首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
目的:研究骨髓间充质干细胞源性神经元样细胞移植治疗成鼠脊髓损伤的可行性。方法:选取成年SD大鼠32只,两只用以提取骨髓间充质干细胞,其余被分为3组,其中细胞移植组10只,PBS缓冲液组10只,空白对照组10只。骨髓间充质干细胞分离传代培养并诱导成神经元样细胞后用Hoechst33342标记,损伤1周后采取静脉注射移植的方法移植于大鼠脊髓损伤区,移植六周后用免疫荧光方法检测细胞的存活及与宿主脊髓的整合情况。脊髓损伤后的1~6周对各组动物进行BBB评分,用SPSS12.0进行数据分析。结果:细胞移植组动物的BBB评分提高显著,于其他两组差异有统计学意义。细胞移植组免疫荧光显示,移植细胞在体内大量存活并桥接于脊髓损伤区的两端,存活的多数细胞神经元特异性标记物NSE、NF-200、星形胶质细胞特异性标记物GFAP表达呈阳性。结论:移植定向诱导的神经元样细胞有助于大鼠脊髓损伤后的功能恢复。  相似文献   

2.
目的探讨体外诱导人脐血间充质干细胞(MSCs)向神经细胞分化的条件,为治疗中枢神经系统损伤提供实用的干细胞来源。方法体外分离、纯化、扩增脐血MSCs,流式细胞仪检测细胞表面标志。采用脑源性神经营养因子BDNF 10ng/ml 维甲酸RA0.5μM 碱性成纤维生长因子bFGF 20ng/ml协同诱导脐血MSCs定向分化。免疫荧光染色检测诱导后细胞的星形胶质细胞特异标志GFAP及神经元特异标志MAP2的表达情况。建立大鼠脊髓横断损伤模型,将BrdU标记的诱导后的细胞移植入损伤的脊髓中,采用BBB运动功能评分标准在术后24h及1、2、3、4、5周各时间点对大鼠进行运动功能评分。用组织学和免疫组化方法检测移植到大鼠脊髓中的BrdU阳性细胞的存活、迁移、分化情况。结果脐血MSCs体外培养三代后,细胞表面CD11b、CD34、CD45和CD44表达阴性。诱导分化7d后,大部分细胞的形态类似神经元,免疫荧光染色检测MAP2阳性细胞占大多数,明显多于GFAP阳性细胞。5周后,细胞移植组大鼠的后肢运动功能恢复情况较对照组好。免疫组织化学结果显示植入的细胞可长时间在宿主脊髓中存活,并向损伤处两端迁移。结论人脐血MSCs于体外在特定的条件下可以诱导分化为神经元样细胞。移植脐血MSCs诱导后的神经细胞可在损伤的脊髓中存活、迁移,并能促进脊髓损伤后行为和功能恢复。  相似文献   

3.
目的:研究伸长细胞是否可以促进成年大鼠脊髓损伤后传导束再生。方法:采用Wistar大鼠脊髓T8全横断模型,移植传代培养的伸长细胞,以未移植脊髓损伤组为对照,观察两组损伤后第12周末BBB评分,损伤平面以下红核-脊髓运动诱发电位,和横断部位组织学染色结果。结果:第12周末伸长细胞移植组红核脊髓运动诱发电位总峰值显著高于对照组(MD=133.2μV,P0.01),峰潜伏期较对照组缩短(MD=0.061ms,P=0.040);第12周末伸长细胞移植组BBB评分显著高于对照组(MD=5.0000,P0.01);第12周末脊髓横断部位HE染色显示伸长细胞移植组脊髓损伤处结构较完整。结论:伸长细胞移植可以促进大鼠脊髓损伤后神经传导的恢复。  相似文献   

4.
目的研究间充质干细胞—透明质酸—多聚赖氨酸复合物治疗脊髓损伤的可行性,评价其治疗效果并探讨其可能机制。方法从人骨髓中分离、培养人骨髓间充质干细胞(human bone marrow mesenchymal stem cell,hBMSC);制作大鼠脊髓半横断模型,按照实验分组分别将hBMSC、透明质酸-多聚赖氨酸(hyaluronic acid-poly-L-lysine,HA-PLL)、hBMSC-HA-PLL复合物注入损伤区域,单纯损伤组作为对照。术后按照不同时间点评价损伤和移植后的大鼠运动功能。8周后杀死大鼠,观察不同移植组体内轴突和血管生长的情况,对不同细胞、材料及复合物移植对大鼠脊髓损伤修复效果进行评估。结果 hBMSC移植组和hBMSC-HA-PLL移植组的大鼠运动功能的改善显著好于单纯损伤及HA-PLL移植组。电镜结果证实复合物移植组可显著促进轴突和血管生长,新生的轴突和血管结构较为完整。结论 hBMSC具有促进神经功能恢复的作用,将其与HA-PLL相结合,可以促进大鼠脊髓损伤修复,其机制可能包括材料框架作用和hBMSC在体内对大鼠神经细胞的营养作用以及促进微血管的生成。  相似文献   

5.
目的:观察大鼠脊髓匀浆上清诱导骨髓间充质干细胞(mesenchymal stem cells,MSCs)形成的神经元样细胞形态特征.方法:通过贴壁法培养分离大鼠骨髓MSCs,体外扩增纯化后加入正常大鼠脊髓匀浆上清诱导72h,倒置显微镜下观察诱导前后细胞的形态结构.激光共聚焦显微镜观测钙离子细胞形态和荧光强度变化,免疫细胞化学方法鉴定诱导后细胞的表型特征.结果:倒置显微镜下可见MSCs呈纺锤形和多角形,核居中,有1-2个核仁,诱导后细胞呈神经元样,细胞伸出较长的轴突样和树突样突起.免疫细胞化学法显示NSE(神经元特异性烯醇化酶)、NF(神经丝蛋白)阳性,GFAP(神经胶质细胞酸性蛋白)阴性.共聚焦显微镜扫描脊髓匀浆上清诱导前细胞形态呈细长的梭形,细胞核不明显,胞体染色强,突起染色弱,荧光像素值低;诱导后,细胞呈现神经元样形态,胞体大,有多个突起,胞体及各突起染色强,荧光像素值高.结论:大鼠脊髓匀浆上清液可在体外诱导骨髓间充质干细胞分化为神经元样细胞.  相似文献   

6.
目的探讨骨髓间充质干细胞(BMSC)对移植脊髓损伤(SCI)模型神经再生修复的作用及其机制。方法 (1)分离原代SD大鼠BMSC;(2)体外诱导BMSC向神经分化,应用免疫荧光技术检测神经诱导分化后的BMSC神经标志Nestin、Neu N的表达;(3)运用改良的Allen撞击装置制备SD大鼠SCI模型,成年雌性SD大鼠12只,随机分组:损伤对照(n=6),BMSC细胞移植组(n=6),并选择在SCI后半小时内在蛛网膜下腔原位移植1×106 BMSC细胞注射治疗,对照组原位注射10μl PBS作为对照。每周对SCI大鼠进行BBB运动功能行为学评价。(4)在治疗后1个月处死SCI大鼠取脊髓样本进行冰冻切片检测Nestin、NeuN神经标记物表达情况,从而评判BMSC对SCI的治疗效果。计量资料结果服从正态分布、方差齐性时,采用t检验;若不服正态分布,采用KruskalWallis H秩和检验。结果 (1)分离的BMSC纯度高、生物学特征稳定。(2)BMSC在体外神经诱导环境下可分化为神经细胞,对比正常对照组,神经诱导组Nestin与Neu N的表达具有统计学差异(t=11.49、6.76,P0.05)。(3)BMSC移植治疗SCI大鼠运动行为学功能显著改善,移植组比对照组治疗5周后的BBB评分具有统计学意义(t=5.59,P0.05);损伤导致组织形态学出现脊髓白质灰质结构性损毁,神经细胞大量丢失,而BMSC移植组Nestin、GFAP与Neu N表达细胞均较损伤组差异有统计学意义(t=4.74、6.59、15.46,均P0.05)。结论 BMSC移植可促进SCI后神经细胞的存活与再生分化,在一定程度上促进SCI脊髓组织功能的恢复。  相似文献   

7.
目的:以蚕丝蛋白支架(silk fibroin porous scaffolds SFPS)接种骨髓基质干细胞(bone marrow mesenchymal stem cells,BMMSCs)移植入SD大鼠脊髓半切损伤模型内,观察BMMSCs-SFPS复合生物支架对损伤脊髓的修复作用.方法:密度梯度离心法提取、贴壁法培养BMMSCs,取第三代对数生长期细胞,采用注射法制备BMMSCs-SFPS复合支架,复合14天进行生物相容性检测.40只SD大鼠复制脊髓半切损伤模型后随机分配为四组(n=10):A组BMMSCs-SFPS联合移植、B组单独移植BMMSCs、C组单独移植SFPS、D组为空白对照组,移植后分别于1、2、3、4周进行运动功能评分和术后4周进行HE染色观察、免疫荧光检测.结果:BMMSCs-SFPS复合支架体外培养14天后,扫描电镜可见BMMSCs附于SFPS支架内表面生长,细胞贴附良好并互有接触.移植入脊髓半切损伤模型后4周进行HE染色,结果显示A组脊髓空洞较其余三组小,免疫荧光检测结果示A组NF200、Nestin阳性表达高于B、C、D组,A组GFAP表达则明显低于其余三组.A组术后2~4周Basso-Beattie-Bresnahan (BBB)评分均高于同期B、C、D组,比较差异有统计学意义(P<0.01),D组评分明显低于同期其他3组,差异有统计学意义(P<0.05).结论:BMMSCs-SPFS具有良好生物相容性,复合支架保证BMMSCs的存活数量、能抑制胶质瘢痕.BMMSCS-SFPS复合生物支架能发挥协同作用,促进脊髓半切损伤的大鼠运动功能恢复.  相似文献   

8.
目的初步探讨骨髓间充质干细胞诱导为神经细胞,及其移植对大鼠脊髓半横断损伤神经功能恢复和运动的影响。方法贴壁培养法分离培养大鼠骨髓间充质干细胞(mesenchymal stem cells,MSCs),大鼠脊髓匀浆上清诱导第3代向神经细胞分化,经免疫组化鉴定分化后细胞的性质。制备大鼠半横断脊髓损伤模型,脊髓损伤局部注射BrdU标记诱导后的神经细胞。细胞移植5周后观察移植细胞在脊髓内存活分布情况。结果倒置显微镜下可见MSCs呈纺锤形和多角形,有1~2个核仁,经脊髓匀浆上清诱导后,发出数个细长突起,并交织成网,诱导后的细胞表达Nestin,可推测诱导后的细胞为MSCs源神经细胞。5周后移植的MSCs在宿主损伤脊髓内聚集并存活,表达MAP-2、NF、GFAP与对照组比较有统计学意义(P0.05)。大鼠运动功能较移植前有所改善。结论MSCs经脊髓匀浆上清诱导后移植治疗大鼠半横断脊髓损伤可使运动功能得到改善。  相似文献   

9.
目的采用电生理的研究方法,观察脑源性神经营养因子(BDNF)基因修饰的骨髓间充质干细胞对脊髓损伤的修复作用。方法随机将大鼠分成3组:空白组10只(只切除椎板,暴露脊髓硬脊膜);SCI组10只;SCI术后细胞移植组10只;从以上三组大鼠随机抽取8只于细胞移植后1 d、7 d、14 d、21 d、30 d、60 d进行SEP(皮层体感诱发电位)、MEP(运动诱发电位)等电生理检测技术,并观察大鼠的运动评分恢复程度。结果细胞移植4d后,大鼠饮食和活动开始增加;后肢变化过程如下:损伤后1~4 d损伤侧后肢迟缓性瘫痪,拖地行走,损伤对侧后肢由损伤初期的运动减弱逐渐恢复,损伤后5~9 d损伤侧后肢痉挛性瘫痪;10~14 d损伤侧下肢恢复少量活动,损伤对侧后肢恢复至较损伤前稍弱的状态;15~21 d损伤侧后肢活动能力较之前有明显改善,至30 d损伤侧后肢活动能力及肌张力恢复程度最明显,30 d以后无更明显改善。免疫组化发现损伤处诱导标记的骨髓间充质干细胞存活,行为学观察发现细胞移植改善了损伤大鼠运动能力。结论骨髓间充质干细胞经BDNF基因修饰后可以促进脊髓损伤大鼠的神经再生及部分传导功能恢复。  相似文献   

10.
脊髓缺血再灌注损伤(spinal cord ischemia-reperfusion injury,SCII)作为原发性脊髓损伤后的继发性损害是造成神经细胞损伤的一个重要因素,目前基因和细胞移植治疗SCII尚处于探索阶段.低氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)产生并处于缺氧应答的关键环节,在缺血后细胞凋亡及微循环的重建等方面起关键作用,用其转染骨髓间充质干细胞(mesenchymal stem cells,MSCs)进行细胞移植治疗SCII,可有望取得新的突破.  相似文献   

11.
BACKGROUND: Although gene therapy might become a promising approach to treat spinal cord injury, the safety issue is a serious consideration in human gene therapy. Plasmid DNA transfer is safer than viral vectors, but the transfection efficiency is quite low. To overcome the problem, we applied the ultrasound microbubbles-mediated transfection method to the spinal cord in adult rats, since ultrasound microbubbles have been reported to be efficient to increase transfection efficiency in various tissues. METHODS: After exposing T9-10 spinal cord with a laminectomy, we injected a mixture of naked plasmid DNA and microbubbles into cerebrospinal fluid by lumbar puncture. Then, the T9-10 spinal cord was exposed to ultrasound. CONCLUSIONS: An ultrasound intensity of 0.4-0.5 W/cm2 significantly increased luciferase expression up to approximately 15-60-fold at the insonated level as compared to naked plasmid DNA alone. Luciferase activity could be detected at least up to 7 days after transfection, while the expression level was almost returned to undetectable level at 14 days after transfection. The transfected cells were mainly meningeal cells in the surface of insonated spinal cord. There was no obvious evidence of worsening of neurological deficits as compared to rats transfected with naked plasmid DNA alone or untransfected rats. Similarly, successful gene transfer was also achieved in the insonated T9-10 spinal cord after spinal cord injury. Overall, the present study demonstrated the feasibility of ultrasound microbubbles-mediated plasmid DNA transfer into the target level of the spinal cord.  相似文献   

12.

Backgrounds and Objective

Spinal cord injury remains to be a challenge to clinicians and it is attractive to employ autologous adult stem cell transplantation in its treatment, however, how to harvest cells with therapeutic potential easily and how to get enough number of cells for transplantation are challenging issues. In the present study, we aimed to isolate skin-derived precursors (SKPs) and dermal multipotent stem cells (dMSCs) simultaneously from single human skin samples from patients with paraplegia.

Methods

Dissociated cells were initially generated from the dermal layer of skin samples from patients with paraplegia and cultured in SKPs proliferation medium. Four hours later, many cells adhered to the base of the flask. The suspended cells were then transferred to another flask for further culture as SKPs, while the adherent cells were cultured in dMSCs proliferation medium. Twenty-four hours later, the adherent cells were harvested and single-cell colonies were generated using serial dilution method. [3H]thymidine incorporation assay, microchemotaxis Transwell chambers assay, RT-PCR and fluorescent immunocytochemistry were employed to examine the characterizations of the isolated cells.

Results

SKPs and dMSCs were isolated simultaneously from a single skin sample. SKPs and dMSCs differed in several respects, including in terms of intermediate protein expression, proliferation capacities, and differentiation tendencies towards mesodermal and neural progenies. However, both SKPs and dMSCs showed high rates of differentiation into neurons and Schwann cells under appropriate inducing conditions. dMSCs isolated by this method showed no overt differences from dMSCs isolated by routine methods.

Conclusions

Two kinds of stem cells, namely SKPs and dMSCs, can be isolated simultaneously from individual human skin sample from paraplegia patients. Both of them show ability to differentiate into neural cells under proper inducing conditions, indicating their potential for the treatment of spinal cord injury patients by autologous cell transplantation.  相似文献   

13.
During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.  相似文献   

14.
The JNK family of MAPKs is involved in a large variety of physiological and pathological processes in brain development, such as neural survival, migration, and polarity as well as axon regeneration. However, whether JNK activation is involved in axon guidance remains unknown. Here, we provide evidence indicating the JNK pathway is required for Netrin signaling in the developing nervous system. Netrin-1 increased JNK1, not JNK2 or JNK3, activity in the presence of deleted in colorectal cancer (DCC) or Down syndrome cell adhesion molecule (DSCAM), and expression of both of them further enhanced Netrin-1-induced JNK1 activity in vitro. Inhibition of JNK signaling either by a JNK inhibitor, SP600125, or expression of a dominant negative form of MKK4, a JNK upstream activator, blocked Netrin-1-induced JNK1 activation in HEK293 cells. Netrin-1 increased endogenous JNK activity in primary neurons. Netrin-1-induced JNK activation was inhibited either by the JNK inhibitor or an anti-DCC function-blocking antibody. Combination of the anti-DCC function-blocking antibody with expression of DSCAM shRNA in primary neurons totally abolished Netrin-1-induced JNK activation, whereas knockdown of DSCAM partially inhibited the Netrin-1 effect. In the developing spinal cord, phospho-JNK was strongly expressed in commissural axons before and as they crossed the floor plate, and Netrin-1 stimulation dramatically increased the level of endogenous phospho-JNK in commissural axon growth cones. Inhibition of JNK signaling either by JNK1 RNA interference (RNAi) or the JNK inhibitor suppressed Netrin-1-induced neurite outgrowth and axon attraction. Knockdown of JNK1 in ovo caused defects in spinal cord commissural axon projection and pathfinding. Our study reveals that JNK1 is important in the coordination of DCC and DSCAM in Netrin-mediated attractive signaling.  相似文献   

15.
A successful treatment for spinal cord injury (SCI) must include means to induce axonal regeneration and synaptogenesis. Though much research has demonstrated the effectiveness of neurotrophic factors (NFs) in supporting axonal regeneration, systemic delivery of doses sufficient to reach therapeutic concentrations and overcome their short half-lives has caused adverse effects. Local expression of NFs would overcome these limitations. We tested whether local expression of NFs would induce axonal regeneration without adverse effects in two models of neural injury. In a chemical injury model the rat serotonergic system was lesioned with p-chloroamphetamine. When an adenoviral vector carrying the gene for brain-derived neurotrophic factor (BDNF) was injected into the denervated cortex BDNF expressed by the transfected cells induced serotonergic axon reinnervation only in area around the injection site. In a mechanical injury model the cortical spinal tract (CST) in rats was lesioned unilaterally at the level of the hindbrain. Neurotorphin-3 (NT-3) was expressed locally in the spinal cord either by direct injection of an adenoviral vector carrying the gene for NT-3 or by retrograde delivery of the vector from the sciatic nerve. Axons were observed growing from the unlesioned CST across the midline to the denervated side. These data demonstrate that local expression of NFs will induce and support axonal regeneration in a circumscribed area after injury without adverse effects and suggest that a therapy for SCI based upon this strategy may include NF gene delivery.
Acknowledgements:   Supported by NIH grant NS35280 and Mission Connect of the TIRR Foundation.  相似文献   

16.
During development, dorsal root ganglion (DRG) neurons extend their axons toward the dorsolateral part of the spinal cord and enter the spinal cord through the dorsal root entry zone (DREZ). After entering the spinal cord, these axons project into the dorsal mantle layer after a ‘waiting period’ of a few days. We revealed that the diffusible axonal guidance molecule netrin-1 is a chemorepellent for developing DRG axons. When DRG axons orient themselves toward the DREZ, netrin-1 proteins derived from the ventral spinal cord prevent DRG axons from projecting aberrantly toward the ventral spinal cord and help them to project correctly toward the DREZ. In addition to the ventrally derived netrin-1, the dorsal spinal cord cells adjacent to the DREZ transiently express netrin-1 proteins during the waiting period. This dorsally derived netrin-1 contributes to the correct guidance of DRG axons to prevent them from invading the dorsal spinal cord. In general, there is a complete lack of sensory axonal regeneration after a spinal cord injury, because the dorsal column lesion exerts inhibitory activities toward regenerating axons. Netrin-1 is a novel candidate for a major inhibitor of sensory axonal regeneration in the spinal cord; because its expression level stays unchanged in the lesion site following injury, and adult DRG neurons respond to netrin-1-induced axon repulsion. Although further studies are required to show the involvement of netrin-1 in preventing the regeneration of sensory axons in CNS injury, the manipulation of netrin-1-induced repulsion in the CNS lesion site may be a potent approach for the treatment of human spinal injuries.  相似文献   

17.
A successful treatment for spinal cord injury (SCI) must include means to induce axonal regeneration and synaptogenesis. Though much research has demonstrated the effectiveness of neurotrophic factors (NFs) in supporting axonal regeneration, systemic delivery of doses sufficient to reach therapeutic concentrations and overcome their short half‐lives has caused adverse effects. Local expression of NFs would overcome these limitations. We tested whether local expression of NFs would induce axonal regeneration without adverse effects in two models of neural injury. In a chemical injury model the rat serotonergic system was lesioned with p‐chloroamphetamine. When an adenoviral vector carrying the gene for brain‐derived neurotrophic factor (BDNF) was injected into the denervated cortex BDNF expressed by the transfected cells induced serotonergic axon reinnervation only in area around the injection site. In a mechanical injury model the cortical spinal tract (CST) in rats was lesioned unilaterally at the level of the hindbrain. Neurotorphin‐3 (NT‐3) was expressed locally in the spinal cord either by direct injection of an adenoviral vector carrying the gene for NT‐3 or by retrograde delivery of the vector from the sciatic nerve. Axons were observed growing from the unlesioned CST across the midline to the denervated side. These data demonstrate that local expression of NFs will induce and support axonal regeneration in a circumscribed area after injury without adverse effects and suggest that a therapy for SCI based upon this strategy may include NF gene delivery. Acknowledgements: Supported by NIH grant NS35280 and Mission Connect of the TIRR Foundation.  相似文献   

18.
Nerve growth factor (NGF) is crucial for the development of sympathetic and small-diameter sensory neurons and for maintenance of their mature phenotype. Its role in generating neuronal pathophysiology is less well understood. After spinal cord injury, central processes of primary afferent fibers sprout into the dorsal horn, contributing to the development of autonomic dysfunctions and pain. NGF may promote these states as it stimulates sprouting of small-diameter afferent fibers and its concentration in the spinal cord increases after cord injury. The cells responsible for this increase must be identified to develop a strategy to prevent the afferent sprouting. Using immunocytochemistry, we identified cells containing NGF in spinal cord sections from intact rats and from rats 1 and 2 weeks after high thoracic cord transection. In intact rats, this neurotrophin was present in a few ramified microglia and in putative Schwann cells in the dorsal root. Within and close to the lesion of cord-injured rats, NGF was in many activated, ramified microglia, in a subset of astrocytes, and in small, round cells that were neither glia nor macrophages. NGF-immunoreactive putative Schwann cells were prevalent throughout the thoracolumbar cord in the dorsal roots and the dorsal root entry zones. Oligodendrocytes were never immunoreactive for this protein. Therapeutic strategies targeting spinal cord cells that produce NGF may prevent primary afferent sprouting and resulting clinical disorders after cord injury.  相似文献   

19.
目的 本研究旨在探讨细胞外基质刚度变化对神经干细胞(neural stem cells,NSCs)分化的影响及其作用机制。方法 本研究基于成功构建脊髓损伤大鼠模型,并制备不同刚度(0.7 kPa、40 kPa)的聚丙烯酰胺凝胶基底,将大鼠原代NSCs于不同刚度基底上培养。压电型机械敏感离子通道组件1(piezo type mechanosensitive ion channel component 1,Piezo1)shRNA质粒转染NSCs细胞。免疫荧光染色检测神经元标志物双皮质醇(doublecortion,DCX)和星形胶质细胞标志物胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)阳性细胞百分比。免疫组织化学及蛋白质免疫印迹(Western blot)法检测损伤组织及NSCs细胞中Piezo1蛋白的表达水平。结果 与0.7 kPa基质刚度组相比,40 kPa基质刚度组中DCX阳性细胞数增加,而GFAP阳性细胞数减少,Piezo1蛋白表达量上升。脊髓损伤大鼠损伤组织Piezo1蛋白表达显著高于空白对照(sham)组。40 kPa基质刚度条件下沉默Piezo1后,DCX阳性细胞数减少,而GFAP阳性细胞数增加,差异具有统计学意义(P<0.05)。机制研究发现,沉默Piezo1导致IV型胶原及纤连蛋白表达下降。重组纤连蛋白逆转了Piezo1 shRNA对NSCs分化的影响,即DCX阳性细胞数增加,而GFAP阳性细胞数减少。结论 综上可见,硬基底刚度通过促进Piezo1蛋白表达,上调IV型胶原及纤连蛋白表达,从而调控NSCs细胞分化。本研究为基于生物材料治疗脊髓损伤提供了新的视角。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号