首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Not all hosts, communities or environments are equally hospitable for parasites. Direct and indirect interactions between parasites and their predators, competitors and the environment can influence variability in host exposure, susceptibility and subsequent infection, and these influences may vary across spatial scales. To determine the relative influences of abiotic, biotic and host characteristics on probability of infection across both local and estuary scales, we surveyed the oyster reef-dwelling mud crab Eurypanopeus depressus and its parasite Loxothylacus panopaei, an invasive castrating rhizocephalan, in a hierarchical design across >900 km of the southeastern USA. We quantified the density of hosts, predators of the parasite and host, the host’s oyster reef habitat, and environmental variables that might affect the parasite either directly or indirectly on oyster reefs within 10 estuaries throughout this biogeographic range. Our analyses revealed that both between and within estuary-scale variation and host characteristics influenced L. panopaei prevalence. Several additional biotic and abiotic factors were positive predictors of infection, including predator abundance and the depth of water inundation over reefs at high tide. We demonstrate that in addition to host characteristics, biotic and abiotic community-level variables both serve as large-scale indicators of parasite dynamics.  相似文献   

2.
Comparative studies of genetic diversity and population structure can shed light on the ecological and evolutionary factors that influence host–parasite interactions. Here we examined whether geography, time and genetic variation in Alaskan three‐spined stickleback (Gasterosteus aculeatus Linneaus) hosts shape the population genetic structure of the diphyllobothridean cestode parasite Schistocephalus solidus (Müller, 1776). Host lineages and haplotypes were identified by sequencing the mitochondrial cytochrome b gene, and host population structure was assessed by Bayesian clustering analysis of allelic variation at 11 microsatellite loci. Parasite population structure was characterized according to allelic variation at eight microsatellite loci. Mantel tests and canonical redundancy analysis were conducted to evaluate the proportion of parasite genetic variation attributable to time and geography vs. host lineage, haplotype, and genotypic cluster. Host and parasite population structure were largely discordant across the study area, probably reflecting differences in gene flow, environmental influences external to the host, and genomic admixture among host lineages. We found that geography explained the greatest proportion of parasite genetic variation, but that variation also reflects time, host lineage, and host haplotype. Associations with host haplotypes suggest that one parasite genotypic cluster exhibits a narrower host range, predominantly infecting the most common host haplotypes, whereas the other parasite cluster infects all haplotypes equally, including rare haplotypes. Although experimental infection trials might prove otherwise, distributional differences in hosts preferentially infected by S. solidus could underlie the observed pattern of population structure.  相似文献   

3.
Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.  相似文献   

4.
Identification of the origin of parasites of nonindigenous species (NIS) can be complex. NIS may introduce parasites from their native range and acquire parasites from within their invaded range. Determination of whether parasites are non‐native or native can be complicated when parasite genera occur within both the NIS’ native range and its introduced range. We explored potential for spillover and spillback of lung parasites infecting Burmese pythons (Python bivittatus) in their invasive range (Florida). We collected 498 indigenous snakes of 26 species and 805 Burmese pythons during 2004–2016 and examined them for lung parasites. We used morphology to identify three genera of pentastome parasites, Raillietiella, a cosmopolitan form, and Porocephalus and Kiricephalus, both New World forms. We sequenced these parasites at one mitochondrial and one nuclear locus and showed that each genus is represented by a single species, R. orientalis, P. crotali, and K. coarctatus. Pythons are host to R. orientalis and P. crotali, but not K. coarctatus; native snakes are host to all three species. Sequence data show that pythons introduced R. orientalis to North America, where this parasite now infects native snakes. Additionally, our data suggest that pythons are competent hosts to P. crotali, a widespread parasite native to North and South America that was previously hypothesized to infect only viperid snakes. Our results indicate invasive Burmese pythons have affected parasite‐host dynamics of native snakes in ways that are consistent with parasite spillover and demonstrate the potential for indirect effects during invasions. Additionally, we show that pythons have acquired a parasite native to their introduced range, which is the initial condition necessary for parasite spillback.  相似文献   

5.
Nonindigenous parasite introductions and range expansions have become a major concern because of their potential to restructure communities and impact fisheries. Molecular markers provide an important tool for reconstructing the pattern of introduction. The parasitic castrator Loxothylacus panopaei, a rhizocephalan barnacle, infects estuarine mud crabs in the Gulf of Mexico and southeastern Florida. A similar parasite introduced into Chesapeake Bay before 1964, presumably via infected crabs associated with oysters from the Gulf of Mexico, was identified as L. panopaei. Our samples of this species during 2004 and 2005 show that the introduced range has expanded as far south as Edgewater, Florida, just north of the northern endemic range limit. The nonindigenous range expanded southward at a rate of up to 165 km/yr with relatively high prevalence, ranging from 30 to 93%. Mitochondrial DNA sequences from the cytochrome oxidase I gene showed that these nonindigenous L. panopaei are genetically distinct from the endemic parasites in southeastern Florida and the eastern Gulf of Mexico. The genetic difference was also associated with distinct host spectra. These results are incompatible with an eastern Gulf source population, but suggest that unrecognized genetic and phenotypic population structure may occur among Gulf of Mexico populations of Loxothvlacus.  相似文献   

6.
Growing evidence suggests that microbiomes have been shaping the evolutionary pathways of macroorganisms for millennia and that these tiny symbionts can influence, and possibly even control, species interactions like host–parasite relationships. Yet, while studies have investigated host–parasites and microbiomes separately, little has been done to understand all three groups synergistically. Here, we collected infected and uninfected Eurypanopeus depressus crab hosts from a coastal North Carolina oyster reef three times over 4 months. Infected crabs demonstrated an external stage of the rhizocephalan parasite, Loxothylacus panopaei. Community analyses revealed that microbial richness and diversity were significantly different among tissue types (uninfected crab, infected crab, parasite externae and parasite larvae) and over time (summer and fall). Specifically, the microbial communities from parasite externae and larvae had similar microbiomes that were consistent through time. Infected crabs demonstrated microbial communities spanning those of their host and parasite, while uninfected crabs showed more distinctive communities with greater variability over time. Microbial communities were also found to be indicators of early-stage infections. Resolving the microbial community composition of a host and its parasite is an important step in understanding the microbiome's role in the host–parasite relationship and determining how this tripartite relationship impacts coevolutionary processes.  相似文献   

7.
Spread of the invasive cactus-feeding moth Cactoblastis cactorum has been well documented since its export from Argentina to Australia as a biocontrol agent, and records suggest that all non-native populations are derived from a single collection in the moth’s native range. The subsequent global spread of the moth has been complex, and previous research has suggested multiple introductions into North America. There exists the possibility of additional emigrations from the native range in nursery stock during the late twentieth century. Here, we present mitochondrial gene sequence data (COI) from South America (native range) and North America (invasive range) to test the hypothesis that the rapid invasive spread in North America is enhanced by unique genetic combinations from isolated portions of the native range. We found that haplotype richness in the native range of C. cactorum is high and that there was 90% lower richness in Florida than in Argentina. All Florida C. cactorum haplotypes are represented in a single, well-defined clade, which includes collections from the reported region of original export from Argentina. Thus, our data are consistent with the documented history suggesting a single exportation of C. cactorum from the eastern region of the native range. Additionally, the presence of geographic structure in three distinct haplotypes within the same clade across Florida supports the hypothesis of multiple introductions into Florida from a location outside the native range. Because the common haplotypes in Florida are also known to occur in the neighboring Caribbean Islands, the islands are a likely source for independent North American colonization events. Our data show that rapid and successful invasion within North America cannot be attributed to unique genetic combinations. This suggests that successful invasion of the southeastern US is more likely the product of a fortuitous introduction into favorable abiotic conditions and/or defense responses of specific Opuntia hosts, rapid adaptation, or a release from native enemies.  相似文献   

8.
We used PCR to screen for the presence of haemosporidian parasites (Phylum: Apicomplexa; Order: Haemosporida) in avian blood samples, and sequenced the parasite mitochondrial cytochrome b gene from infected hosts, to study patterns in the prevalence of haemosporidians in 1,166 individuals of 50 species in four habitats along an elevation gradient in the Sierra de Bahoruco, Dominican Republic, island of Hispaniola. We found an overall prevalence of 0.44 among species with ≥10 individuals sampled per year, but this varied considerably among species. We found no difference in infection rates between years, between males and females, between second‐year (<1 y old) and older birds, or among members of different foraging guilds. Prevalence differed significantly among migratory, endemic resident, and non‐endemic resident species, with endemics having the highest rates of infection. Prevalence also varied among habitats, decreasing with increasing elevation, but the pattern was confounded by variation in the host species present at each elevation. From 215 sequenced parasites from 17 species of avian hosts, we recovered multiple examples of 12 lineages of Haemoproteus (Parahaemoproteus), two lineages of a Columbiformes‐specific clade of H. (Haemoproteus), and 10 lineages of Plasmodium, with an additional seven lineages sampled only once. A single parasite lineage was responsible for 34.4% of all infections, but five more lineages made up 41.8% of all infections. Several lineages were broadly distributed across multiple host species, but six lineages, all H. (Haemoproteus) or H. (Parahaemoproteus), were recorded from at least five individuals of a single host, suggesting host specialization. The number of host species from which each parasite lineage was recovered varied from one to nine; several host species harbored as many as 5–9 parasite lineages. Longitudinal data suggest that while hosts might harbor the same parasite lineage for more than a year, some hosts appear to clear infections from their circulating blood, while others manifested infections by a different parasite lineage.  相似文献   

9.
Host shifts are widespread among avian haemosporidians, although the success of transmission depends upon parasite‐host and parasite‐vector compatibility. Insular avifaunas are typically characterized by a low prevalence and diversity of haemosporidians, although the underlying ecological and evolutionary processes remain unclear. We investigated the parasite transmission network in an insular system formed by Eleonora's falcons (the avian host), louse flies that parasitize the falcons (the potential vector), and haemosporidians (the parasites). We found a great diversity of parasites in louse flies (16 Haemoproteus and 6 Plasmodium lineages) that did not match with lineages previously found infecting adult falcons (only one shared lineage). Because Eleonora's falcon feeds on migratory passerines hunted over the ocean, we sampled falcon kills in search of the origin of parasites found in louse flies. Surprisingly, louse flies shared 10 of the 18 different parasite lineages infecting falcon kills. Phylogenetic analyses revealed that all lineages found in louse flies (including five new lineages) corresponded to Haemoproteus and Plasmodium parasites infecting Passeriformes. We found molecular evidence of louse flies feeding on passerines hunted by falcons. The lack of infection in nestlings and the mismatch between the lineages isolated in adult falcons and louse flies suggest that despite louse flies’ contact with a diverse array of parasites, no successful transmission to Eleonora's falcon occurs. This could be due to the falcons’ resistance to infection, the inability of parasites to develop in these phylogenetically distant species, or the inability of haemosporidian lineages to complete their development in louse flies.  相似文献   

10.
Abstract. We examined claw characteristics of mud crabs (Eurypanopeus depressus, Rhithropanopeus harrisii) to determine if one crab species was potentially more powerful than the other. We related our findings to the abilities of individuals of each species to open epifaunal mytiliform bivalves (Ischadium recurvum; Mytilopsis leucophaeata) that occur on beds of eastern oysters (Crassostrea virginica) in mesohaline Chesapeake Bay. There were high correlations between claw width or height and claw length, and between claw length and carapace width for both mud crab species. The mechanical advantage or “grip strength’ of the crusher and cutter claws of both species did not change with crab size (carapace width) and did not differ between sexes in each species, nor did the cutter data differ between species. However, individuals of E. depressus had a significantly stronger crusher claw grip than did those of R. harrisii. Data on mechanical advantage for both species were similar to values reported in the literature for members of other xanthid crab species. These values in turn overlapped those reported for calappid, cancrid, majid, and grapsid crabs, and were greater than those of various species of portunid crabs and individual species of fiddler crab, lobster, crayfish, and ghost shrimp. When simultaneously presented with the two species of bivalves, the mud crabs E. depressus chose mussels of M. leucophaeata first and crabs of R. harrisii chose mussels of I. recurvum first about two‐thirds of the time; ultimately, the crabs ate both bivalve species in >50% of the choice experiments. The size range in E. depressus was greater than that in R. harrisii, and crabs of E. depressus opened larger bivalves than did crabs of R. harrisii, although similar‐sized individuals of the two crab species overlapped in their ability to open bivalves of both species. In Mytilopsis leucophaeata, there is probably no size refuge from predation by the mud crabs whereas the larger mussels of I. recurvum do have a refuge in size.  相似文献   

11.
Hybridization, both within and between taxa, can be an important evolutionary stimulus for bioinvasions. Novel intra-taxon hybridizations may arise either between formerly allopatric introduced lineages, or between native and introduced lineages. The latter can occur following a cryptic invasion of a non-native lineage, such as the nineteenth century introduction to North America of a European lineage of the common reed Phragmites australis. Previous studies found no evidence of natural hybridization between native and introduced lineages of P. australis, but produced some F1 hybrids under experimental conditions when the seed parent was native and the pollen parent was introduced. In this study we used microsatellite data to compare genotypes of P. australis along a transect of approximately 2,000 km in eastern North America. Although hybridization appears uncommon, simulations and principle component analysis of genetic data provided strong evidence for natural hybridization at two sites adjacent to Lake Erie in which native and introduced lineages were sympatric. The seed parent was the native lineage in some cases, and the introduced lineage in other cases. There is now the potential for P. australis hybrids to become increasingly invasive, and managers should consider as a priority the removal of introduced stands from sites where they co-exist with native stands.  相似文献   

12.
Parasites are often key players in biological invasions since they can mediate the impact of host invasions or can themselves become invasive species. However, the nature and extent of parasite-mediated invasions are often difficult to delineate. Here, we used individual-based, weighted bipartite networks to study the roles (degrees of interactions of individuals in a modular network according to their within- and among-module connections) played by native and invasive host individuals to their parasite communities. We studied two phylogenetically and ecologically close fish species, Mugil cephalus s.l. and Planiliza haematocheilus (Teleostei: Mugilidae). Planiliza haematocheilus is native to the Sea of Japan and invasive in the Sea of Azov whereas, M. cephalus s.l. is native to both seas. Based on the common evolutionary history that drives native host–parasite networks, we hypothesised that 1) native networks have higher modularity than invaded ones; and 2) invasive hosts in the invaded area play a peripheral role to structure parasite communities. We analysed the whole parasite community and subsets based on transmission strategy and host specificity of the parasite species to establish whether modularity and host roles are related to these features in the native and invaded areas. All networks were found to be modular. However, modularity tended to be higher in networks of the native area rather than those of the invaded area. Host individuals of both fish species played similar roles in the native area, whereas invasive hosts played a peripheral role in the networks of the invaded area. We propose that long-term monitoring of the roles of invasive hosts in parasite communities can be a useful proxy for estimating the maturity of the establishment of the invasive hosts in an ecosystem.  相似文献   

13.
The clam genus Corbicula is an interesting model system to study the evolution of reproductive modes as it includes both sexual and asexual (androgenetic) lineages. While the sexual populations are restricted to the native Asian areas, the androgenetic lineages are widely distributed being also found in America and Europe where they form a major aquatic invasive pest. We investigated the genetic diversity of native and invasive Corbicula populations through a worldwide sampling. The use of mitochondrial and nuclear (microsatellite) markers revealed an extremely low diversity in the invasive populations with only four, undiversified, genetic lineages distributed across Europe and America. On the contrary, in the native populations, both sexual and androgenetic lineages exhibited much higher genetic diversity. Remarkably, the most abundant and widely distributed invasive forms, the so‐called form A and form R found in America and Europe respectively, are fixed for the same single COI (cytochrome c oxydase subunit I) haplotype and same multilocus genotype. This suggests that form R, observed in Europe since the 1980s, derived directly from form A found in America since the 1920s. In addition, this form shares alleles with some Japanese populations, indicating a Japanese origin for this invasive lineage. Finally, our study suggests that few androgenetic Corbicula individuals successfully invaded the non‐native range and then dispersed clonally. This is one striking case of genetic paradox raising the issue of invasive and evolutionary success of genetically undiversified populations.  相似文献   

14.
Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish''s introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively associated with the condition index of the native grouper but not that of the lionfish or lizardfish. While two co-occurring native fishes were more heavily parasitized compared to lionfish in Panama any indirect benefits of differential parasitism requires further investigation. Future parasitological surveys of lionfish across the eastern coast of North America and the Lesser Antilles would further resolve geographic patterns of parasitism in invasive lionfish.  相似文献   

15.
Martina Ferraguti  Sergio Magallanes  Jéssica Jiménez-Peñuela  Josué Martínez-de la Puente  Luz Garcia-Longoria  Jordi Figuerola  Jaime Muriel  Tamer Albayrak  Staffan Bensch  Camille Bonneaud  Rohan H. Clarke  Gábor Á. Czirják  Dimitar Dimitrov  Kathya Espinoza  John G. Ewen  Farah Ishtiaq  Wendy Flores-Saavedra  László Zsolt Garamszegi  Olof Hellgren  Dita Horakova  Kathryn P. Huyvaert  Henrik Jensen  Asta Križanauskienė  Marcos R. Lima  Charlene Lujan-Vega  Eyðfinn Magnussen  Lynn B. Martin  Kevin D. Matson  Anders Pape Møller  Pavel Munclinger  Vaidas Palinauskas  Péter L. Pap  Javier Pérez-Tris  Swen C. Renner  Robert Ricklefs  Sergio Scebba  Ravinder N. M. Sehgal  Manuel Soler  Eszter Szöllősi  Gediminas Valkiūnas  Helena Westerdahl  Pavel Zehtindjiev  Alfonso Marzal 《Global Ecology and Biogeography》2023,32(5):809-823

Aim

The increasing spread of vector-borne diseases has resulted in severe health concerns for humans, domestic animals and wildlife, with changes in land use and the introduction of invasive species being among the main possible causes for this increase. We explored several ecological drivers potentially affecting the local prevalence and richness of avian malaria parasite lineages in native and introduced house sparrows (Passer domesticus) populations.

Location

Global.

Time period

2002–2019.

Major taxa studied

Avian Plasmodium parasites in house sparrows.

Methods

We analysed data from 2,220 samples from 69 localities across all continents, except Antarctica. The influence of environment (urbanization index and human density), geography (altitude, latitude, hemisphere) and time (bird breeding season and years since introduction) were analysed using generalized additive mixed models (GAMMs) and random forests.

Results

Overall, 670 sparrows (30.2%) were infected with 22 Plasmodium lineages. In native populations, parasite prevalence was positively related to urbanization index, with the highest prevalence values in areas with intermediate urbanization levels. Likewise, in introduced populations, prevalence was positively associated with urbanization index; however, higher infection occurred in areas with either extreme high or low levels of urbanization. In introduced populations, the number of parasite lineages increased with altitude and with the years elapsed since the establishment of sparrows in a new locality. Here, after a decline in the number of parasite lineages in the first 30 years, an increase from 40 years onwards was detected.

Main conclusions

Urbanization was related to parasite prevalence in both native and introduced bird populations. In invaded areas, altitude and time since bird introduction were related to the number of Plasmodium lineages found to be infecting sparrows.  相似文献   

16.
Introduced exotic species have the potential to spread their associated parasites to native species which can be catastrophic if these hosts are immunologically naïve to the novel parasite. The guppy (Poecilia reticulata) has been disseminated worldwide outside of its native habitat and therefore could be an important source of infection to native fish species. Its parasite fauna is dominated by the ectoparasitic monogeneans, Gyrodactylus turnbulli and Gyrodactylus bullatarudis. The current study tested the host specificity of G. bullatarudis by experimentally infecting a range of isolated fish hosts, including temperate species. Surprisingly, the parasite was capable of establishing and reproducing, for several days, on the three-spined stickleback when transferred directly to this host. We also established that G. bullatarudis could be transmitted under aquarium conditions at both 25 °C and 15 °C. At the higher temperature, the parasite was even capable of reproducing on this atypical host. The implications of these findings are discussed in terms of host specificity, host switching and climate change.  相似文献   

17.
Aim (1) To describe the species–area relationships among communities of Plasmodium and Haemoproteus parasites in different island populations of the same host genus (Aves: Zosterops). (2) To compare distance–decay relationships (turnover) between parasite communities and those with potential avian and dipteran hosts, which differ with respect to their movement and potential to disperse parasite species over large distances. Location Two archipelagos in the south‐west Pacific, Vanuatu and New Caledonia (c. 250 km west of Vanuatu) and its Loyalty Islands, with samples collected from a total of 16 islands of varying sizes (328–16,648 km2). Methods We characterized parasite diversity and distribution via polymerase chain reaction (PCR) from avian (Zosterops) blood samples. Bayesian methods were used to reconstruct the parasite phylogeny. In accordance with recent molecular evidence, we treat distinct mitochondrial DNA lineages as equivalent to species in this study. Path analysis and parasite lineage accumulation curves were used to assess the confounding effect of inadequate sampling on the estimation of parasite richness. Species–area and species–distance relationships were assessed using linear regression: distance–decay relationships were assessed using Mantel tests. Results Birds and mosquito species and Plasmodium lineages exhibited significant species–area relationships. However, Plasmodium lineages showed the weakest ‘species–area’ relationship; no relationship was found for Haemoproteus lineages. Avian species richness influenced parasite lineage richness more than mosquito species richness did. Within individual avian host species, the species–area relationship of parasites showed differing patterns. Path analysis indicated that sampling effort was unlikely to have a confounding effect on parasite richness. Distance from mainland (isolation effect) showed no effect on parasite richness. Community similarity decayed significantly with distance for avifauna, mosquito fauna and Plasmodium lineages but not for Haemoproteus lineages. Main conclusions Plasmodium lineages and mosquito species fit the power‐law model with steeper slopes than found for the avian hosts. The lack of species–distance relationship in parasites suggests that other factors, such as the competence of specific vectors and habitat features, may be more important than distance. The decay in similarity with distance suggests that the sampled Plasmodium lineages and their potential hosts were not randomly distributed, but rather exhibited spatially predictable patterns. We discuss these results in the context of the effects that parasite generality may have on distribution patterns.  相似文献   

18.
Senecio pterophorus (Compositae) is a perennial shrub native to eastern South Africa that was introduced into the Western Cape in South Africa and Australia approximately 100 years ago and into Europe (Italy and Spain) more than 25–30 years ago. In this study, the aims were to unravel the putative sources of the introduced populations and identify the changes in genetic diversity after invasion using molecular markers and phylogeographic and population genetic analyses. We sampled the entire area of distribution for S. pterophorus extensively. Based on the results, three lineages were established along a latitudinal and climatic gradient in the native range (south, central, central/north) with high levels of admixture. Multiple, independent introductions occurred in the four invaded ranges. The central/northern lineage (humid climate) was the primary source for all of the invaded regions (with drier climates), although a secondary role was revealed for the southern lineage in the Western Cape and the central/northern lineage in Australia and Spain. The genetic diversity was slightly lower in the Spanish and Australian populations than that in the native populations. A variety of demographic and genetic processes affected the amount and structure of genetic diversity in the invaded areas, including multiple introductions and admixture (Western Cape, Australia and Spain) as well as pre-invasive hybridization (Italy). The patterns of dispersion support a hypothesis of rapid evolution of S. pterophorus after invasion in response to novel climatic conditions.  相似文献   

19.
The wheat curl mite (WCM), Aceria tosichella, is an important pest of wheat and other cereal crops that transmits wheat streak mosaic virus and several other plant viruses. Wheat curl mite has long been considered a single polyphagous species, but recent studies in Poland revealed a complex of genetically distinct lineages with divergent host‐acceptance traits, ranging from highly polyphagous to host‐specific. This diversity of WCM genotypes and host‐acceptance phenotypes in Europe, the presumed native range of WCM, raises questions about the lineage identities of invasive WCM populations on other continents and their relationships to European lineages. The goals of this study were to examine the global presence of WCM and determine the relatedness of lineages established in different continents, on the basis of phylogenetic analyses of mitochondrial and nuclear DNA sequence data. Host‐range bioassays of a highly polyphagous WCM lineage were performed to supplement existing data on this lineage's ability to colonise graminaceous and non‐graminaceous hosts. Invasive WCM populations in North and South America and Australia assorted with the only three known polyphagous and pestiferous WCM lineages (‘MT‐1’, ‘MT‐7’ and ‘MT‐8’) from a total of eight currently described lineages. These results show that the most polyphagous lineages were more successful colonisers and reflect a need for extensive surveys for WCM on both crops and wild grass species in invaded continents. The most invasive lineage (‘MT‐1’) was shown to successfully colonise all 10 plant species tested in three families and has spread to North and South America and Australia from its presumed origins in Eurasia.  相似文献   

20.
Climate and host demographic cycling often shape both parasite genetic diversity and host distributions, processes that transcend a history of strict host–parasite association. We explored host associations and histories based on an evaluation of mitochondrial and nuclear sequences to reveal the underlying history and genetic structure of a pinworm, Rauschtineria eutamii, infecting ten species of western North American chipmunks (Rodentia:Tamias, subgenus Neotamias). Rauschtineria eutamii contains divergent lineages influenced by the diversity of hosts and variation across the complex topography of western North America. We recovered six reciprocally monophyletic R. eutamii mitochondrial clades, largely supported by a multilocus concordance tree, exhibiting divergence levels comparable with intraspecific variation reported for other nematodes. Phylogenetic relationships among pinworm clades suggest that R. eutamii colonized an ancestral lineage of western chipmunks and lineages persisted during historical isolation in diverging Neotamias species or species groups. Pinworm diversification, however, is incongruent and asynchronous relative to host diversification. Secondarily, patterns of shallow divergence were shaped by geography through events of episodic colonization reflecting an interaction of taxon pulses and ecological fitting among assemblages in recurrent sympatry. Pinworms occasionally infect geographically proximal host species; however, host switching may be unstable or ephemeral, as there is no signal of host switching in the deeper history of R. eutamii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号