depend on a modification of the lipid component of the tonoplast.  相似文献   

17.
For the first time, we studied the phytopathogenicity toward Oryza sativa L. of unadapted and adapted to unfavorable environment (starvation) cells of Acholeplasma laidlawii PG8--ubiquitous mycoplasma found in the soil, waste waters, tissues of the highest eukaryotes and being the basic contaminant of cell cultures and a causative agent of phytomycoplasmoses. The features of morphology, ultrastructural organization and proteomes of unadapted and adapted cells of the mycoplasma and infected plants were presented. Using 2D-DIGE and MS, 43 proteins of O. sativa L. that were differentially expressed in the leaves of plants cultivated in media with A. laidlawii PG8 were identified. The qualitative and quantitative responses of the plant proteome toward adapted and unadapted mycoplasma cells differed. That may be explained by differences in the virulence of the corresponding bacterial cells. Using 2D-DIGE and MS, 82 proteins that were differentially expressed in adapted and unadapted mycoplasma cells were detected. In adapted cells of the mycoplasma, in comparison with unadapted ones, a significant increase in the expression of PNPase--a global regulator of virulence in phytopathogenic bacteria occurred; there was also decreased expression of 40 proteins including 14 involved in bacterial virulence and the expression of 31 proteins including 5 involved in virulence was not detected. We propose that differences in the phytopathogenicity of adapted and unadapted A. laidlawii PG8 cells may be related to features of their proteomes and membrane vesicles.  相似文献   

18.
Previous studies with a rat neural cell line have shown that the D1.1 ganglioside, an O-acetylated derivative of GD3, is involved in cellular adhesion to fibronectin. In vivo, D1.1 is present on germinal cells of the developing rat central nervous system, but not on postmitotic cells that migrate away from the germinal zones. These observations suggest that D1.1 could participate in adhesive interactions with germinal zones and that the loss of D1.1 could be involved in the decision to being migration. In support of this hypothesis, immunofluorescence histochemistry shows that both fibronectin and fibronectin receptor are colocalized with D1.1 in the ventricular zones of the embryonic rat brain and in the external granule cell layer of the postnatal cerebellum. Dishes coated with monoclonal antibody against D1.1 were used to isolate D1.1-positive germinal cells from Embryonic Day 14 cerebrum and from Postnatal Day 6 cerebellum. These cells are able to adhere to fibronectin-coated dishes by a mechanism that is inhibitable by a synthetic hexapeptide containing the arg-gly-asp cell recognition sequence of fibronectin. Adhesion is also partially inhibited by antibody against fibronectin receptor and is slowed by anti-D1.1 antibody, implicating both the receptor and the ganglioside in the adhesion process. During 3 days in culture these D1.1-positive, fibronectin receptor-positive cells exhibit a neuronal phenotype, as judged by morphology and staining with tetanus toxin. This further confirms the neuroepithelial origin of the cells. The cells do not synthesize detectable amounts of fibronectin, thus leaving unidentified the source of the fibronectin seen in the germinal zones in tissue sections. Immunoprecipitation experiments show that the fibronectin receptors present on these cells are heterodimers. Under nonreducing conditions, the immunoprecipitates contain an alpha-subunit of 150-160 kDa and a beta-subunit of 115-125 kDa.  相似文献   

19.
Summary Growth reduction or cessation is an initial response of Atriplex nummularia L. cells to NaCl. However, A. nummularia L. cells that are adapted to 342 and 428 mM NaCl are capable of sustained growth in the presence of salt. Cells that are adapted to NaCl exhibit a reduced rate of division compared to unadapted cells. Unlike salt adapted cells of the glycophyte Nicotiana tabacum L., A. nummularia L. cells do not exhibit reduced rate of cell expansion after adaptation. However, the cell expansion rate of unadapted A. nummularia L. cells is considerably slower than that of unadapted glycophyte cells and this normally low rate of cell expansion may contribute to the enhanced capacity of the halophyte to tolerate salt. Turgor of NaCl adapted cells was equivalent to unadapted cells indicating that the cells of the halophyte do not respond to salt by osmotic over adjustment as reported for the glycophyte tobacco (Binzel et al. 1985, Plant Physiol. 79:118–125).  相似文献   

20.
Tobacco cell cultures (var. Samsum) were grown on increasing levels of NaCl to select variants for increased salt tolerance. The osmotic adjustment of NaCl-adapted and nonadapted cell lines was studied. Both cell lines were grown on modified Linsmaier and Skoog medium with or without NaCl. Few differences were found in the response of adapted and nonadapted lines to NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号