首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Bradykinin (1 microM) and histamine (100 microM) evoked an initial transient increase and a subsequent sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded human gingival fibroblasts, which may be attributed to Ca(2+) release from intracellular stores and Ca(2+) entry from extracellular sites, respectively. In fibroblasts pretreated with tyrosine kinase inhibitors such as herbimycin A (1 microM) and tyrphostin 47 (20 microM), the sustained level of [Ca(2+)](i) induced by bradykinin and histamine increased, but not the initial peak level. In the absence of external Ca(2+), bradykinin and histamine induced only the transient increase in [Ca(2+)](i), but a subsequent addition of Ca(2+) to the medium resulted in a sustained increase in [Ca(2+)](i) caused by Ca(2+)entry. Thapsigargin, an inhibitor of Ca(2+)-ATPase in inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, mimicked the effect of bradykinin and histamine. In the fibroblasts pretreated with tyrosine kinase inhibitors, the bradykinin-, histamine- and thapsigargin-induced Ca(2+) entry was clearly enhanced, but not the transient [Ca(2+)](i) increase. Tyrosine phosphatase inhibitor benzylphosphonic acid (200 microM) had no effect on Ca(2+)entry or transient [Ca(2+)](i) increase. These results suggest that tyrosine phosphorylation is involved in Ca(2+) entry in human gingival fibroblasts.  相似文献   

3.
Interleukin-beta (IL-1beta) was found to induce inflammatory responses in the airways, which exerted a potent stimulus for PG synthesis. This study was to determine the mechanisms of IL-1beta-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). IL-1beta markedly increased COX-2 expression and PGE(2) formation in a time- and concentration-dependent manner in TSMCs. Both COX-2 expression and PGE(2) formation in response to IL-1beta were attenuated by a tyrosine kinase inhibitor, genistein, a phosphatidylcholine-phospholipase C inhibitor, D609, a phosphatidylinositol-phospholipase C inhibitor, U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. IL-1beta-induced activation of NF-kappaB correlated with the degradation of IkappaB-alpha in TSMCs. IL-1beta-induced NF-kappaB activation, COX-2 expression, and PGE(2) synthesis were inhibited by the dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. IL-1beta-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 inhibitor), but these two inhibitors had no effect on IL-1beta-induced NF-kappaB activation, indicating that activation of p42/44 and p38 MAPK and NF-kappaB signalling pathways were independently required for these responses. These findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from IL-1beta-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways in canine TSMCs. IL-1beta-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.  相似文献   

4.
The effects of indomethacin (IDM) and aspirin (ASA) on ACh (10 microM) -stimulated exocytotic events were studied in guinea pig antral mucous cells by using video optical microscopy. IDM or ASA, which inhibits cyclooxygenase (COX), decreased the frequency of ACh-stimulated exocytotic events by 30% or 60%, respectively. The extent of inhibition induced by ASA (60%) decreased by 30% when IDM or arachidonic acid (AA, the substrate of COX) was added. IDM, unlike ASA, appears to induce the accumulation of AA, which enhances the frequency of ACh-stimulated exocytotic events in ASA-treated cells. ONO-8713 (100 microM; an inhibitor of the EP1-EP4 prostaglandin receptors) and N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, HCl (H-89, 20 microM; an inhibitor of PKA) also decreased the frequency of ACh-stimulated exocytotic events by 60%. However, the supplementation of PGE(2) (1 microM) prevented the IDM-induced decrease in the frequency of ACh-stimulated exocytotic events. SC-560 (an inhibitor of COX-1) decreased the frequency of ACh-stimulated exocytotic events by 30%, but NS-398 (an inhibitor of COX-2) did not. Moreover, IDM decreased the frequency of exocytotic events stimulated by ionomycin, suggesting that COX-1 activity is stimulated by an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). ACh and ionomycin increased PGE(2) release in antral mucosal cells. In conclusion, in ACh-stimulated antral mucous cells, an increase in [Ca(2+)](i) activates Ca(2+)-regulated exocytotic events and PGE(2) release mediated by COX-1. The released PGE(2) induces the accumulation of cAMP, which enhances the Ca(2+)-regulated exocytosis. The autocrine mechanism mediated by PGE(2) maintains the high-level mucin release from antral mucous cells during ACh stimulation.  相似文献   

5.
Using patch clamp and Ca(2+) imaging techniques, we have studied Ca(2+) entry pathways in human hepatoblastoma (HepG2) cells. These cells express the mRNA of TRPV1, TRPV2, TRPV3 and TRPV4 channels, but not those of TRPV5 and TRPV6. Functional assessment showed that capsaicin (10 microM), 4alpha-phorbol-12,13-didecanoate (4alphaPDD, 1 microM), arachidonic acid (10 microM), hypotonic stress, and heat all stimulated increases in [Ca(2+)](i) within minutes. The increase in [Ca(2+)](i) depended on extracellular Ca(2+) and on the transmembrane potential, which indicated that both driving forces affected Ca(2+) entry. Capsaicin also stimulated an increase in [Ca(2+)](i) in nominally Ca(2+)-free solutions, which was compatible with the receptor functioning as a Ca(2+) release channel. Hepatocyte growth factor/scatter factor (HGF/SF) modulated Ca(2+) entry. Ca(2+) influx was greater in HepG2 cells incubated with HGF/SF (20 ng/ml for 20 h) compared with non-stimulated cells, but this occurred only in those cells with a migrating phenotype as determined by presence of a lamellipodium and trailing footplate. The effect of capsaicin on [Ca(2+)](i) was greater in migrating HGF/SF-treated cells, and this was inhibited by capsazepine. The difference between control and HGF/SF-treated cells was not found in Ca(2+)-free solutions. 4alphaPDD also had no greater effect on HGF/SF-treated cells. We conclude that TRPV1 and TRPV4 channels provide Ca(2+) entry pathways in HepG2 cells. HGF/SF increases Ca(2+) entry via TRPV1, but not via TRPV4. This rise in [Ca(2+)](i) may constitute an early response of a signalling cascade that gives rise to cell locomotion and the migratory phenotype.  相似文献   

6.
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme regulating the synthesis of prostaglandin E2 (PGE2) in inflammatory conditions. In this study we investigated the regulation of mPGES-1 in gingival fibroblasts stimulated with the inflammatory mediators interleukin-1 beta (IL-1beta) and tumour necrosis factor alpha (TNFalpha). The results showed that IL-1beta and TNFalpha induce the expression of mPGES-1 without inducing the expression of early growth response factor-1 (Egr-1). Treatment of the cells with the PLA2 inhibitor 4-bromophenacyl bromide (BPB) decreased the cytokine-induced mPGES-1 expression accompanied by decreased PGE2 production whereas the addition of arachidonic acid (AA) upregulated mPGES-1 expression and PGE2 production. The protein kinase C (PKC) activator PMA did not upregulate the expression of mPGES-1 in contrast to COX-2 expression and PGE2 production. In addition, inhibitors of PKC, tyrosine and p38 MAP kinase markedly decreased the cytokine-induced PGE2 production but not mPGES-1 expression. Moreover, the prostaglandin metabolites PGE2 and PGF2alpha induced mPGES-1 expression as well as upregulated the cytokine-induced mPGES-1 expression indicating positive feedback regulation of mPGES-1 by prostaglandin metabolites. The peroxisome proliferator-activated receptor-gamma (PPARgamma) ligand, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), decreased mPGES-1 expression but not COX-2 expression or PGE2 production. The results indicate that the inflammatory-induced mPGES-1 expression is regulated by PLA2 and 15d-PGJ2 but not by PKC, tyrosine kinase or p38 MAP kinase providing new insights into the regulation of mPGES-1.  相似文献   

7.
The purpose of the present study was to investigate the involvement of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and tyrosine kinase on prostaglandin E2 (PGE2) production in human gingival fibroblasts stimulated by interleukin-1beta (IL-1beta) and/or epidermal growth factor (EGF). The cytokine IL-1beta and to a lesser extent EGF, enhanced COX-2 mRNA levels in gingival fibroblasts. Simultaneous treatment with EGF and IL-1beta resulted in enhanced COX-2 mRNA levels accompanied by a synergistic stimulation of PGE2 biosynthesis compared to the cells treated with IL-1beta or EGF alone. Neither IL-1beta EGF nor the combination of IL-1beta and EGF enhanced COX-1 mRNA levels in gingival fibroblasts. The tyrosine kinase inhibitors, Herbimycin A and PD 153035 hydrochloride, reduced COX-2 mRNA levels as well as PGE2 production induced by IL-1beta or the combination of IL-1beta and EGF whereas COX-1 mRNA levels were not affected. Furthermore, the COX-2 specific inhibitor, NS-398, abolished the PGE2 production induced by IL-1beta, EGF, or the combination. These results indicate that the synergy between IL-1beta and EGF on PGE2 production is due to an enhanced gene expression of COX-2 and that tyrosine kinase(s) are involved in the signal transduction of COX-2 in gingival fibroblasts.  相似文献   

8.
Fibroblasts isolated from jaw cysts expressed calcium-sensing receptor (CasR). In the fibroblasts elevated extracellular Ca(2+) ([Ca(2+)](o)) increased fluo-3 fluorescence intensity, and the production of inositol(1,4,5)trisphosphate and active protein kinase C. Phospholipase C inhibitor U-73122 attenuated the Ca(2+)-induced increase in fluo-3 fluorescence intensity. Elevated [Ca(2+)](o) enhanced the expression of cyclooxygenase-2 (COX-2) mRNA and protein, and the secretion of prostaglandin E(2) in the fibroblasts. CasR activator neomycin also increased the expression of COX-2 mRNA, and U-73122 attenuated the Ca(2+)-induced expression of COX-2 mRNA. Elevated [Ca(2+)](o)-induced phosphorylation of extracellular signal-regulated protein kinase-1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK), and U-73122 inhibited the Ca(2+)-induced phosphorylation. The inhibitors for each kinase, PD98059, SB203580, and SP600125, attenuated the Ca(2+)-induced expression of COX-2 mRNA. These results suggest that in jaw cyst fibroblasts elevated extracellular Ca(2+) may enhance COX-2 expression via the activation of ERK1/2, p38 MAPK, and JNK through CasR.  相似文献   

9.
Fluid shear stress (FSS) is a critical regulator of cation transport in the collecting duct (CD). High-dietary sodium (Na) consumption increases urine flow, Na excretion, and prostaglandin E(2) (PGE(2)) excretion. We hypothesize that increases in FSS elicited by increasing tubular flow rate induce the release of PGE(2) from renal epithelial cells into the extracellular compartment and regulate ion transport. Media retrieved from CD cells exposed to physiologic levels of FSS reveal several fold higher concentration of PGE(2) compared with static controls. Treatment of CD cells with either cyclooxygenase-1 (COX-1) or COX-2 inhibitors during exposure to FSS limited the increase in PGE(2) concentration to an equal extent, suggesting COX-1 and COX-2 contribute equally to FSS-induced PGE(2) release. Cytosolic phospholipase A2 (cPLA2), the principal enzyme that generates the COX substrate arachidonic acid, is regulated by mitogen-activated protein-kinase-dependent phosphorylation and intracellular Ca(2+) concentration ([Ca(2+)](i)), both signaling processes, of which, are activated by FSS. Inhibition of the ERK and p38 pathways reduced PGE(2) release by 53.3 ± 8.4 and 32.6 ± 11.3%, respectively, while antagonizing the JNK pathway had no effect. In addition, chelation of [Ca(2+)](i) limited the FSS-mediated increase in PGE(2) concentration by 47.5 ± 7.5% of that observed in untreated sheared cells. Sheared cells expressed greater phospho-cPLA2 protein abundance than static cells; however, COX-2 protein expression was unaffected (P = 0.064) by FSS. In microperfused CDs, COX inhibition enhanced flow-stimulated Na reabsorption and abolished flow-stimulated potassium (K) secretion, but did not affect ion transport at a slow flow rate, implicating that high tubular flow activates autocrine/paracrine PGE(2) release and, in turn, regulates flow-stimulated cation transport. In conclusion, FSS activates cPLA2 to generate PGE(2) that regulates flow-mediated Na and K transport in the native CD. We speculate that dietary sodium intake modulates tubular flow rate to regulate paracrine PGE(2) release and cation transport in the CD.  相似文献   

10.
In a cat model of acute experimental esophagitis, resting in vivo lower esophageal sphincter (LES) pressure and in vitro tone are lower than in normal LES, and the LES circular smooth muscle layer contains elevated levels of IL-1beta that decrease the LES tone of normal cats. We now examined the mechanisms of IL-1beta-induced reduction in LES tone. IL-1beta significantly reduced acetylcholine-induced Ca(2+) release in Ca(2+)-free medium, and this effect was partially reversed by catalase, demonstrating a role of H(2)O(2) in these changes. IL-1beta significantly increased the production of H(2)O(2), and the increase was blocked by the p38 MAPK inhibitor SB-203580, by the cytosolic phospholipase A(2) (cPLA(2)) inhibitor AACOCF3, and by the NADPH oxidase inhibitor apocynin, but not by the MEK1 inhibitor PD-98059. IL-1beta significantly increased the phosphorylation of p38 MAPK and cPLA(2). IL-1beta-induced cPLA(2) phosphorylation was blocked by SB-203580 but not by AACOCF3, suggesting sequential activation of p38 MAPK-phosphorylating cPLA(2). The IL-1beta-induced reduction in LES tone was partially reversed by AACOCF3 and by the Ca(2+)-insensitive PLA(2) inhibitor bromoenol lactone (BEL). IL-1beta significantly increased cyclooxygenase (COX)-2 and PGE(2) levels. The increase in PGE(2) was blocked by SB-203580, AACOCF3, BEL, and the COX-2 inhibitor NS-398 but not by PD-98059 or the COX-1 inhibitor valeryl salicylate. The data suggested that IL-1beta reduces LES tone by producing H(2)O(2), which may affect Ca(2+)-release mechanisms and increase the synthesis of COX-2 and PGE(2). Both H(2)O(2) and PGE(2) production depend on sequential activation of p38 MAPK and cPLA(2). cPLA(2) activates NADPH oxidases, producing H(2)O(2), and may produce arachidonic acid, converted to PGE(2) via COX-2.  相似文献   

11.
We have previously shown that acetylcholine-induced contraction of oesophageal circular muscle depends on activation of phosphatidylcholine selective phospholipase C and D, which result in formation of diacylglycerol, and of phospholipase 2 which produces arachidonic acid. Diacylglycerol and arachidonic acid interact synergistically to activate protein kinase C. We have therefore investigated the relationship between cytosolic Ca(2+) and activation of phospholipase A(2) in response to acetylcholine-induced stimulation, by measuring the intracellular free Ca(2+) ([Ca(2+)]i), muscle tension, and [3H] arachidonic acid release. Acetylcholine-induced contraction was associated with increased [Ca(2+)]i and arachidonic acid release in a dose-dependent manner. In Ca(2+)-free medium, acetylcholine did not produce contraction, [Ca(2+)]i increase, and arachidonic acid release. In contrast, after depletion of Ca(2+) stores by thapsigargin (3 microM), acetylcholine caused a normal contraction, [Ca(2+)]i increase and arachidonic acid release. The increase in [Ca(2+)]i and arachidonic acid release were attenuated by the M2 receptor antagonist methoctramine, but not by the M3 receptor antagonist p-fluoro-hexahydro siladifenidol. Increase in [Ca(2+)]i and arachidonic acid release by acetylcholine were inhibited by pertussis toxin and C3 toxin. These findings indicate that contraction and arachidonic acid release are mediated through muscarinic M2 coupled to Gi or rho protein activation and Ca(2+) influx. Acetylcholine-induced contraction and the associated increase in [Ca(2+)]i and release of arachidonic acid were completely reduced by the combination treatment with a phospholipase A(2) inhibitor dimethyleicosadienoic acid and a phospholipase D inhibitor pCMB. They increased by the action of the inhibitor of diacylglycerol kinase R59949, whereas they decreased by a protein kinase C inhibitor chelerythrine. These data suggest that in oesophageal circular muscle acetylcholine-induced [Ca(2+)]i increase and arachidonic acid release are mediated through activation of M2 receptor coupled to Gi or rho protein, resulting in the activation of phospholipase A(2) and phospholipase D to activate protein kinase C.  相似文献   

12.
Recently, we have measured in erythrocytes a voltage-modulated and dihydropyridine-inhibited calcium influx. Since arachidonic acid and other polyunsaturated fatty acids influence the activities of most ion channels, we studied their effects on the erythrocyte Ca(2+) influx. It was measured on fresh erythrocytes, isolated from healthy donors, using the fluorescent dye Fura 2 as indicator of [Ca(2+)](i). AA (5-50 microM) and EPA (20-30 microM) stimulated a concentration-dependent increase in [Ca(2+)](i), deriving from extracellular calcium (1 mM), without affecting the intra- and extracellular pH and membrane voltage. The Ca(2+) influx rate varied from 0.5 to 3 nM Ca(2+)/s in the presence of AA and from 0.9 to 1.7 nM Ca(2+)/s with EPA. The Ca(2+) influx elicited by AA and EPA was not inhibited by dihydropyridines, while cyclooxygenase inhibitors were effective and PGE1 or PGE2 did not produce any effect. We conclude that AA could activate an erythrocyte voltage-independent Ca(2+) transport via an intermediate product of cyclooxygenase pathway; however, a direct interaction with the membrane lipid-protein cannot be excluded.  相似文献   

13.
白藜芦醇降低大鼠心室肌细胞内游离钙浓度   总被引:4,自引:1,他引:3  
Liu Z  Zhang LP  Ma HJ  Wang C  Li M  Wang QS 《生理学报》2005,57(5):599-604
实验旨在研究白藜芦醇(resveratrol)对大鼠心室肌细胞内钙浓度(intracellular calcium concentratoin,[Ca2+]i)的影响.应用激光共聚焦显微镜技术记录心室肌细胞内的钙荧光强度.结果表明在正常台氏液和无钙台氏液中,白藜芦醇(15~60μmol/L)呈浓度依赖性地降低[Ca2+]i.蛋白酪氨酸磷酸酶抑制剂正钒酸钠(sodium orthovanadate,1.0 mmol/L)和L型Ca2+通道激动剂Bay K8644(10 μmol/L)可部分抑制正常台氏液中白藜芦醇的效应.但NO合酶阻断剂L-NAME(1.0 mmol/L)对白藜芦醇的作用无影响.白藜芦醇也能明显抑制无钙台氏液中由低浓度ryanodine(1.0 nmol/L)引起的[Ca2+]i增加.当细胞外液钙浓度由1 mmol/L增加到10 mmol/L而诱发心室肌细胞钙超载时,部分心室肌细胞产生可传播的钙波,白藜芦醇(60 μmol/L)可降低钙波的传播速度和持续时间,最终阻断钙波.结果提示,白藜芦醇能够降低心室肌细胞内游离钙浓度,此作用可能与其抑制电压依赖性Ca2+通道、酩氨酸激酶和肌浆网内钙释放有关.  相似文献   

14.
In SH-SY5Y cells, activation of delta-opioid receptors with [D-Pen(2,5)]-enkephalin (DPDPE; 1 microM) did not alter the intracellular free Ca(2+) concentration [Ca(2+)](i). However, when DPDPE was applied during concomitant Gq-coupled m3 muscarinic receptor stimulation by carbachol or oxotremorine-M, it produced an elevation of [Ca(2+)](i). The DPDPE-evoked increase in [Ca(2+)](i) was abolished when the carbachol-sensitive intracellular Ca(2+) store was emptied. There was a marked difference between the concentration-response relationship for the elevation of [Ca(2+)](i) by carbachol (EC(50) 13 microM, Hill slope 1) and the concentration-response relationship for carbachol's permissive action in revealing the delta-opioid receptor-mediated elevation of [Ca(2+)] (EC(50) 0.7 mM; Hill slope 1.8). Sequestration of free G protein beta gamma dimers by transient transfection of cells with a beta gamma binding protein (residues 495-689 of the C terminal tail of G protein-coupled receptor kinase 2) reduced the ability of delta opioid receptor activation to elevate [Ca(2+)](i). However, DPDPE did not elevate either basal or oxotremorine-M-evoked inositol phosphate production indicating that delta-opioid receptor activation did not stimulate phospholipase C. Furthermore, delta-opioid receptor activation did not result in the reversal of muscarinic receptor desensitization, membrane hyperpolarization or stimulation of sphingosine kinase. There was no coincident signalling between the delta-opioid receptor and the lysophosphatidic acid receptor which couples to elevation of [Ca(2+)](i) in SH-SY5Y cells by a PLC-independent mechanism. In SH-SY5Y cells the coincident signalling between the endogenously expressed delta-opioid and m3 muscarinic receptors appears to occur in the receptor activation-Ca(2+) release signalling pathway at a step after the activation of phospholipase C.  相似文献   

15.
Proteinase-activated receptor-1 (PAR1), upon activation, exerts prostanoid-dependent gastroprotection, and increases prostaglandin E(2) (PGE(2)) release through cyclooxygenase-2 (COX-2) upregulation in rat gastric mucosal epithelial RGM1 cells. However, there is a big time lag between the PAR1-triggered PGE(2) release and COX-2 upregulation in RGM1 cells; that is, the former event takes 18 h to occur, while the latter rapidly develops and reaches a plateau in 6 h. The present study thus aimed at clarifying mechanisms for the delay of PGE(2) release after PAR1 activation in RGM1 cells. Although a PAR1-activating peptide, TFLLR-NH(2), alone caused PGE(2) release at 18 h, but not 6 h, TFLLR-NH(2) in combination with arachidonic acid dramatically enhanced PGE(2) release even for 1-6 h. TFLLR-NH(2) plus linoleic acid caused a similar rapid response. CP-24879, a Δ(5)/Δ(6)-desaturase inhibitor, abolished the PGE(2) release induced by TFLLR-NH(2) plus linoleic acid, but not by TFLLR-NH(2) alone. The TFLLR-NH(2)-induced PGE(2) release was not affected by inhibitors of cytosolic phospholipase A(2) (cPLA(2)), Ca(2+)-independent PLA(2) (cPLA(2)) or secretory PLA(2) (sPLA(2)), but was abolished by their mixture or a pan-PLA(2) inhibitor. Among PLA(2) isozymes, mRNA of group IIA sPLA(2) (sPLA(2)-IIA) was upregulated following PAR1 stimulation for 6-18 h, whereas protein levels of PGE synthases were unchanged. These data suggest that the delay of PGE(2) release after COX-2 upregulation triggered by PAR1 is due to the poor supply of free arachidonic acid at the early stage in RGM1 cells, and that plural isozymes of PLA(2) including sPLA(2)-IIA may complementarily contribute to the liberation of free arachidonic acid.  相似文献   

16.
Aires V  Hichami A  Boulay G  Khan NA 《Biochimie》2007,89(8):926-937
We synthesized a diacylglycerol (DAG)-containing arachidonic acid, i.e., 1-stearoyl-2-arachidonyl-sn-glycerol (SAG), and studied its implication in the modulation of canonical transient receptor potential sub-type 6 (TRPC6) channels in stably-transfected HEK-293 cells. SAG induced the influx of Ca(2+), and also of other bivalent cations like Ba(2+) and Sr(2+), in these cells. SAG-evoked Ca(2+) influx was not due to its metabolites as inhibitors of DAG-lipase (RHC80267) and DAG-kinase (R50922) failed to inhibit the response of the same. To emphasise that SAG exerts its action via its DAG configuration, but not due to the presence of stearic acid at sn-1 position, we synthesized 1-palmitoyl-2-arachidonyl-sn-glycerol (PAG). PAG-induced increases in [Ca(2+)](i) were not significantly different from those induced by SAG. For the comparative studies, we also synthesized the DAG-containing docosahexaenoic acid, i.e., 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG). We observed that SDG and 1,2-dioctanoyl-sn-glycerol (DOG), a DAG analogue, also evoked increases in [Ca(2+)](i), which were lesser than those evoked by SAG. However, activation of TRPC6 channels by all the DAG molecular species (SAG, DOG and SDG) required Src kinases as the tyrosine kinase inhibitors, PP2 and SU6656, significantly attenuated the increases in [Ca(2+)](i) evoked by these agents. Moreover, disruption of lipid rafts with methyl-beta-cyclodextrin completely abolished SAG-, DOG- and SDG-induced increases in [Ca(2+)](i). The present study shows that SAG as well as SDG and DOG stimulate Ca(2+) influx through the activation of TRPC6 calcium channels which are regulated by Src kinases and intact lipid raft domains.  相似文献   

17.
Protein kinase C (PKC) isoforms exert specific intracellular functions, but the different isoforms display little substrate specificity in vitro. Selective PKC isoform targeting may be a mechanism to achieve specificity. We used a green fluorescent fusion protein (GFP) to test the hypothesis that local changes in [Ca(2+)](i) regulate translocation of PKCalpha and that different modes of Ca(2+) and Ca(2+) release play a role in PKCalpha targeting. We constructed deletion mutants of PKCalpha to analyze the Ca(2+)-sensitive domains and their role in targeting. Confocal microscopy was used and [Ca(2+)](i) was measured by fluo-3. The fusion protein PKCalpha-GFP was expressed in vascular smooth muscle cells and showed a cytosolic distribution similar to the wild-type PKCalpha protein. The Ca(2+) ionophore ionomycin induced a speckled cytosolic PKCalpha-GFP distribution, followed by membrane translocation, while depolarization by KCl induced primarily membrane translocation. Selective voltage-operated Ca(2+) channel opening led to a localized accumulation of PKCalpha-GFP near the plasma membrane. Opening Ca(2+) stores with InsP(3), thapsigargin, or ryanodine induced a specific PKCalpha-GFP targeting to distinct intracellular areas. The G-protein-coupled receptor agonist thrombin induced a rapid translocation of the fusion protein to focal domains. The tyrosine kinase receptor agonist PDGF induced Ca(2+) influx and led to a linear PKCalpha-GFP membrane association. PKCalpha-GFP deletion mutants demonstrated that the C2 domain, but not the catalytic subunit, is necessary for Ca(2+)-induced PKCalpha targeting. Targeting was also abolished when the ATP binding site was deleted. We conclude that PKCalpha can rapidly be translocated to distinct intracellular or membrane domains by local increases in [Ca(2+)](i). The targeting mechanism is dependent on the C2 and ATP binding site of the enzyme. Localized [Ca(2+)](i) changes determine the spatial and temporal targeting of PKCalpha.  相似文献   

18.
We investigated the role of a Ca(2+) channel and intracellular calcium concentration ([Ca(2+)](i)) in osmotic stress-induced JNK activation and tight junction disruption in Caco-2 cell monolayers. Osmotic stress-induced tight junction disruption was attenuated by 1,2-bis(2-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-mediated intracellular Ca(2+) depletion. Depletion of extracellular Ca(2+) at the apical surface, but not basolateral surface, also prevented tight junction disruption. Similarly, thapsigargin-mediated endoplasmic reticulum (ER) Ca(2+) depletion attenuated tight junction disruption. Thapsigargin or extracellular Ca(2+) depletion partially reduced osmotic stress-induced rise in [Ca(2+)](i), whereas thapsigargin and extracellular Ca(2+) depletion together resulted in almost complete loss of rise in [Ca(2+)](i). L-type Ca(2+) channel blockers (isradipine and diltiazem) or knockdown of the Ca(V)1.3 channel abrogated [Ca(2+)](i) rise and disruption of tight junction. Osmotic stress-induced JNK2 activation was abolished by BAPTA and isradipine, and partially reduced by extracellular Ca(2+) depletion, thapsigargin, or Ca(V)1.3 knockdown. Osmotic stress rapidly induced c-Src activation, which was significantly attenuated by BAPTA, isradipine, or extracellular Ca(2+) depletion. Tight junction disruption by osmotic stress was blocked by tyrosine kinase inhibitors (genistein and PP2) or siRNA-mediated knockdown of c-Src. Osmotic stress induced a robust increase in tyrosine phosphorylation of occludin, which was attenuated by BAPTA, SP600125 (JNK inhibitor), or PP2. These results demonstrate that Ca(V)1.3 and rise in [Ca(2+)](i) play a role in the mechanism of osmotic stress-induced tight junction disruption in an intestinal epithelial monolayer. [Ca(2+)](i) mediate osmotic stress-induced JNK activation and subsequent c-Src activation and tyrosine phosphorylation of tight junction proteins. Additionally, inositol 1,4,5-trisphosphate receptor-mediated release of ER Ca(2+) also contributes to osmotic stress-induced tight junction disruption.  相似文献   

19.
We have recently reported that arachidonic acid mediates beta(2)-adrenergic receptor (AR) stimulation of [Ca(2+)](i) cycling and cell contraction in embryonic chick ventricular cardiomyocytes (Pavoine, C., Magne, S., Sauvadet, A., and Pecker, F. (1999) J. Biol. Chem. 274, 628-637). In the present work, we demonstrate that beta(2)-AR agonists trigger arachidonic acid release via translocation and activation of cytosolic phospholipase A(2) (cPLA(2)) and increase caffeine-releasable Ca(2+) pools from Fura-2-loaded cells. We also show that beta(2)-AR agonists trigger a rapid and dose-dependent phosphorylation of both p38 and p42/44 MAPKs. Translocation and activation of cPLA(2), as well as Ca(2+) accumulation in sarcoplasmic reticulum stores sensitive to caffeine and amplification of [Ca(2+)](i) cycling in response to beta(2)-AR agonists, were blocked by inhibitors of the p38 or p42/44 MAPK pathway (SB203580 and PD98059, respectively), suggesting a role of both MAPK subtypes in beta(2)-AR stimulation. In contrast, beta(1)-AR stimulation of [Ca(2+)](i) cycling was rather limited by the MAPKs, clearly proving the divergence between beta(2)-AR and beta(1)-AR signaling systems. This study presents the first evidence for the coupling of beta(2)-AR to cardiac cPLA(2) and points out the key role of the MAPK pathway in the intracellular signaling elicited by positive inotropic beta(2)-AR agonists in heart.  相似文献   

20.
The endozepine triakontatetraneuropeptide (TTN) induces intracellular calcium ([Ca(2+)](i)) changes and is chemotactic for human neutrophils (PMNs). Because interleukin-8 (IL-8) production is Ca(2+) dependent and can be induced by chemotactic stimuli, we have investigated the ability of TTN to induce IL-8 production in PMNs, as well as the signal transduction mechanisms involved. Our results show that TTN increases IL-8 release and IL-8 mRNA expression in a concentration- and time-dependent fashion, and these effects are prevented by the Ca(2+) chelator BAPTA-AM. TTN-induced [Ca(2+)](i) changes and IL-8 mRNA expression are sensitive to pertussis toxin, to the phospholipase C (PLC) inhibitor U73122 (but not to its inactive analogue U73343) and to the protein kinase C (PKC) inhibitor calphostin C. It is therefore suggested that TTN-induced IL-8 production in human PMNs results from a G protein-operated, PLC-activated [Ca(2+)](i) rise, and PKC contributes to this effect. These findings further support the possible role of TTN in the modulation of the inflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号