首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The evolution of venom in advanced snakes has been a focus of long-standing interest. Here we provide the first complete amino acid sequence of a colubrid toxin, which we have called -colubritoxin, isolated from the Asian ratsnake Coelognathus radiatus (formerly known as Elaphe radiata), an archetypal nonvenomous snake as sold in pet stores. This potent postsynaptic neurotoxin displays readily reversible, competitive antagonism at the nicotinic receptor. The toxin is homologous with, and phylogenetically rooted within, the three-finger toxins, previously thought unique to elapids, suggesting that this toxin family was recruited into the chemical arsenal of advanced snakes early in their evolutionary history. LC-MS analysis of venoms from most other advanced snake lineages revealed the widespread presence of components of the same molecular weight class, suggesting the ubiquity of three-finger toxins across advanced snakes, with the exclusion of Viperidae. These results support the role of venom as a key evolutionary innovation in the early diversification of advanced snakes and provide evidence that forces a fundamental rethink of the very concept of nonvenomous snake.  相似文献   

2.
We report the proteomic characterization of the Central American pitvipers Atropoides nummifer and Atropoides picadoi. The crude venoms were fractionated by reverse-phase high-performance liquid chromatography (HPLC), followed by analysis of each chromatographic fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), N-terminal sequencing, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass fingerprinting, and collision-induced dissociation-tandem mass spectrometry (CID-MS/MS) of tryptic peptides. Each venom contained a number of bradykinin-potentiating peptides and around 25-27 proteins of molecular masses in the range of 7-112 kDa, belonging to only nine different toxin families (disintegrin, DC fragment, snake venom vascular endothelial growth factor, phospholipases A2, serine protease, cysteine-rich secretory proteins, C-type lectins, L-amino acid oxidase, and Zn2+-dependent metalloproteases), albeit distinctly distributed among the two Atropoides species. In addition, A. nummifer expresses low amounts of a three-finger toxin not detected in the venom of A. picadoi. The major toxins of A. nummifer belong to the PLA2 (relative abundance, 36.5%) and the serine proteinase (22%) families, whereas the most abundant A. picadoi toxins are Zn2+-dependent metalloproteinases (66.4%). We estimate that the similarity of venom proteins between the two Atropoides taxa may be around 14-16%. The high degree of differentiation in the venom proteome among congeneric taxa emphasizes unique aspects of venom composition of related species of Atropoides snakes and points to a strong role for adaptive diversification via natural selection as a cause of this distinctiveness. On the other hand, their distinct venom toxin compositions provide clues for rationalizing the low hemorrhagic, coagulant, and defibrinating activities and the high myotoxic and proteolytic effects evoked by A. nummifer snakebite in comparison to other crotaline snake venoms and the high hemorrhagic activity of A. picadoi.  相似文献   

3.
4.
5.
6.
7.
Snake venom peptidomes are valuable sources of pharmacologically active compounds. We analyzed the peptidic fractions (peptides with molecular masses < 10,000 Da) of venoms of Vipera ammodytes meridionalis (Viperinae), the most toxic snake in Europe, and Bothrops jararacussu (Crotalinae), an extremely poisonous snake of South America. Liquid chromatography/mass spectrometry (LC/MS), direct infusion electrospray mass spectrometry (ESI-MS) and matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were applied to characterize the peptides of both snake venoms. 32 bradykinin-potentiating peptides (BPPs) were identified in the Crotalinae venom and their sequences determined. 3 metalloproteinase inhibitors, 10 BPPs and a Kunitz-type inhibitor were observed in the Viperinae venom peptidome. Variability in the C-terminus of homologous BPPs was observed, which can influence the pharmacological effects. The data obtained so far show a subfamily specificity of the venom peptidome in the Viperidae family: BPPs are the major peptide component of the Crotalinae venom peptidome lacking Kunitz-type inhibitors (with one exception) while the Viperinae venom, in addition to BPPs, can contain peptides of the bovine pancreatic trypsin inhibitor family. We found indications for a post-translational phosphorylation of serine residues in Bothrops jararacussu venom BPP (S[combining low line]QGLPPGPPIP), which could be a regulatory mechanism in their interactions with ACE, and might influence the hypotensive effect. Homology between venom BPPs from Viperidae snakes and venom natriuretic peptide precursors from Elapidae snakes suggests a structural similarity between the respective peptides from the peptidomes of both snake families. The results demonstrate that the venoms of both snakes are rich sources of peptides influencing important physiological systems such as blood pressure regulation and hemostasis. The data can be used for pharmacological and medical applications.  相似文献   

8.
Efforts to describe toxins from the two major families of venomous snakes (Viperidae and Elapidae) usually reveal proteins belonging to few structural types, particular of each family. Here we carried on an effort to determine uncommon cDNAs that represent possible new toxins from Lachesis muta (Viperidae). In addition to nine classes of typical toxins, atypical molecules never observed in the hundreds of Viperidae snakes studied so far are highly expressed: a diverging C-type lectin that is related to Viperidae toxins but appears to be independently originated; an ohanin-like toxin, which would be the third member of the most recently described class of Elapidae toxins, related to human butyrophilin and B30.2 proteins; and a 3FTx-like toxin, a new member of the widely studied three-finger family of proteins, which includes major Elapidae neurotoxins and CD59 antigen. The presence of these common and uncommon molecules suggests that the repertoire of toxins could be more conserved between families than has been considered, and their features indicate a dynamic process of venom evolution through molecular mechanisms, such as multiple recruitments of important scaffolds and domain exchange between paralogs, always keeping a minimalist nature in most toxin structures in opposition to their nontoxin counterparts.  相似文献   

9.
10.
Snake venom proteins acting on hemostasis   总被引:15,自引:0,他引:15  
Braud S  Bon C  Wisner A 《Biochimie》2000,82(9-10):851-859
The venoms of Viperidae and Crotalidae snakes are a rich source of proteins with activity against various factors involved in coagulation and fibrinolysis. These proteins are very specific for their molecular targets, resistant to physiological inhibitors and stable in vitro and in vivo. They have therefore proved to be useful for diagnostic tests. Based on sequence similarities, these snake venom proteins have been classified into various families, such as serine proteinases, metalloproteinases, C-type lectins, disintegrins and phospholipases A(2). The various members of a given family, although structurally similar, act selectively on different blood coagulation factors. This opens up the possibility of characterizing the structural elements involved in target molecule recognition. Thus, snake venom proteins provide excellent models for studies of structure-function relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号