首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Summary This study reports the analysis of secondary metabolites of gentiopicrin, swertiamarin, and sweroside in shoot and root cultures of yellow wort (Blackstonia perfoliata), which were initiated from seeds, grown on Murashige and Skoog (MS) medium. Shoot cultures of B. perfoliata were inoculated with suspension of Agrobacterium rhizogenes strain A4M70GUS and hairy roots appeared at the infected sites after 3 wk of inoculation. Tips of adventitious roots of B. perfoliata were grown on hormone-free MS medium and three clones of the transformed roots regenerated shoots spontaneously. Gentiopicrin, swertiamarin, and sweroside were detected in both roots and shoots of B. perfoliata in vitro and in vivo, but gentiopicrin was found to be the major compound. The concentration of growth regulator in the medium affected the production of secoiridoids in B. perfoliata in vitro, where the level of gentiopicrin was higher in plants grown in the presence of indole-3-butyric acid, but the presence of 6-benzylaminopurine was inhibitory to secoiridoid production.  相似文献   

2.
植物地上部与地下部的诱导防御反应研究综述   总被引:1,自引:0,他引:1  
地球上大多数植物对病虫害的侵袭具有诱导防御反应。植物地上部与地下部之间存在着密切的生理生态关系,因此,地上部处理是否影响地下部的防御反应以及地下部处理是否影响地上部的防御反应,进而分别影响到地下部和地上部生物的行为成为当前研究的热点。本文系统地综述了地上部机械损伤、害虫取食、信号物质处理对植物地下部防御反应及生物行为影响以及地下部机械损伤、害虫取食、信号物质处理对植物地上部防御反应及生物行为影响的研究进展,并在此基础上提出了未来该领域值得进一步研究的方向,以期为深入研究植物地上部与地下部诱导防御间的相互关系提供科学依据。  相似文献   

3.
Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen‐fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co‐occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant‐associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free‐living nitrogen‐fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two‐spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co‐occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant‐mediated interactions between interrelated belowground fungi–bacteria and aboveground herbivores.  相似文献   

4.
Quantifying the self-thinning process in various plant communities has been a long-standing issue in both theoretical and empirical studies. Most studies on plant self-thinning have centered only on aboveground parts, and rarely on belowground parts. There is still a general lack of comparison between above- and belowground self-thinning processes, especially for forest communities. The fundamental mechanistic difference and the functional association between above- and belowground competition indicate that the self-thinning process of belowground parts may be different from that of aboveground parts. We investigated the self-thinning lines for above-ground (M A), below-ground (M B), and total biomass (M T), respectively, across forest communities in China. The results showed that neither the classical self-thinning rule (−3/2 exponent) nor the universal scaling rule (−4/3 exponent) can apply to all the self-thinning relationships across these forest communities and that the self-thinning lines for belowground biomass were flatter and lower than those for aboveground biomass across most of these forest communities.  相似文献   

5.
Summary Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.  相似文献   

6.
Seasonal changes in aboveground and belowground tissues ofPhalaris arundinacea L. were studied in a population colonizing an ancient meander of the Garonne river (France) submitted to important fluctuations of the permanent water table. Waterlogged conditions in spring stopped the growth of rhizomes and promoted the translocation of nutrient to the shoots. The early senescence of plants after flowering could be related to the withdrawal of the water table. It was characterized by a distribution of nutrients in belowground tissues and a release in litter and soil. Aerated conditions in late summer permitted the growth of belowground tissues. At this time a partition of resources between aboveground and belowground biomass of a new generation of plants was observed. Rising water and decreasing temperatures in winter induced the death of aboveground parts. Reconstitution of nutrient stocks in rhizomes and losses by leaching then occured. Beside a very high primary production this strategy confers toPhalaris arundinacea a great interest in different uses, especially in the removal of nutrients from water in riparian zones as in artificial sites.  相似文献   

7.
This study explores the possible causes of variation in female reproductive success of the subspecific taxon Primula elatior subsp. bergidensis, a distylic endemic to the north-western Iberian Peninsula, by analysing both vegetative and reproductive traits. In three populations, we marked vegetative and reproductive individuals either by mapping the spatial position of every individual (in one population), or by establishing permanent quadrats (in the remainder two populations). We recorded floral morph (pin or thrum), width and length of the largest leaf, scape length, and number of flowers produced; all individuals were monitored to estimate the number of fruits and seeds produced. The results show that the morph ratio did not differ significantly from 1:1 in any of the populations. The number of flowers per plant varied between populations, and longer scape length was associated with higher fruit set in all populations. Plant size, scape length, and population spatial structure all had major effects on reproductive success, but the strength—and in some cases the direction—of the effects varied among populations.  相似文献   

8.
北京西部山区胡枝子种群研究: 个体和构件生物量   总被引:1,自引:0,他引:1  
高婷  张金屯 《植物学报》2007,24(5):581-589
通过对北京西部山区胡枝子(Lespedeza bicolor Turcz.)种群个体和构件地上生物量进行系统研究。结果表明, 种群(总和)个体和各构件地上生物量积累与年龄的关系均可用方程式Y=axb表示。不同种群的植株个体和构件生物量有显著性不同(P<0.05), 在海拔910-1 100 m的山脊林缘的种群个体和构件地上生物量较其它种群大, 植株地上营养构件的生物量比率较小, 而繁殖构件生物量比率较大; 不适生境中的种群则反之。种群个体生长和各构件生物量动态与环境条件关系密切。构件生物量比率也随着年龄的增长而有所变化。叶生物量比率随年龄增加而减小; 枝构件生物量比率随年龄增加而增大; 繁殖构件的生物量比率随年龄增加先增后减。依据相关指数R2, 筛选各构件生物量估计的最优模型: 枝、枝叶生物量和地上生物量均为m(DW)= a(D2H1)b, 叶生物量和花果生物量均为m(DW)=a(D)b。  相似文献   

9.
The strategy of resource allocation between vegetative and reproductive functions, quantitative relationship between size and reproductive output are central aspects of plant life history. To test the tactics of resource allocation and its altitudinal trend, we examined the reproductive allocation (RA) of Bergenia purpurascens (Saxifragaceae), in six populations along a shady slope in Sejila Mountain of southeast Tibet, at an altitude gradient from 4 200 m to 4 640 m. Our results showed that (1) with increasing altitude, vegetative biomass, reproductive biomass, total aboveground biomass, flower number per plant and length of flower stalk decreased significantly, but the number of leaves did not change greatly. However, the change of RA did not show a monotonic trend when altitude increased, shifting from significantly decreasing below the tree line to slightly increasing above it; (2) vegetative biomass was positively correlated with reproductive biomass, but negatively correlated with RA in all populations, but the level of significance was different among the populations; (3) RA decreased with individual size in all populations, whereas the relationship between absolute resource allocated to reproduction and individual size was allometric; (4) reproductive allometry and a size threshold for reproduction did exist in this alpine perennial, but the obvious altitudinal trend was only found along the populations below the tree line, not above it. We then concluded the altitude could not fully explain the change of resource allocation strategy of this alpine perennial, and different effects of size and habitat on RA may result from various environmental constraints along the altitudinal gradient or genetic background. Therefore, each individual within a population will follow its own developmental trajectory shaped by its genotype and the habitats. The most innovative finding was plant adaptation and resource trade off might be sharply altered at the tree line, which is a sensitive area in alpine mountains. Further investigations are needed to better understand the relationship between the reproductive allocation and changing environmental conditions.  相似文献   

10.
The threshold below which population declines impact the effectiveness of plant reproduction is essential for the identification of populations that can no longer spontaneously recover following habitat management or restoration, below the minimum viable population (MVP) size. We hypothesized that risk of reproductive limitation can be evaluated from combined analysis of pollen activity, ovule fertilization and germination in the context of population demographics and fragmentation. The marsh gentian (Gentiana pneumonanthe), a rare emblematic species of European heathland and fen, was investigated at the southern limit of its range in eighteen populations encompassing one to several hundred thousand individuals, spanning small fragments to extensive well-preserved areas. An index of habitat fragmentation was determined from GIS; field surveys determined the ratio of juvenile to reproductive age states; fluorescence microscopy of pistils determined, for each population, the proportion of flowers exhibiting active pollen tube growth. Analysis of seed lots determined the ovule fertilization rate and seed germination capacity. Some of the small populations occupying restricted habitat fragments showed high rates of pollination (100%) and ‘normal’ age state demographics. However, reproductive characters all exhibited exponential rise to maximum relationships with population size, indicating clear tipping points (for pollination, at a threshold of 7 reproductive adults, and for ovule fertilization rate and germination at 42 reproductive adults). Thus although small populations may set seed, exhibit a ‘normal’ age state structure, and may appear viable, reproductive effectiveness declines when population size falls below 42 generative individuals and < 7 is an indicator of strong limitation. Although many remnant populations of G. pneumonanthe are in the order of 50–150 individuals these should be not be considered as MVPs; they are on the brink of calamity.  相似文献   

11.
北京西部山区胡枝子种群研究:个体和构件生物量   总被引:2,自引:0,他引:2  
高婷  张金屯 《植物学通报》2007,24(5):581-589
通过对北京西部山区胡枝子(Lespedeza bicolor Turcz.)种群个体和构件地上生物量进行系统研究。结果表明,种群(总和)个体和各构件地上生物量积累与年龄的关系均可用方程式Y=axb表示。不同种群的植株个体和构件生物量有显著性不同(P<0.05),在海拔910-1100m的山脊林缘的种群个体和构件地上生物量较其它种群大,植株地上营养构件的生物量比率较小,而繁殖构件生物量比率较大;不适生境中的种群则反之。种群个体生长和各构件生物量动态与环境条件关系密切。构件生物量比率也随着年龄的增长而有所变化。叶生物量比率随年龄增加而减小;枝构件生物量比率随年龄增加而增大;繁殖构件的生物量比率随年龄增加先增后减。依据相关指数R2,筛选各构件生物量估计的最优模型:枝、枝叶生物量和地上生物量均为m(DW)=a(D2H1)b,叶生物量和花果生物量均为m(DW)=a(D)b。  相似文献   

12.
Belowground communities can affect interactions between plants and aboveground insect communities. Such belowground–aboveground interactions are known to depend on the composition of belowground communities, as well as on the plant species that mediates these interactions. However, it is largely unknown whether the effect of belowground communities on aboveground plant–insect interactions also depends on genotypic variation within the plant species that mediates the interaction. To assess whether the outcome of belowground–aboveground interactions can be affected by plant genotype, we selected two white cabbage cultivars [Brassica oleracea L. var. capitata (Brassicaceae)]. From previous studies, it is known that these cultivars differ in their chemistry and belowground and aboveground multitrophic interactions. Belowground, we inoculated soils of the cultivars with either nematodes or microorganisms and included a sterilized soil as a control treatment. Aboveground, we quantified aphid [Brevicoryne brassicae (L.) (Hemiptera: Aphididae)] population development and parasitoid [Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae)] fitness parameters. The cultivar that sustained highest aphid numbers also had the best parasitoid performance. Soil treatment affected aphid population sizes: microorganisms increased aphid population growth. Soil treatments did not affect parasitoid performance. Cultivars differed in their amino acid concentration, leaf relative growth rate, and root, shoot, and phloem glucosinolate composition but showed similar responses of these traits to soil treatments. Consistent with this observation, no interactions were found between cultivar and soil treatment for aphid population growth or parasitoid performance. Overall, the aboveground community was more affected by cultivar, which was associated with glucosinolate profiles, than by soil community.  相似文献   

13.
Most research examining how herbivores and pathogens affect performance of invasive plants focuses on aboveground interactions. Although important, the role of belowground communities remains poorly understood, and the relative impact of aboveground and belowground interactions is still debated. As well, most studies of belowground interactions have been carried out in controlled environments, so little is known about the role of these interactions under natural conditions or how these relationships may change across a plant's range. Using the invasive plant Cirsium arvense, we performed a reciprocal transplant experiment to test the relative impacts of above‐ and belowground interactions at three sites across a 509‐km latitudinal gradient in its invaded range in Ontario, Canada. At each site, C. arvense seedlings were protected with above‐ and/or belowground exclosures in a factorial design. Plant performance (biomass, height, stem thickness, number of leaves, length of longest leaf, maximum rhizome length) was greatest when both above‐ and belowground exclosures were applied and lowest when no exclosures were applied. When only one type of exclosure was applied, biomass generally improved more with belowground exclosures than with aboveground exclosures. Despite site‐to‐site differences in foliar damage, root damage, and mesofaunal populations, belowground interactions generally had a greater negative impact on performance than aboveground herbivory alone. These results stress the importance of including both aboveground enemy interactions and plant–soil interactions in studies of plant community dynamics and invader performance.  相似文献   

14.
Belowground biomass of two ht forms of the salt marsh cordgrass, Spartina alterniflora, in a New England salt marsh exhibited a seasonal cycle. Biomass was highest in midsummer with no secondary peak in biomass corresponding with the autumn dieback of aboveground parts. Total annual biomass production and the maximum depth that living tissue penetrated into the substrate decreased with increasing tidal ht. Substrate characteristics (soil aeration, pH, nutrient levels) known to affect aboveground biomass of S. alterniflora also decreased with increasing tidal ht and may similarly affect belowground biomass across the same tidal gradient.  相似文献   

15.
A comprehensive canopy productivity model was built to study the productivity of a primary salt marsh grass, Spartina alterniflora. in Georgia, USA The canopy model was unique in employing plant demographic data to reconstruct canopy profiles and dynamics, which showed many growth processes that are otherwise difficult to discern in the field By linking canopy dynamics and leaf photosynthesis, the net total primary productivity of S alterniflora m a Georgia salt marsh was estimated to be 1421, 749, and 1441 g C m-2 yr-1 for the tall, short, and N-fertilized short populations respectively These estimates are reasonable in terms of the physiological capacity of S alterniflora and well below the range of 3000–4200 g C m-2 yr-1 as reported by some recent harvest studies Our detailed analysis suggested the net total productivity of S alterniflora might be greatly overestimated in the past This is mainly because of 1) failure to consider the translocation of photosynthate between aboveground and belowground parts, and 2) possible overestimates of belowground production We estimated the net belowground production to be 872, 397, and 762 g C m-2 yr-1 for the tall, short, and N-fertilized populations respectively After receiving nitrogen fertilizer, the net leaf carbon fixation in the short population increased from 1489 to 2487 g C m-2 yr-1, and our simulation showed the contribution of elevated leaf N to this increase was small, 21%, compared with that of increased leaf area, 79% Both tall and short populations allocated ca 48-49% of their annual gross leaf carbon fixation to belowground structures Nitrogen enrichment caused more allocation to aboveground parts in the short population, mainly for increasing leaf area The canopy model assumed that there was no leaf photosynthesis under tidal submergence, but if this assumption was relaxed, then leaf carbon fixation might increase 7–13% for different S alterniflora populations Although this research focused only on a salt marsh species, our general approaches, especially the coupling of leaf physiology with the reconstructed canopies, should be applicable to the study of production processes of many other plant populations  相似文献   

16.
岩白菜(虎耳草科)不同海拔居群的繁殖分配   总被引:8,自引:0,他引:8  
资源分配策略是植物生活史研究的重要内容之一,植物用于繁殖的相对资源比例(即繁殖分配)与植株的生活史特征、个体大小及植株的生境密切相关。本文研究了藏东南色季拉山一个阴坡上海拔4200m~4640m范围内6个不同居群的虎耳草科多年生草本植物岩白菜(Bergenia purpurascens)的繁殖分配特征,结果发现:(1)繁殖器官生物量、营养器官生物量、地上部分总生物量、花数目、花序轴长度均随海拔的升高而显著降低,而叶数目随海拔变化不大,繁殖分配值则先降低后升高,转折点在林线过渡带(海拔4400m)处;(2)各居群(海拔4300m居群除外)营养器官生物量与繁殖器官生物量均显著正相关,而营养器官生物量与繁殖分配则负相关,但各居群的显著性不同;(3)各居群繁殖器官生物量与植株个体大小(营养器官生物量)呈不同程度的异速增长,而繁殖分配则与植株个体大小负相关;(4)各居群植株都存在一个繁殖所需的个体大小阈值,而且这一阈值在林线以下区域随海拔的升高而显著增大,在林线以上区域变化不显著。研究结果表明,海拔并不是影响岩白菜繁殖分配策略的唯一生态因子,不同居群的生境状况和植株个体大小都与其资源分配策略密切相关,高山地区林线的存在对植物资源的权衡方式会产生巨大影响。  相似文献   

17.
绞股蓝雌雄种群觅源行为和繁殖对策比较   总被引:6,自引:0,他引:6  
绞股蓝(Gynostemma pentaphyllum)雌雄异株,种群性比偏雄。作者利用比较生态学方法,从行为生态学角度探讨相同生境中绞股蓝雌雄种群的觅源行为和繁殖对策,得到如下初步结果和结论:(1)绞股蓝雄性种群的主枝生物量比显著大于雌性种群,这意味着雄性种群的营养繁殖投资显著增加,而两性种群在其它结构中的生物量分配无显著差异;(2)雌性种群的叶面积比和单位叶面积比雄性种群显著增加,这与两性种群  相似文献   

18.

Aim

The success of invasive species in their introduced range is often assumed to result from evolutionary changes in defence and growth traits, or as a response to more favourable conditions. The latter is assumed particularly for species exhibiting low, or even no, sexual reproduction in the introduced range.

Location and Methods

Here, we compared Japanese (native range) and French (introduced range) populations of Fallopia japonica under common growth conditions in a glasshouse. We measured height, aboveground and belowground mass, stem stiffness, leaf toughness and secondary metabolites found in hydroalcoholic extracts of rhizomes of F. japonica, as well as the competitive response of Rubus caesius (a co‐occurring native species in the invaded range) in the presence of F. japonica from both ranges.

Results

Aboveground biomass, height, stem stiffness and composition of secondary metabolites were not significantly different between the two ranges, showing that increased aboveground vigour observed in situ in France is probably the result of a plastic response following the release of abiotic or biotic constraints from the native range. On the other hand, belowground mass, effect on R. caesius, and leaf toughness were all higher in French populations, suggesting increases in competitive ability and defence mechanisms. These differences between France and Japan may be explained either by post‐introduction evolution or by the introduction in Europe, in nineteenth century, of an exceptionally vigorous clone (pre‐adaptation).

Main conclusions

Our results provide evidence that the high vigour of this major invasive species in its introduced range is probably due to both a response to more favourable conditions and rapid evolution.
  相似文献   

19.
Hypericum perforatum is a perennial medicinal plant known as "St. John's wort" in Western Europe and has been used in the treatment of several diseases for centuries. In the present study, morphologic, phenologic and population variability in pseudohypericin and hyperforin concentrations among H. perforatum populations from Northern Turkey was investigated for the first time. The aerial parts of H. perforatum plants representing a total of 30 individuals were collected at full flowering from 10 sites of Northern Turkey to search the regional variation in the secondary metabolits concentrations. For morphologic and phenologic sampling, plants from one site were gathered in five phenological stages vegetative,floral budding, full flowering, fresh fruiting and mature fruiting. The plant materials were air-dried at room temperature and subsequently assayed for chemical concentrations by high performance liquid chromatography. Secondary metabolite concentrations ranged from traces to 2.94mg/g dry weight (DW) for pseudohypedcin and traces -6.29mg/g DW for hyperforin. The differences in the secondary metabolite concentrations among populations of H. perforatum were found to be significant. The populations varied greatly in hyperforin concentrations, whereas they produced a similar amount of pseudohypericin. Concentrations of both secondary metabolites in all tissues increased with advancing of plant development and higher accumulation levels were reached at flowering. Among different tissues, full opened flowers were found to be superior to stems, leaves and the other reproductive parts with regard to pseudohypericin and hyperforin accumulations. The present findings might be useful to optimize the processing methodology of wild-harvested plant material and obtain Increased concentrations of these secondary metabolites.  相似文献   

20.
Summary The qualitative and quantitative composition of secondary metabolites was studied in the shoots and roots of Centaurium pulchellum cultured in vitro. Secoiridoids (gentiopierin, swertiamarin, and sweroside) and xanthones (methylbellidifolin, demethyleustomin, and deccussatin) were isolated. Sweroside was found to be the major secoiridoid compound in the aerial parts of plants growing in nature. while swertiamarin dominated in plants cultured in vitro. In roots of all plants, genciopicrin was the major compound. Xanthone demethyleustomin was the major compound both in the shoots and roots of plants growing in nature and cultured in vitro. Different sugars (glucose, fructose, and sucrose) added in different concentrations in the medium affected the production of secondary compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号