首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A minimum of 28 genera of rodents and one genus of lagomorph were recovered from the Tugen Hills, Baringo District, Kenya, from localities dating from over 15.5 to about 4.4 Ma. The middle Miocene (sites dated between 15.8 and 15.3 Ma) rodent fauna recovered primarily from the Kipsaramon site complex, Muruyur Formation, includes a mixture of characteristically early Miocene taxa, and more derived forms. Composition of the African rodent fauna changes dramatically with the introduction of myocricetodontines, democricetodontines, and dendromurines, immigrants primarily from southern Asia. In the Tugen Hills, these taxa are first found in the Kabasero localities, Ngorora Formation, at sites dating from 12.5-12.33 Ma. A second major change in the African rodent fauna reflects the introduction of murines, immigrants from southern Asia. In the Tugen Hills murines are first encountered at Kapcheberek, Lukeino Formation, dated to 5.9-5.7 Ma. One rodent genus from the Lukeino Formation (Arvicanthis), and two from the Tabarin locality, Chemeron Formation (Heliosciurus, Paraxerus; 4.5-4.4 Ma), represent the earliest records of these extant African genera. A cricetomyine from the Ngorora Formation (12.5 Ma) is likely the earliest report of this exclusively African group. One of the earliest African records of porcupines (Hystricide) is from the Lukeino Formation. Lagomorphs are poorly represented, but include one of the earliest African occurrences of the family Leporidae from the Mpesida Beds (bracketed by dates of 7-6.2 Ma), and possibly a new genus of leporid from the Kapcheberek locality. Analysis of the Tugen Hills small mammals in association with other African records suggests several episodes of dispersal between Africa and Eurasia during the middle and late Miocene. Rodents from Kipsaramon are indicative of forests in conjunction with more open habitats. Those from the Kapcheberek locality are suggestive of a savanna habitat. The rodents from the Tabarin locality suggest a woodland environment.  相似文献   

2.
The ochotonid faunas of Eurasia and North America from the Oligocene to the present time are reviewed. The pika family (Ochotonidae Thomas 1897) belongs to the order Lagomorpha, which includes five families: Ochotonidae, Mimotonidae Li 1978, Leporidae Fischer 1817 (hares), Palaeolagidae Dice 1929, and Prolagidae Gureev 1960. The family Ochotonidae consists of two subfamilies: Sinolagomyinae Gureev, 1960 and Ochotoninae Thomas, 1897 and comprises a total of 17 genera. Originating in Central Asia at the beginning of the Late Oligocene, pikas flourished during the Late Oligocene. The highest taxonomic diversity of pikas can be found in the Miocene and Pliocene; towards the Pleistocene, the ochotonid fauna declined. Only one genus, Ochotona, remained extant by the end of the Pleistocene. The genus includes a total of 38 known extinct taxa and 28 extant species.  相似文献   

3.
Engelswies is an early Miocene vertebrate locality in southern Germany with a rich assemblage of terrestrial mammals, invertebrates and fossil plants. It is dated to 16.5-17.0 Ma based on magnetostratigraphy, biostratigraphy and lithostratigraphy, and includes among the faunal remains a hominoid upper molar fragment, the oldest hominoid so far identified from Europe. The evidence from Engelswies suggests that hominoids arrived in Eurasia about 17 Ma, roughly contemporaneously with pliopithecoids and Deinotherium, and before the last marine transgression to isolate Eurasia from Africa. Thick enamel and low dentine penetrance may have been key adaptations that contributed to the success of hominoids of dentally modern aspect in western Eurasia and ultimately to their ability to spread to eastern Eurasia and Africa in the middle and late Miocene.  相似文献   

4.
A large number of plant macrofossils from several Middle to Upper Miocene localities from Iceland have been studied. The fossil material includes four ferns and fern allies, seven conifers, and about 40 species of flowering plants. Betula islandica and Salix gruberi are described as new species. Coniferous twigs previously ascribed to the genus Sequoia are shown to belong to Cryptomeria based on macro‐morphological and epidermal features. Fossil plants from Iceland are compared with coeval fossil taxa from Europe and North America and with living plants. The main finding is that the Miocene flora of Iceland belongs to a widespread Neogene northern hemispheric floral type including plants whose representatives are restricted to East Asia, North America and to western Eurasia at the present time. Previously inferred conspicuous similarities to North American modern equivalents appear to be misleading. The type of vegetation in four plant‐bearing sedimentary formations from the late Mid Miocene to Late Miocene, the 12 Ma Brjánslækur‐Seljá Formation, the 10 Ma Tröllatunga‐Gautshamar Formation, the 9–8 Ma Skarðsströnd‐Mókollsdalur Formation, and the 7–6 Ma Hreðavatn‐Stafholt Formation, corresponds to a humid temperate broadleaved (deciduous)–coniferous mixed forest dominated by Betulaceae, Fagaceae and Acer. Changes in species composition in the sedimentary formations reflect a shift from warm temperate (Cfa climate) to cool temperate (Cfb climate) conditions from the late Mid Miocene to the latest Miocene. This shift was connected to repeated phases of extinction and colonization. Specifically, one set of thermophilic taxa including Magnolia, Liriodendron, Sassafras and Comptonia went extinct between 12 and 10 Ma, and appears to have been replaced by another set of thermophilic taxa in the 10 Ma formation (Juglandaceae aff. Pterocarya/Cyclocarya, Rhododendron ponticum type). The 9–8 and 7–6 Ma formations are characterized by taxa that migrated to Iceland from Europe, such as Fagus gussonii, Betula cristata and Pterocarya fraxinifolia type. Although there is convincing evidence that plants colonized Iceland both from North America and Europe until 12 Ma, migration in the younger formations (9–8, 7–6 Ma) is suggested to have occurred mainly from Europe. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 369–417.  相似文献   

5.
Xerinae is the most species-rich subfamily of the Sciuridae (Rodentia). This group of animals has a long complex evolutionary history, which witnessed severe environmental changes. In this paper, a comprehensive approach integrating information from fossil records, morphological, molecular and geographical data of extant species, and events of paleoclimate and paleogeography, were used to explore the evolutionary processes in the Xerinae. Xerinae probably originated in Eurasia around the early Oligocene, and dispersed to Africa via the Africa-Eurasia Land Bridge on two occasions during the Miocene, and subsequently evolved into the Protoxerini and African Xerini. The tribe Marmotini derived from a Eurasian ancestor and thrived in North America. Tamias re-occupied Eurasia in the early Miocene, while the distributions of Marmota and ‘Spermophilus’ genus-groups were restricted to North America at least until the late Miocene. Global cooling and the emergence of grass-dominated ecosystems from 15 Ma are likely to be the main causes for the radiation of Marmotini. The body form of Xerinae displays an allometric mode of evolution, with ground-living taxa, such as Marmota, Cynomys and Xerus notably enlarged, while Tamias has remained slim in body form. To cope with the global environmental changes, particularly the global cooling induced forest degradation and grassland expansion in the late Miocene, most Marmotini developed into true ground squirrels with short tails. The slim body adaptation in Tamias may be related to competition from tree squirrels, or their hoarding behavior, the latter helping them to cope with cold winter.  相似文献   

6.
Itea is a genus of about 20 species of trees and shrubs that are today native to southeastern North America, eastern Asia, and eastern Africa. In this paper, I review the fossil record of Itea, which is based on four types of fossils: diporate, psilate pollen attributed to Itea or the dispersed pollen genus Iteapollis; carpofossils representing fruits and seeds attributed to Itea europaea; flowers preserved in amber and assigned to Adenanthemum iteoides; and leaf impressions attributed to Itea. The distributions of these fossils indicate that Itea was present in western North America from the early Eocene to Miocene, in eastern North America beginning no later than the early Miocene, and in western Eurasia from the late Eocene to Pliocene. Only one datapoint is known from eastern Asia; it is early Miocene in age. Based on the fossil record, it can be inferred that Itea crossed between continents over both the Bering Land Bridge and North American Land Bridge, and that it reached Africa from Europe via Anatolia. Thus, it is predicted that the sole extant North American species, I. virginica, may be most closely related to the sole extant African species, I. rhamnoides. The potential application of Itea fossils to calibrating phylogenetic trees generated from molecular sequence data is also discussed.  相似文献   

7.
The holly genus, Ilex L., in the monogeneric Aquifoliaceae, is the largest woody dioecious genus (>664 spp.), with a near‐cosmopolitan distribution in mesic environments. We constructed a phylogeny based on two nuclear genes, representing 177 species spread across the geographical range, and dated using macrofossil records. The five main clades had a common ancestor in the early Eocene, much earlier than previously suggested. Ilex originated in subtropical Asia and extant clades colonized South America by 30 Ma, North America by 23 Ma, Australia by 8 Ma, Europe by 6 Ma, and Africa by 4 Ma. South and North America were colonized multiple times. Ilex also reached Hawaii (10 Ma) and other oceanic islands. Macrofossil and pollen records show the genus has tracked mesic climates through time and space, and had a wider distribution before late Miocene global cooling. Our phylogeny provides a framework for studies in comparative ecology and evolution.  相似文献   

8.
Arid and semi‐arid areas constitute a prominent feature of the earth today, especially in Asia and Africa. Their formation started in the middle Miocene with increased stepwise aridification since the Pliocene. This aridification had strong ecological and evolutionary consequences and not only led to fragmentation of moist‐adapted biota, but also fostered the evolution of arid‐adapted taxa from mesic ancestors and triggered speciation within arid areas. The open‐habitat chats, a clade within Saxicolinae (Aves, Muscicapidae), constitute one of the most significant arid‐adapted passerine groups of Africa and Eurasia. Here, we present a temporal and spatial framework for the diversification of open‐habitat chats, using probabilistic approaches for the reconstruction of their biogeographic history based on a time‐calibrated multilocus molecular phylogenetic hypothesis. The diversification of open‐habitat chats was initiated in the late Miocene at around 7.4 Ma, most likely in sub‐Saharan Africa. Southern Africa and the Horn of Africa acted as centres of diversification and biogeographic expansion. From the latter area, the Arabo‐Sindic region and subsequently further parts of Eurasia and North Africa were colonized. The colonization history out of sub‐Saharan Africa contrasts with that of several other songbird clades, where a biogeographic expansion from Eurasia or northern Africa to southern Africa was prevalent. Habitat fragmentation through forest expansions during intermittent wetter periods in Africa influenced diversification in several clades. However, phases of increased aridity, with hyperarid regions acting as drivers of vicariance, seem to have also been important in radiations of the Arabo‐Sindic region and the Horn of Africa during the Pleistocene. Different processes such as colonization of new areas followed by vicariance or speciation across ecotones might have played a role throughout the radiation of open‐habitat chats.  相似文献   

9.
The island of Lesvos, eastern Aegean, Greece is well known for the Neogene Petrified Forest of Sigri, situated in the southeastern part of island. The Miocene mammals were hitherto unknown in the island and the deinothere studied herein is the first evidence of their presence. The material was found near the village Gavathas in strongly silicified lacustrine marls. The morphological characters of the stutied teeth and their dimensions indicate that they belong to a primitive form of Prodeinotherium bavaricum. This fact together with the available radiometric ages of the volcanic rocks of the area suggests a minimum age of 18.4 Ma corresponding to the upper part of early Miocene or to late MN 3. The arrival and the dispersion of the deinotheres in Eurasia are also discussed and the Lesvos material represents the first known appearance of deinotheres in Europe. They arrived at the end of MN 3 (18.0-19.0 Ma) and they rapidly dispersed into Europe as their first occurrence in France and Spain is dated at the early MN 4 (18.0). Their first appearance in Asia seems to be earlier as they were traced in the Bugti fauna (Pakistan) dated at 20.5 Ma. This suggests an early connection of Africa and Asia before the final closure of the Tethyan Seaway.  相似文献   

10.
Rhexia, with 11 species in the Coastal Plain province of North America, is the only temperate zone endemic of the tropical eudicot family Melastomataceae. It is a member of the only pantropical tribe of that family, Melastomeae. Based on the chloroplast gene ndhF, we use a fossil-calibrated molecular clock to address the question of the geographic origin and age of Rhexia. Sequences from 37 species in 21 genera representing the tribe's geographical range were analyzed together with five outgroups. To obtain better clade support, another chloroplast region, the rpl16 intron, was added for 24 of the species. Parsimony analysis of the combined data and maximum-likelihood analysis of ndhF alone indicate that the deepest split is between Rhexia plus its sister group, a small Central American genus, and all other Melastomeae. Old World Melastomeae are monophyletic and nested within New World Melastomeae. Although likelihood-ratio tests of clock and nonclock substitution models for the full or moderately pruned datasets rejected the clock, these models yielded identical topologies (for 30 taxa) with few significantly different branch lengths as assessed by a Student's t-test. Age estimates obtained were 22 million years ago (Mya) for the divergence of Rhexia from its sister group, 12 Mya for the dispersal of Melastomeae from the New World to West Africa, and 1 Mya for the diversification of Melastoma in Southeast Asia. The only other genus of Melastomeae to have reached Southeast Asia from Africa or Madagascar is Osbeckia. The age and geographic distribution of fossils, which come from Miocene sites throughout Eurasia, suggest that Melastomeae once ranged from Eurasia across Beringia to North America from whence they reached South America and subsequently Africa and Southeast Asia. Climate deterioration led to their extinction in the Northern Hemisphere, with Rhexia possibly surviving in Coastal Plain refugia.  相似文献   

11.
  1. The Spalacidae is a family of strictly subterranean rodents with a long evolutionary history. It is unclear how ecological changes have influenced the evolutionary history of these mammals, and the phylogenetic relationship of the subfamilies within Spalacidae is controversial.
  2. Through compiling fossil records, reconstructing molecular phylogeny from molecular data, determining the date of divergence, and analysing their geographical evolution based on molecular data and fossil taxa, we explore the origin and evolutionary process of Spalacidae in detail. Diversification within Spalacidae dates to the Late Oligocene, approximately 25 million years ago, based on molecular data.
  3. This family originated in South and East Asia in the Late Oligocene, and then split into four clades. The first clade includes Rhizomyinae, which was highly diversified in South Asia in the Early-to-Middle Miocene. Then Rhizomyinae from Asia migrated to northern Africa in multiple waves through the Afro-Eurasian land bridge. Its range largely contracted in the Late Miocene, notably in Central Asia. The second clade includes the extinct Tachyoryctoidinae, which was confined to East and Central Asia, and survived from the Late Oligocene to the Late Miocene. The third clade includes Spalacinae, which have remained around the Mediterranean region since the Late Oligocene with slight trend of northward expansion. The fourth clade is Myospalacinae. Ancient genera of this subfamily in East Asia dispersed eastward during the Late Miocene and reached northern China and south-east Russia.
  4. The general distribution pattern of Spalacidae has persisted since the Late Miocene. Extinction of Tachyoryctoidinae and clear range contraction of Rhizomyinae in Central and East Asia are likely to have resulted from increased aridification, while the slight northward expansion of Myospalacinae and Spalacinae since the Quaternary was probably a response to a similar northward expansion of suitable vegetation for these animals.
  相似文献   

12.
藜科植物的起源、分化和地理分布   总被引:27,自引:0,他引:27  
全球藜科植物共约130属1500余种,广泛分布于欧亚大陆、南北美洲、非洲和大洋洲的半干旱及盐碱地区。它基本上是一个温带科,对亚热带和寒温带也有一定的适应性。本文分析了该科包含的1l族的系统位置和分布式样,以及各个属的分布区,提出中亚区是现存藜科植物的分布中心,原始的藜科植物在古地中海的东岸即华夏陆台(或中国的西南部)发生,然后向干旱的古地中海沿岸迁移、分化,产生了环胚亚科主要族的原始类群;起源的时间可能在白垩纪初,冈瓦纳古陆和劳亚古陆进一步解体的时期。文章对其迁移途径及现代分布式样形成的原因进行了讨论。  相似文献   

13.
Numbers of species and genera,endemic genera,extant primitive genera,relationship and distribution patterns of presently living Chenopodiaceae(two subfamilies,12 tribes,and 118 genera)are analyzed and compared for eight distributional areas,namely central Asia,Europe,the Mediterranean region,Africa,North America,South America, Australia and East Asia. The Central Asia,where the number of genera and diversity of taxa are greater than in other areas,appears to be the center of distribution of extant Chenopodiaceae.North America and Australia are two secondary centers of distribution. Eurasia has 11 tribes out of the 12,a total of 70 genera of extant chenopodiaceous plants,and it contains the most primitive genera of every tribe. Archiatriplex of Atripliceae,Hablitzia of Hablitzeae,Corispermum of Corispermeae,Camphorosma of Camphorosmaea,Kalidium of Salicornieae,Polecnemum of Polycnemeae,Alexandra of Suaedeae,and Nanophyton of Salsoleae,are all found in Eurasia,The Beteae is an Eurasian endemic tribe,demonstrating the antiquity of the Chenopodiaceae flora of Eurasia.Hence,Eurasia is likely the place of origin of chenopodiaceous plants. The presence of chenopodiaceous plants is correlated with an arid climate.During the Cretaceous Period,most places of the continent of Eurasia were occupied by the ancient precursor to the Mediterranean,the Tethys Sea.At that time the area of the Tethys Sea had a dry and warm climate.Therefore,primitive Chenopodiaceae were likely present on the beaches of this ancient land.This arid climatic condition resulted in differentiation of the tribes Chenopodieae,Atripliceae,Comphorosmeae,Salicornieae,etc.,the main primitive tribes of the subfamily Cyclolobeae. Then following continental drift and the Laurasian and Gondwanan disintegration, the Chenopodiaceae were brought to every continent to propagate and develop, and experience the vicissitudes of climates, forming the main characteristics and distribution patterns of recent continental floras. The tribes Atripliceae, Chenopodieae, Camphorosmeae, and Salicornieae of recent Chenopodiaceae in Eurasia, North America, South America, southern Africa, and Australia all became strongly differentiated. However, Australia and South America, have no genera of Spirolobeae except for a few maritime Suaeda species. The Salsoleae and Suaedeae have not arrived in Australia and South America, which indicates that the subfamily Spirolobeae developed in Eurasia after Australia separated from the ancient South America-Africa continent, and South America had left Africa. The endemic tribe of North America, the tribe Sarcobateae, has a origin different from the tribes Salsoleae and Suaedeae of the subfamily Spirolobeae. Sarcobateae flowers diverged into unisexuality and absence of bractlets. Clearly they originated in North America after North America had left the Eurasian continent. North America and southern Africa have a few species of Salsola, but none of them have become very much differentiated or developed, so they must have arrived through overland migration across ancient continental connections. India has no southern African Chenopodiaceae floristic components except for a few maritime taxa, which shows that when the Indian subcontinent left Africa in the Triassic period, the Chenopodiaceae had not yet developed in Africa. Therefore, the early Cretaceous Period about 120 million years ago, when the ancient Gondwanan and Laurasian continents disintegrated, could have been the time of origin of Chenopodiaceae plants.The Chinese flora of Chenopodiaceae is a part of Chenopodiaceae flora of central Asia. Cornulaca alaschnica was discovered from Gansu, China, showing that the Chinese Chenopodiaceae flora certainly has contact with the Mediterranean Chenopodiaceae flora. The contact of southeastern China with the Australia Chenopodiaceae flora, however, is very weak.  相似文献   

14.
Abstract: A large collection of lizard vertebrae from northern Africa represents the oldest unambiguous occurrence of the genus Varanus. The fossils come from late Eocene and early Oligocene freshwater deposits of the Fayum, Egypt, an area noted for many significant primate finds. The recovery and identification of this material indicate that the genus Varanus arose in Africa, before dispersing to Australia and Asia. This dispersal occurred prior to the early to mid‐Miocene, by which time fossil Varanus are known from Australia and Eurasia. Although the dispersal route remains unknown, the lizard material reported here supports the hypothesis that a corridor existed allowing freshwater and terrestrial organisms to cross from Africa to Asia.  相似文献   

15.
Aim African–Asian disjunctions are common in palaeotropical taxa, and are typically explained by reference to three competing hypotheses: (1) ‘rafting’ on the Indian tectonic plate, enabling Africa‐to‐Asia dispersal; (2) migration via Eocene boreotropical forests; and (3) transoceanic long‐distance dispersal. These hypotheses are tested using Uvaria (Annonaceae), which is distributed in tropical regions of Africa, Asia and Australasia. Recent phylogenetic reconstructions of the genus show a clear correlation with geographical provenance, indicating a probable origin in Africa and subsequent dispersal to Asia and then Australasia. Ancestral areas and migration routes are inferred and compared with estimates of divergence times in order to distinguish between the prevailing dispersal hypotheses. Location Palaeotropics. Methods Divergence times in Uvaria are estimated by analysing the sequences of four DNA regions (matK, psbA–trnH spacer, rbcL and trnL–F) from 59 Uvaria species and 77 outgroup species, using a Bayesian uncorrelated lognormal (UCLD) relaxed molecular clock. The ancestral area of Uvaria and subsequent dispersal routes are inferred using statistical dispersal–vicariance analysis (s‐diva ). Results Uvaria is estimated to have originated in continental Africa 31.6 Ma [95% highest posterior density (HPD): 38.4–25.1 Ma] between the Middle Eocene and Late Oligocene. Two main migration events during the Miocene are identified: dispersal into Madagascar around 17.0 Ma (95% HPD: 22.3–12.3 Ma); and dispersal into Asia between 21.4 Ma (95% HPD: 26.7–16.7 Ma) and 16.1 Ma (95% HPD: 20.1–12.1 Ma). Main conclusions Uvaria fruits are widely reported to be consumed by primates, and are therefore unlikely candidates for successful long‐distance transoceanic dispersal. The other biogeographical hypotheses, involving rafting on the Indian tectonic plate, and dispersal via the European boreotropical forests associated with the Eocene thermal maximum, can be discounted due to incongruence with the divergence time estimates. An alternative scenario is suggested, involving dispersal across Arabia and central Asia via the tropical forests that developed during the late Middle Miocene thermal maximum (17–15 Ma), associated with the ‘out‐of‐Africa’ dispersal of primates. The probable route and mechanism of overland dispersal between Africa and Asia for tropical plant groups during the Miocene climatic optimum are clarified based on the Uvaria data.  相似文献   

16.
A new scheme of the phylogeny of the tribe Arctiini is proposed. The Western Mediterranean genus Atlantarctia is considered the most primitive one in the tribe; the rest of genera form two large clades Arctia-Pericallia and Gonerda-Platyprepia. The first clade is supposed to have been subjected to radiation in western Eurasia, and the second clade, in Asia and North America in the Palaeogene when the eastern part of Asia was isolated from western Eurasia. Subsequently, most probably in the Neogene-Pleistocene, representatives of both clades spread over the whole Eurasia and North America. The Arctiini fauna of the tundra zone, which includes the genera Acerbia and Pararctia, was formed in Asia and North America, whereas the subboreal fauna (both steppe and nemoral) originated in western Eurasia. The boreal genus Borearctia has most likely also originated in Asia.  相似文献   

17.

Background

The family Phyllanthaceae has a predominantly pantropical distribution. Of its several genera, Bridelia Willd. is of a special interest because it has disjunct equally distributed species in Africa and tropical Asia i.e. 18–20 species in Africa-Madagascar (all endemic) and 18 species in tropical Asia (some shared with Australia). On the basis of molecular phylogenetic study on Bridelia, it has been suggested that the genus evolved in Southeast Asia around 33±5 Ma, while speciation and migration to other parts of the world occurred at 10±2 Ma. Fossil records of Bridelia are equally important to support the molecular phylogenetic studies and plate tectonic models.

Results

We describe a new fossil leaf of Bridelia from the late Oligocene (Chattian, 28.4–23 Ma) sediments of Assam, India. The detailed venation pattern of the fossil suggests its affinities with the extant B. ovata, B. retusa and B. stipularis. Based on the present fossil evidence and the known fossil records of Bridelia from the Tertiary sediments of Nepal and India, we infer that the genus evolved in India during the late Oligocene (Chattian, 28.4–23 Ma) and speciation occurred during the Miocene. The stem lineage of the genus migrated to Africa via “Iranian route” and again speciosed in Africa-Madagascar during the late Neogene resulting in the emergence of African endemic clades. Similarly, the genus also migrated to Southeast Asia via Myanmar after the complete suturing of Indian and Eurasian plates. The emergence and speciation of the genus in Asia and Africa is the result of climate change during the Cenozoic.

Conclusions

On the basis of present and known fossil records of Bridelia, we have concluded that the genus evolved during the late Oligocene in northeast India. During the Neogene, the genus diversified and migrated to Southeast Asia via Myanmar and Africa via “Iranian Route”.  相似文献   

18.
The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginning c. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (Pycna Amyot & Audinet‐Serville, Yanga Distant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genus Platypleura is recovered as polyphyletic, with Platypleura signifera Walker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a new Platypleura concept is proposed with the synonymization of Azanicada Villet syn.n. The genera Orapa Distant and Hamza Distant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapini syn.n . is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability.  相似文献   

19.
Nacholapithecus kerioi is a large‐sized hominoid from the Aka Aiteputh Formation (15 Ma) in Nachola, northern Kenya. 1 While eight large‐sized hominoid species dating to the late Early to early Middle Miocene (17‐14 Ma) are known in Afro‐Arabia and western Eurasia, 2 - 6 the facial and postcranial anatomy of these apes is poorly known. However, much has been learned of the craniodental and postcranial anatomy of N. kerioi over the last ten years (A list of published specimens is available online, accompanying this article), and it plays a key role in our understanding of hominoid evolution in the Early to Middle Miocene of Africa and Eurasia. Importantly, it bears on the interpretation of the hominoid Morotopithecus bishopi from 20.6 my‐old Uganda. 7 - 10 In the article, we provide information on the anatomy and adaptations of N. kerioi as well as on the site of Nachola, and discuss how our current knowledge of N. kerioi can be incorporated into scenarios of hominoid evolution.  相似文献   

20.
Abstract

The Neogene snake fauna from the central and eastern regions of Eurasia is still largely unknown. This paper reports on a unique snake fauna from the late middle Miocene of the Baikadam and Malyi Kalkaman 1 and 2 localities, northeastern Kazakhstan, which represents the best-documented Miocene snake assemblage in Central Asia. Previous studies admitted that snake fauna could be homogeneous over a large part of Eurasia during the Miocene, with the late middle to early late Miocene assemblages similar to snake assemblages that inhabited Europe in the late early and early middle Miocene. This assumption is partially supported by the presence of Texasophis bohemiacus and Coluber cf. hungaricus, as well as vipers of the ‘V. aspis’ complex. However, the presence of taxa which are (1) probably not related to European representatives (‘Colubrinae’ A and B), (2) probably never occurred in Central and Western Europe and (3) are closely related to species recently inhabiting southern Siberia (Elaphe aff. dione, Gloydius sp.) indicates that faunal dissimilarity was relatively high within Eurasia during the late middle Miocene. This assumption is in accordance with studies of small mammal assemblages which show a decreasing homogenity in the Eurasia in the course of the middle Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号