首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the comparative proteomic characterization of the venoms of two related neotropical arboreal pitvipers from Costa Rica of the genus Bothriechis, B. lateralis (side-striped palm pit viper) and B. schlegelii (eyelash pit viper). The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venom proteomes of B. lateralis and B. schlegelii comprise similar number of distinct proteins belonging, respectively, to 8 and 7 protein families. The two Bothriechis venoms contain bradykinin-potentiating peptides (BPPs), and proteins from the phospholipase A 2 (PLA 2), serine proteinase, l-amino acid oxidase (LAO), cysteine-rich secretory protein (CRISP), and Zn (2+)-dependent metalloproteinase (SVMP) families, albeit each species exhibit different relative abundances. Each venom also contains unique components, for example, snake venom vascular endothelial growth factor (svVEGF) and C-type lectin-like molecules in B. lateralis, and Kazal-type serine proteinase inhibitor-like proteins in B. schlegelii. Using a similarity coefficient, we estimate that the similarity of the venom proteins between the two Bothriechis taxa may be <10%, indicating a high divergence in their venom compositions, in spite of the fact that both species have evolved to adapt to arboreal habits. The major toxin families of B. lateralis and B. schlegelii are SVMP (55% of the total venom proteins) and PLA 2 (44%), respectively. Their different venom toxin compositions provide clues for rationalizing the distinct signs of envenomation caused by B. schlegelii and B. lateralis. An antivenomic study of the immunoreactivity of the Instituto Clodomiro Picado (ICP) polyvalent antivenom toward Bothriechis venoms revealed that l-amino acid oxidase and SVMPs represent the major antigenic protein species in both venoms. Our results provide a ground for rationalizing the reported protection of the ICP polyvalent antivenom against the hemorrhagic, coagulant, defibrinating, caseinolytic and fibrin(ogen)olytic activities of Bothriechis ( schlegelii, lateralis) venoms. However, these analyses also evidenced the limited recognition capability of the polyvalent antivenom toward a number of Bothriechis venom components, predominantly BPPs, svVEGF, Kazal-type inhibitors, some PLA 2 proteins, some serine proteinases, and CRISP molecules.  相似文献   

2.
3.
4.
5.
Myotoxic phospholipases A2 of class II are commonly found in the venoms of crotalid snakes. As an approach to understanding their structure-activity relationship, diverse natural variants have been characterized biochemically and pharmacologically. This study describes a new myotoxic phospholipase A2 homologue, isolated from the venom of Atropoides (Bothrops) nummifer from Costa Rica. A. nummifer myotoxin 1 is a basic protein, with an apparent subunit molecular mass of 16 kDa, which migrates as a dimer in sodium dodecylsulfate-polyacrylamide gel electrophoresis under nonreducing conditions. It is strongly recognized by antibodies generated against Bothrops asper myotoxin II, by enzyme-immunoassay. The toxin induces rapid myonecrosis upon intramuscular injection in mice (evidenced by an early increase in plasma creatine kinase activity), and significant edema in the footpad assay. It also displays cytolytic activity upon cultured murine endothelial cells. The toxin (up to 50 microg) has no detectable phospholipase A2 activity on egg yolk phospholipids, and does not show an anticoagulant effect on sheep platelet-poor plasma in vitro. N-terminal sequence determination (53 amino acid residues) demonstrated that A. nummifer myotoxin II is a new Lys49 variant of the family of myotoxic, class II phospholipases A2. Sequence comparison with other phospholipases A2 revealed Asn53 as a novel substitution. In addition, this myotoxin is the first Lys49 variant presenting Asn in its N-terminus. Consequently, these findings suggest that neither Ser1 or Lys53, usually found in this family of proteins, are essential amino acid residues for their myotoxic, cytolytic, or edema-inducing effects.  相似文献   

6.
We analyzed the origin and evolution of snake venom toxin families represented in both viperid and elapid snakes by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. Out of eight toxin families analyzed, five provided clear evidence of recruitment into the snake venom proteome before the diversification of the advanced snakes (Kunitz-type protease inhibitors, CRISP toxins, galactose-binding lectins, M12B peptidases, nerve growth factor toxins), and one was equivocal (cystatin toxins). In two others (phospholipase A(2) and natriuretic toxins), the nonmonophyly of venom toxins demonstrates that presence of these proteins in elapids and viperids results from independent recruitment events. The ANP/BNP natriuretic toxins are likely to be basal, whereas the CNP/BPP toxins are Viperidae only. Similarly, the lectins were recruited twice. In contrast to the basal recruitment of the galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the alpha-chains and beta-chains resulting from an early duplication event. These results provide strong additional evidence that venom evolved once, at the base of the advanced snake radiation, rather than multiple times in different lineages, with these toxins also present in the venoms of the "colubrid" snake families. Moreover, they provide a first insight into the composition of the earliest ophidian venoms and point the way toward a research program that could elucidate the functional context of the evolution of the snake venom proteome.  相似文献   

7.
8.
Snakebite envenoming remains a neglected tropical disease which poses severe health hazard, especially for the rural inhabitants in Africa. In Nigeria, vipers are responsible for the highest number of deaths. Hydrophilic interaction liquid chromatography coupled with LC-MS/MS was used to analyze the crude venoms of Echis ocellatus (Carpet viper) and Bitis arietans (Puff adder) in order to understand their venom proteomic identities. Results obtained revealed that gel-free proteomic analysis of the crude venoms led to the identification of 85 and 79 proteins, respectively. Seventy-eight (78) proteins were common between the two snake species with a 91.8% similarity score. The identified proteins belong to 18 protein families in E. ocellatus and 14 protein families in B. arietans. Serine proteases (22.31%) and metalloproteinases (21.06%) were the dominant proteins in the venom of B. arietans; while metalloproteinases (34.84%), phospholipase A2s (21.19%) and serine proteases (15.50%) represent the major toxins in the E. ocellatus venom. Other protein families such as three-finger toxins and cysteine-rich venom proteins were detected in low proportions. This study provides an insight into the venom proteomic analysis of the two Nigerian viper species, which could be useful in identifying the toxin families to be neutralized in case of envenomation.  相似文献   

9.
Venoms from the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei were analyzed by RP-HPLC, N-terminal sequencing, MALDI-TOF mass fingerprinting and CID-MS/MS. The venom proteins of M.l. obtusa and V. raddei belong to 9 and 11 families, respectively. The two mountain viper venoms share bradykinin-potentiating/C-natriuretic peptides, and proteins from the dimeric distegrin, DC-fragment, CRISP, PLA(2), serine proteinase, C-type lectin-like, L-amino acid oxidase, and Zn(2+)-dependent metalloproteinase families, albeit each species exhibits distinct relative abundances. M.l. obtusa and V. raddei venoms contain unique components, e.g. the short disintegrin obtustatin in M.l. obtusa, and Kunitz-type serine proteinase inhibitor and VEGF-like molecules in V. raddei. The toxin formulation of M.l. obtusa and V. raddei venoms may be related to their adaptation to rocky mountain ecosystems. On the other hand, the possibility that the VEGF-like proteins from V. raddei underlie the reported potential therapeutic value of V. raddei venom for regenerating damaged peripheral nerves deserves further investigations. Using a similarity coefficient, we estimate that the similarity of venom proteins between M. l. obtusa and M. l. transmediterranea is less than 4%. Although this result would support the classification of M.l. obtusa and M.l. transmediterranea as different species, additional detailed genomic analyses are also required.  相似文献   

10.
11.
A new phospholipase A(2) (PLA(2))-inhibitory protein was isolated from the plasma of Atropoides nummifer, a crotaline snake from Central America. This inhibitor was named AnMIP, given its ability to neutralize the activity of basic PLA(2) myotoxins of its own and related venoms. The cDNA of AnMIP was cloned and sequenced, showing that it belongs to the alpha group of phospholipase A(2) inhibitors (PLIs). AnMIP appears as a homotrimer in the native state, held together by non-covalent forces, with a subunit molecular mass of 22,247-22,301 and an isoelectric point of 4.1-4.7. This trimeric structure is the first observed in a PLIalpha from American crotaline snakes, previously reported only in Asian species. Sequencing, mass spectrometry, and analytical isoelectrofocusing indicated the existence of isoforms, as reported for other PLIalphas isolated from snake plasma. The inhibitory profile of AnMIP showed specificity towards group II PLA(2)s, either belonging to the catalytically-active (D49) or -inactive (K49) subtypes, exemplified in this study by Bothrops asper myotoxin I and A. nummifer myotoxin II, respectively. By phylogenetic analysis it was shown that AnMIP is closely related to CgMIP-II, previously isolated from the plasma of Cerrophidion godmani, showing 93% amino acid sequence identity.  相似文献   

12.
13.
14.
The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase A 2 and proteolytic activities of these venoms.  相似文献   

15.
The protein composition of the venoms of the three subspecies of Sistrurus catenatus (S. c. catenatus, tergeminus, and edwardsii) and a basal species, Sistrurus miliarius barbouri, were analyzed by RP-HPLC, N-terminal sequencing, MALDI-TOF peptide mass fingerprinting, and CID-MS/MS. The venoms of the four Sistrurus taxa contain proteins from 11 families. The protein family profile and the relative abundance of each protein group in the different venoms are not conserved. Myotoxins and 2-chain PLA2s were detected only in S.c. catenatus and S.c. tergeminus, whereas C-type BPP and Kunitz-type inhibitors were exclusively found in S.c. edwardsii and Sistrurus miliarius barbouri. Among major protein families, taxa were most similar in their metalloproteases (protein similarity coefficient value: 34%) and most divergent in PLA2s (12%), with values for disintegrins and serine proteases lying between these extremes (25 and 20%, respectively). The patterns of venom diversity points to either a gain in complexity in S. catenatus taxa or a loss of venom diversity occurring early on in the evolution of the group involving the lineage connecting S. milarius to the other taxa. The high degree of differentiation in the venom proteome among recently evolved congeneric taxa emphasizes the uniqueness of the venom composition of even closely related species that have different diets. Comparative proteomic analysis of Sistrurus venoms provides a comprehensive catalog of secreted proteins, which may contribute to a deeper understanding of the biology and ecology of these North American snakes and may also serve as a starting point for studying structure-function correlations of individual toxins.  相似文献   

16.
The venom proteomes of populations of the highly venomous taipan snake, Oxyuranus scutellatus, from Australia and Papua New Guinea (PNG), were characterized by reverse-phase HPLC fractionation, followed by analysis of chromatographic fractions by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. Proteins belonging to the following seven protein families were identified in the two venoms: phospholipase A(2) (PLA(2)), Kunitz-type inhibitor, metalloproteinase (SVMP), three-finger toxin (3FTx), serine proteinase, cysteine-rich secretory proteins (CRISP), and coagulation factor V-like protein. In addition, C-type lectin/lectin-like protein and venom natriuretic peptide were identified in the venom of specimens from PNG. PLA(2)s comprised more than 65% of the venoms of these two populations. Antivenoms generated against the venoms of these populations showed a pattern of cross-neutralization, corroborating the immunological kinship of these venoms. Toxicity experiments performed in mice suggest that, at low venom doses, neurotoxicity leading to respiratory paralysis represents the predominant mechanism of prey immobilization and death. However, at high doses, such as those injected in natural bites, intravascular thrombosis due to the action of the prothrombin activator may constitute a potent and very rapid mechanism for killing prey.  相似文献   

17.
We studied the ability of the polyvalent antivenom produced in Costa Rica to neutralize lethal, hemorrhagic, edema-forming, proteolytic, hemolytic, hyaluronidase and fibrinolytic activities of the venoms of Bothrops asper and B. nummifer from Honduras, and of Agkistrodon bilineatus and Crotalus durissus durissus from Guatemala. Neutralizing ability of antivenom was expressed as ED50 (effective dose 50%), defined as the antivenom/venom ratio at which the activity of the venom is reduced 50%. Antivenom is highly effective in the neutralization of lethal, hemorrhagic, hemolytic, hyaluronidase, and caseinolytic activities of B. asper, B. nummifer, and C. d. durissus venoms. In the case of B. nummifer venom, neutralization of fibrinolytic effect was only partial, whereas this activity was adequately neutralized when studying the venoms of B. asper and C. d. durissus. The venom of A. bilineatus was adequately neutralized by the antivenom, with the only exception of hemolytic effect that was reduced only partially. However, in quantitative terms, a relatively large volume of antivenom was required to neutralize some effects induced by A. bilineatus venom. Regarding edema-forming activity, antivenom neutralized efficiently the venoms of B. asper and A. bilineatus, whereas that of B. nummifer was neutralized only partially; on the other hand, edema induced by the venom of C. d. durissus was not neutralized at all. Immunochemical results indicate a close immunological relationship between venoms of B. asper, B. nummifer and C. d. durissus collected in Honduras and Guatemala with those of the same species collected in Costa Rica. Interspecies comparison, however, showed variation between venoms obtained from different species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We report the proteomic characterization of venom of the pitvipers Bothrops cotiara and Bothrops fonsecai. Crude venoms were fractionated by reverse-phase HPLC, followed by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and CID-MS/MS. Each venom contained around 30 proteins in the range of 7-110 kDa belonging to only 8 (B. cotiara) and 9 (B. fonsecai) families which may target the hemostatic system, albeit distinctly distributed among the two species. B. cotiara and B. fonsecai share medium-sized disintegrins, disintegrin-like/cysteine-rich (DC) fragments, snake venom vascular endothelial growth factor, cysteine-rich secretory proteins, serine proteinases, C-type lectins, l-amino acid oxidase, and Zn(2+)-dependent metalloproteinases. In addition, B. fonsecai expresses a high abundance PLA(2) molecule (13,890 Da), whereas PLA(2) molecules were not detected in B. cotiara's venom. This striking finding is in line with previous biochemical analyses showing the absence of phospholipasic activity in the venom of B. cotiara. The potential adaptive significance of the lack of PLA(2) molecules is enigmatic, and alternative explanations are discussed. B. fonsecai is morphologically extremely similar to B. cotiara. Our comparative proteomic analysis shows that compositional differences between their venoms can be employed as a taxonomy signature for unambiguous species identification independently of geographic origin and morphological characteristics.  相似文献   

19.
20.
Myotoxin II, a Lys49 catalytically inactive phospholipase A(2) homologue from Atropoides nummifer venom, was purified, characterized and crystallized. The crystals belongs to the tetragonal system, space group P4(3)2(1)2, with unit cell parameters (a=b=68.66 and c=63.87 angstroms). Diffraction data were collected to a resolution of 2.32 angstroms. The crystal structure is currently being determined using molecular replacement techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号