首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early myogenic events in regenerating whole muscle grafts were compared between transgenic MLC/mIGF-1 mice with skeletal muscle-specific overexpression of the Exon-1 Ea isoform of insulin-like growth factor-1 (mIGF-1) and control FVB mice, from day 3 to day 21 after transplantation. Immunocytochemistry with antibodies against desmin showed that skeletal muscle-specific overexpression of IGF-1 did not affect the pattern of myoblast activation or proliferation or the onset and number of myotubes formed in regenerating whole muscle grafts. Hypertrophied myotubes were observed in MLC/mIGF grafts at day 7 after transplantation, although such hypertrophy was transient, and the transgenic and control grafts had a similar appearance at later time points (days 10, 14, and 21). Immunostaining with antibodies to platelet endothelial cell adhesion molecule-1, which identifies endothelial cells, demonstrated no difference in the formation of new vascular network in grafts of transgenic and control mice. Skeletal muscle-specific overexpression of mIGF-1 does not appear to stimulate the early events associated with myogenesis during regeneration of whole muscle grafts.  相似文献   

2.
根据猪α-actin基因已知DNA序列设计合成了两个特异性引物,以猪基因组DNA为模板,通过PCR扩增得到α-actin 5'调控序列,然后与线虫ω-3脂肪酸去饱和酶基因cDNA、去除CMV启动子的表达载体pcDNA3.1连接构成肌肉特异性表达载体pcDNA3.1-AF,小鼠股四头肌注射该重组载体,RT-PCR检测证明...  相似文献   

3.
4.
We investigated the targeting of the γ-actin isoform in skeletal myofibers. For this purpose we used expression vectors to produce green fluorescent protein (GFP-) as well as myc-tagged γ-actin in rat flexor digitorum brevis myofibers. We found that the γ-actin fusion proteins accumulated into Z discs but not beneath the sarcolemma. Instead, the GFP-tagged skeletal muscle-specific α-actin isoform was preferentially incorporated into the pointed ends of thin contractile filaments. The localization pattern of the γ-actin fusion proteins was completely different from that of the dystrophin glycoprotein complex on the sarcolemma. The results emphasize the role of γ-actin as a Z disc component but fail to reveal an actin-based sub-sarcolemmal cytoskeleton in skeletal muscle cells.  相似文献   

5.
6.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

7.
Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA. Transgenic mice harboring these MCK promoters linked to enhanced green fluorescent protein (EGFP) expressed the reporter protein only in skeletal and cardiac muscles (MCK) or in skeletal muscle alone (MCK-3E). Seven-week-old animals were genotyped by PCR of tail DNA or by Southern blot analysis of liver DNA. Myostatin mRNA and protein, measured by RT-PCR and Western blot, respectively, were significantly higher in gastrocnemius, quadriceps, and tibialis anterior of MCK/Mst-transgenic mice compared with wild-type mice. Male MCK/Mst-transgenic mice had 18-24% lower hind- and forelimb muscle weight and 18% reduction in quadriceps and gastrocnemius fiber cross-sectional area and myonuclear number (immunohistochemistry) than wild-type male mice. Male transgenic mice with mutated MCK-3E promoter showed similar effects on muscle mass. However, female transgenic mice with either type of MCK promoter did not differ from wild-type controls in either body weight or skeletal muscle mass. In conclusion, increased expression of myostatin in skeletal muscle is associated with lower muscle mass and decreased fiber size and myonuclear number, decreased cardiac muscle mass, and increased fat mass in male mice, consistent with its role as an inhibitor of skeletal muscle mass. The mechanism of gender specificity remains to be clarified.  相似文献   

8.
Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.  相似文献   

9.
10.
5'-AMP-activated protein kinase (AMPK) is a metabolic stress sensor present in all eukaryotes. A dominant missense mutation (R225Q) in pig PRKAG3, encoding the muscle-specific gamma3 isoform, causes a marked increase in glycogen content. To determine the functional role of the AMPK gamma3 isoform, we generated transgenic mice with skeletal muscle-specific expression of wild type or mutant (225Q) mouse gamma3 as well as Prkag3 knockout mice. Glycogen resynthesis after exercise was impaired in AMPK gamma3 knock-out mice and markedly enhanced in transgenic mutant mice. An AMPK activator failed to increase skeletal muscle glucose uptake in AMPK gamma3 knock-out mice, whereas contraction effects were preserved. When placed on a high fat diet, transgenic mutant mice but not knock-out mice were protected against excessive triglyceride accumulation and insulin resistance in skeletal muscle. Transfection experiments reveal the R225Q mutation is associated with higher basal AMPK activity and diminished AMP dependence. Our results validate the muscle-specific AMPK gamma3 isoform as a therapeutic target for prevention and treatment of insulin resistance.  相似文献   

11.
12.
Significant levels of adenovirus (Ad)-mediated gene transfer occur only in immature muscle or in regenerating muscle, indicating that a developmentally regulated event plays a major role in limiting transgene expression in mature skeletal muscle. We have previously shown that in developing mouse muscle, expression of the primary Ad receptor CAR is severely downregulated during muscle maturation. To evaluate how global expression of CAR throughout muscle affects Ad vector (AdV)-mediated gene transfer into mature skeletal muscle, we produced transgenic mice that express the CAR cDNA under the control of the muscle-specific creatine kinase promoter. Five-month-old transgenic mice were compared to their nontransgenic littermates for their susceptibility to AdV transduction. In CAR transgenics that had been injected in the tibialis anterior muscle with AdVCMVlacZ, increased gene transfer was demonstrated by the increase in the number of transduced muscle fibers (433 +/- 121 in transgenic mice versus 8 +/- 4 in nontransgenic littermates) as well as the 25-fold increase in overall beta-galactosidase activity. Even when the reporter gene was driven by a more efficient promoter (the cytomegalovirus enhancer-chicken beta-actin gene promoter), differential transducibility was still evident (893 +/- 149 versus 153 +/- 30 fibers; P < 0.001). Furthermore, a fivefold decrease in the titer of injected AdV still resulted in significant transduction of muscle (253 +/- 130 versus 14 +/- 4 fibers). The dramatic enhancement in AdV-mediated gene transfer to mature skeletal muscle that is observed in the CAR transgenics indicates that prior modulation of the level of CAR expression can overcome the poor AdV transducibility of mature skeletal muscle and significant transduction can be obtained at low titers of AdV.  相似文献   

13.
Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-beta1 and decorin. We discovered that myostatin stimulated fibroblast proliferation in vitro and induced its differentiation into myofibroblasts. We further found that transforming growth factor-beta1 stimulated myostatin expression, and conversely, myostatin stimulated transforming growth factor-beta1 secretion in C2C12 myoblasts. Decorin, a small leucine-rich proteoglycan, was found to neutralize the effects of myostatin in both fibroblasts and myoblasts. Moreover, decorin up-regulated the expression of follistatin, an antagonist of myostatin. The results of in vivo experiments showed that myostatin knock-out mice developed significantly less fibrosis and displayed better skeletal muscle regeneration when compared with wild-type mice at 2 and 4 weeks following gastrocnemius muscle laceration injury. In wild-type mice, we found that transforming growth factor-beta1 and myostatin co-localize in myofibers in the early stages of injury. Recombinant myostatin protein stimulated myofibers to express transforming growth factor-beta1 in skeletal muscles at early time points following injection. In summary, these findings define a fibrogenic property of myostatin and suggest the existence of co-regulatory relationships between transforming growth factor-beta1, myostatin, and decorin.  相似文献   

14.
Regeneration of muscle fibers that are lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. An important cell type involved in muscle regeneration is the satellite cell. Necdin is a protein expressed in satellite cell-derived myogenic precursors during perinatal growth. However, its function in myogenesis is not known. We compare transgenic mice that overexpress necdin in skeletal muscle with both wild-type and necdin null mice. After muscle injury the necdin null mice show a considerable defect in muscle healing, whereas mice that overexpress necdin show a substantial increase in myofiber regeneration. We also find that in muscle, necdin increases myogenin expression, accelerates differentiation, and counteracts myoblast apoptosis. Collectively, these data clarify the function and mechanism of necdin in skeletal muscle and show the importance of necdin in muscle regeneration.  相似文献   

15.
16.
Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases.  相似文献   

17.
The majority of skeletal muscle fibers are generated through the process of secondary myogenesis. Cell adhesion molecules such as NCAM are thought to be intricately involved in the cell-cell interactions between developing secondary and primary myotubes. During secondary myogenesis, the expression of NCAM in skeletal muscle is under strict spatial and temporal control. To investigate the role of NCAM in the regulation of primary-secondary myotube interactions and muscle fusion in vivo, we have examined muscle development in transgenic mice expressing the 125-kD muscle-specific, glycosylphosphatidylinositol- anchored isoform of human NCAM, under the control of a human skeletal muscle alpha-actin promoter that is active from about embryonic day 15 onward. Analysis of developing muscle from transgenic animals revealed a significantly lower number of myofibers encased by basal lamina at postnatal day 1 compared with nontransgenic littermates, although the total number of developing myofibers was similar. An increase in muscle fiber size and decreased numbers of VCAM-1-positive secondary myoblasts at postnatal day 1 was also found, indicating enhanced secondary myoblast fusion in the transgenic animals. There was also a significant decrease in myofiber number but no increase in overall muscle size in adult transgenic animals; other measurements such as the number of nuclei per fiber and the size of individual muscle fibers were significantly increased, again suggesting increased secondary myoblast fusion. Thus the level of NCAM in the sarcolemma is a key regulator of cell-cell interactions occurring during secondary myogenesis in vivo and fulfills the prediction derived from transfection studies in vitro that the 125-kD NCAM isoform can enhance myoblast fusion.  相似文献   

18.
19.
Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.  相似文献   

20.
Muscle-specific isoform of the mitochondrial ATP synthase gamma subunit (F(1)gamma) was generated by alternative splicing, and exon 9 of the gene was found to be lacking particularly in skeletal muscle and heart tissue. Recently, we reported that alternative splicing of exon 9 was induced by low serum or acidic media in mouse myoblasts, and that this splicing required de novo protein synthesis of a negative regulatory factor (Ichida, M., Endo, H., Ikeda, U., Matsuda, C., Ueno, E., Shimada, K., and Kagawa, Y. (1998) J. Biol. Chem. 273, 8492-8501; Hayakawa, M., Endo, H., Hamamoto, T., and Kagawa, Y. (1998) Biochem. Biophys. Res. Commun. 251, 603-608). In the present report, we identified a cis-acting element on the muscle-specific alternatively spliced exon of F(1)gamma gene by an in vivo splicing system using cultured cells and transgenic mice. We constructed a F(1)gamma wild-type minigene, containing the full-length gene from exon 8 to exon 10, and two mutants; one mutant involved a pyrimidine-rich substitution on exon 9, whereas the other was a purine-rich substitution, abbreviated as F(1)gamma Pu-del and F(1)gamma Pu-rich mutants, respectively. Based on an in vivo splicing assay using low serum- or acid-stimulated splicing induction system in mouse myoblasts, Pu-del mutation inhibited exon inclusion, indicating that a Pu-del mutation would disrupt an exonic splicing enhancer. On the other hand, the Pu-rich mutation blocked muscle-specific exon exclusion following both inductions. Next, we produced transgenic mice bearing both mutant minigenes and analyzed their splicing patterns in tissues. Based on an analysis of F(1)gamma Pu-del minigene transgenic mice, the purine nucleotide of this element was shown to be necessary for exon inclusion in non-muscle tissue. In contrast, analysis of F(1)gamma Pu-rich minigene mice revealed that the F(1)gamma Pu-rich mutant exon had been excluded from heart and skeletal muscle of these transgenic mice, despite the fact mutation of the exon inhibited muscle-specific exon exclusion in myotubes of early embryonic stage. These results suggested that the splicing regulatory mechanism underlying F(1)gamma pre-mRNA differed between myotubes and myofibers during myogenesis and cardiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号