首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of two HMW glutenin subunit genes from Taenitherum Nevski   总被引:1,自引:0,他引:1  
Yan ZH  Wei YM  Wang JR  Liu DC  Dai SF  Zheng YL 《Genetica》2006,127(1-3):267-276
The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.  相似文献   

2.
Liu S  Zhu X  Tan Y  Liu S 《Gene》2012,499(1):154-159
The St genome, which is present in nearly half of all Triticeae species, originates from the genus Pseudoroegneria. However, very little is known about the high molecular weight (HMW) subunits of glutenin which are encoded by the St genome. In this paper, we report the isolation from Pd. libanotica of four sequences encoding HMW subunits of glutenin. The four genes were all small compared to standard glutenin genes. All four sequences resemble y-type glutenins rather than x-types. However, their N-terminal domains contain a glutamine residue which is present in all x-type, but very few y-type subunits, and their central repetitive domains included some irregular motifs. The indication is therefore that the Glu-1St genes evolved earlier than other modern day homoeologues, so that they represent an intermediate state in the divergence between x- and y-type subunits. No x-type Glu-1St subunit genes were identified.  相似文献   

3.
The high molecular weight glutenin subunit (HMW-GS) pair 1Bx13+1By16 are recognized to positively correlate with bread-making quality; however, their molecular data remain unknown. In order to reveal the mechanism by which 1By16 and 1Bx13 creates high quality, their open reading frames (ORFs) were amplified from common wheat Atlas66 and Jimai 20 using primers that were designed based on published sequences of HMW glutenin genes. The ORF of 1By16 was 2220bp, deduced into 738 amino acid residues with seven cysteines including 59 hexapeptides and 22 nanopeptides motifs. The ORF of 1Bx13 was 2385bp, deduced into 795 amino acid residues with four cysteines including 68 hexapeptides, 25 nanopeptides and six tripepUdes motifs. We found that 1By16 was the largest y-type HMW glutenin gene described to date in common wheat. The 1By16 had 36 amino acid residues inserted in the central repetitive domain compared with 1By15. Expression in bacteria and western-blot tests confirmed that the sequence cloned was the ORF of HMW-GS 1By16, and that 1Bx13 was one of the largest 1Bx genes that have been described so far in common wheat, exhibiting a hexapeptide (PGQGQQ) insertion in the end of central repetitive domain compared with 1Bx7. A phylogenetic tree based on the deduced full-length amino acid sequence alignment of the published HMW-GS genes showed that the 1By16 was clustered with Glu-1B-2, and that the 1Bx13 was clustered with Glu-1B-1 alleles.  相似文献   

4.
The Ns genome of the genus Psathyrostachys possesses superior traits useful for wheat improvement. However, very little is known about the high molecular weight (HMW) subunits of glutenin encoded by the Ns genome. In this paper, we report the isolation of four alleles of HMW glutenin subunit gene from Psathyrostachys juncea. Sequence alignment data shows the four alleles have similar primary structure with those in wheat and other wheat-related grasses, with some unique modifications. All four sequences more closely resemble y-type, rather than x-type, glutenins. However, our results show three of the subunits (1Ns2-4) contain an extra glutamine residue in the N-terminal region not found on typical y-type subunits, as well as the x-type subunit specific sequence LAAQLPAMCRL. These three subunits likely represent an intermediate state in the divergence between x- and y-type subunits. Results also indicate that the Ns genome is more closely related to the St genome of Pseudoroegneria than any other Triticeae genomes.  相似文献   

5.
High-molecular-weight (HMW) glutenin subunits are a particular class of wheat endosperm proteins containing a large repetitive domain flanked by two short N- and C-terminal non-repetitive regions. Deletions and insertions within the central repetitive domain has been suggested to be mainly responsible for the length variations observed for this class of proteins. Nucleotide sequence comparison of a number of HMW glutenin genes allowed the identification of small insertions or deletions within the repetitive domain. However, only indirect evidence has been produced which suggests the occurrence of substantial insertions or deletions within this region when a large variation in molecular size is present between different HMW glutenin subunits. This paper represents the first report on the molecular characterization of an unusually large insertion within the repetitive domain of a functional HMW glutenin gene. This gene is located at the Glu-D1 locus of a hexaploid wheat genotype and contains an insertion of 561 base pairs that codes for 187 amino acids corresponding to the repetitive domain of a HMW glutenin subunit encoded at the same locus. The precise location of the insertion has been identified and the molecular processes underlying such mutational events are discussed.  相似文献   

6.
Sun M  Yan Y  Jiang Y  Xiao Y  Hu Y  Cai M  Li Y  Hsam SL  Zeller FJ 《Hereditas》2004,141(1):46-54
Cultivated emmer (Triticum dicoccum, 2n = 4x = 28, AABB) is closely related to bread wheat and possesses extensive allelic variations in high molecular weight glutenin subunit (HMW-GS) composition. These alleles may be an important genetic resource for wheat quality improvement. To isolate and clone HMW-GS genes from cultivated emmer, two pairs of allele-specific (AS) PCR primers were designed to amplify the coding sequence of y-type HMW-GS genes and their upstream sequences, respectively. The results showed that single bands of strong amplification were obtained through AS-PCR of genomic DNA from emmer. After cloning and sequencing the complete sequence of coding and 5'-flanking regions of a y-type subunit gene at Glu-A1 locus was obtained. Nucleotide and deduced amino acid sequences analysis showed that this gene possessed a similar structure as the previously reported Ay gene from common wheat, and is hence designated as Ay1d. The distinct feature of the Ay1d gene is that its coding region contains four stop codons and its upstream region has a 85-bp deletion in the same position of the Ay gene, which are probably responsible for the silencing of y-type subunit genes at Glu-A1 locus. Phylogenetic analysis of HMW glutenin subunit genes from different Triticum species and genomes were also carried out.  相似文献   

7.
A cloned 8.2 kb EcoRI fragment has been isolated from a genomic library of DNA derived from Triticum aestivum L. cv. Cheyenne. This fragment contains sequences related to the high molecular weight (HMW) subunits of glutenin, proteins considered to be important in determining the elastic properties of gluten. The cloned HMW subunit gene appears to be derived from chromosome 1A. The nucleotide sequence of this gene has provided new information on the structure and evolution of the HMW subunits. However, hybrid-selection translation experiments suggest that this gene is silent.  相似文献   

8.
Considerable progress has been made in understanding the structure, function and genetic regulation of high-molecular-weight (HMW) glutenin subunits in hexaploid wheat. In contrast, less is known about these types of proteins in wheat related species. In this paper, we report the analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species, Aegilops umbellulata (UU) and Aegilops caudata (CC). SDS-PAGE analysis demonstrated that, for each of the four Ae. umbellulata accessions, there were two HMW glutenin subunits (designated here as 1Ux and 1Uy) with electrophoretic mobilities comparable to those of the x- and y-type subunits encoded by the Glu-D1 locus, respectively. In our previous study involving multiple accessions of Ae. caudata, two HMW glutenin subunits (designated as 1Cx and 1Cy) with electrophoretic mobilities similar to those of the subunits controlled by the Glu-D1 locus were also detected. These results indicate that the U genome of Ae. umbellulata and the C genome of Ae. caudata encode HMW glutenin subunits that may be structurally similar to those specified by the D genome. The complete open reading frames (ORFs) coding for x- and y-type HMW glutenin subunits in the two diploid species were cloned and sequenced. Analysis of deduced amino acid sequences revealed that the primary structures of the x- and y-type HMW glutenin subunits of the two Aegilops species were similar to those of previously published HMW glutenin subunits. Bacterial expression of modified ORFs, in which the coding sequence for the signal peptide was removed, gave rise to proteins with electrophoretic mobilities identical to those of HMW glutenin subunits extracted from seeds, indicating that upon seed maturation the signal peptide is removed from the HMW glutenin subunit in the two species. Phylogenetic analysis showed that 1Ux and 1Cx subunits were most closely related to the 1Dx type subunit encoded by the Glu-D1 locus. The 1Uy subunit possessed a higher level of homology to the 1Dy-type subunit compared with the 1Cy subunit. In conclusion, our study suggests that the Glu-U1 locus of Ae. umbellulata and the Glu-C1 locus of Ae. caudata specify the expression of HMW glutenin subunits in a manner similar to the Glu-D1 locus. Consequently, HMW glutenin subunits from the two diploid species may have potential value in improving the processing properties of hexaploid wheat varieties.  相似文献   

9.
Guo ZF  Yan ZH  Wang JR  Wei YM  Zheng YL 《Hereditas》2005,142(2005):56-64
The high-molecular-weight (HMW) prolamines subunits and their coding sequences from wheat-related diploid species Crithopsis delileana were investigated. Only one HMW prolamine subunit with the similar electrophoresis mobility to the y-type HMW glutenin subunit of hexaploid wheat was observed in two accessions of C. delileana by SDS-PAGE analyses of the total storage protein fractions. It was confirmed by sequencing and expression analysis that this prolamine subunit was an x-type subunit. The amino acid sequence of this subunit had the similar typical structure to those of x-type HMW glutenin genes previously described in wheat. An in-frame stop codon was found in the coding sequences of y-type prolamine subunits. It was found by specifically extraction of HMW prolamines and sequence analysis that the coding regions of Ky prolamine subunit gene is very likely to be not expressed as a full-length protein. Phylogenetic analysis indicated that the Kx subunit could be clustered together with 1Ax1 subunit by an interior paralleled branch, and Ky subunit (inactive) was most closely related to the 1Ay subunit. The coding sequences of Kx subunit could successfully be expressed in bacterial expression system, and the expressed protein had the same electrophoresis mobility as the Kx subunit from the seed of C. delileana. It was the first time that the HMW prolamines subunits encoded by K genome of C. delileana were characterized.  相似文献   

10.
We describe the sequence of a gene encoding a high molecular weight glutenin subunit (HMW-GS) expressed in the endosperm of the wheat relative Australopyrum retrofractum. Although the subunit has a similar primary structure to that HMW-GS genes present in other Triticeae species, its N-terminal domain is shorter, its central repetitive domain includes a unique dodecameric motif, and its C-terminal domain contain an extra cysteine residue. A phylogenetic analysis showed that the Glu-W1 gene is neither a true x- nor a true y-type subunit, although it is more closely related to the y-type genes present in the K and E genomes than to any other published HMW-GS gene. All these results indicated that this novel subunit may undergo a special evolutionary process different from other Triticeae species. A flour supplementation experiment showed that the Glu-W1 subunit has a negative effect on dough quality, which might be the result of interaction between the two closely placed cysteine residues in the C-terminal region.  相似文献   

11.
利用SDS-PAGE检测了2份类大麦属(Crithopsis delileana)材料的高分子量谷蛋白亚基组成,并对其中1份材料的x型亚基进行了克隆和测序。结果表明,2份材料具有完全相同的蛋白电泳图谱。在小麦的高分子量区域仅检测到一条蛋白质带,与小麦y型亚基的迁移率接近,但克隆测序表明其为x型高分子量谷蛋白亚基,其编码基因命名为Kx。Kx基因编码区序列长度为2052bp.编码长度为661个氨基酸残基的蛋白质,其序列具有典型的x型高分子量谷蛋白亚基的特征。Kx基因能在原核表达系统内正确表达,其表达蛋白与来源于种子中的Kx亚基的迁移率完全一致。Kx亚基与小麦属A、B和D,山羊草属C和U以及黑麦属R染色体组编码的高分子量谷蛋白亚基氨基酸序列非常相似,但在N和C保守区的氨基酸组成以及重复区长度上与它们存在明显差异。聚类分析可将Kx与Ax1聚类为平行的分支。由此可见,来源于C.delileana的Kx基因为一新的x型高分子量谷蛋白亚基基因。  相似文献   

12.
应用简并性引物和基因组PCR反应从乌拉尔图小麦(Triticum urartu)不同种质材料中获得并测定了表达型和沉默型1Ay高分子量麦谷蛋白亚基基因全长编码区的基因组DNA序列.表达型1Ay基因编码区的序列与前人已发表的y型高分子量麦谷蛋白亚基基因编码区的序列高度同源,由其推导的1Ay亚基的一级结构与已知的高分子量麦谷蛋白亚基相似.在细菌细胞中,表达型1Ay基因编码区的克隆序列可经诱导而产生1Ay蛋白,该蛋白与种子中1Ay亚基在电泳迁移率和抗原性上类似,表明所克隆的序列真实地代表了表达型1Ay基因的全长编码区.但是,本研究所克隆的沉默型1Av基因的编码区序列因含有3个提前终止子而不能翻译成完整的1Ay蛋白.讨论了表达型1Ay基因在小麦籽粒加工品质改良中的潜在利用价值以及lAy基因沉默的机制.  相似文献   

13.
Genes encoding high-molecular-weight (HMW) glutenin subunits, present in bread-wheat lines and cultivars, were studied by RFLP (restriction fragment length polymorphism) and PCR (polymerase chain reaction) analyses. In particular, allelic subunits of the x-or y-type, encoded at the Glu-D1 locus present on the long arm of chromosome 1D, were investigated. The variation in size, observed in different allelic subunits, is mainly due to variation in the length of the central repetitive domain, typical of these proteins. Deletions or duplications, probably caused by unequal crossingover, have given rise to the size heterogeneity currently observed. The possibility of using the PCR technique for a detailed analysis of HMW glutenin genes in order to obtain a more accurate estimation of the molecular weight of their encoded subunits, and the detection of unexpressed genes, is also described.  相似文献   

14.
15.
High molecular weight (HMW) glutenin subunits (GS) play a key role in the determination of end-use quality of wheat and other cereal crops. In this study, we report the isolation and characterization of both promoter region and ORF of novel HMW-GS allele 1St1.3 from a perennial Triticeae species, Elymus canadensis. The amino acid (AA) sequences of E. canadensis 1St1.3 were deduced as 434 aa. Its protein primary structure comprises a signal peptide with a conserved N-terminal domain, a central repetitive domain and a C-terminal domain. E. canadensis 1St 1.3 possesses several distinct characteristics which are different from those of wheat HMW-GSs. The N-terminal domains of E. canadensis 1St 1.3 resemble that of y-type subunits, while their C-terminal domains are more similar to x-type subunits. The deletion of 85 bp fragment has been observed in promoter region of 1St 1.3, however which has not interrupted the expression of this gene. Our results indicate that 1St 1.3 is novel HMW-GS variants which will be valuable for enhancing our understanding of structural differentiation and the evolutionary relationship among HMW-GSs in Triticeae species.  相似文献   

16.
This work reports the molecular characterisation of new alleles of the previously reported Glu-R1 locus. Wheat lines carrying the chromosome substitution 1R(1D), rye cultivars and related wild species were analysed. Five new x-type and four y-type Glu-R1 glutenin subunits were isolated and characterised. The coding region of the sequences shows the typical structure of the HMW glutenin genes previously described in wheat, with the N and C-terminal domains flanking the central repetitive region. Tri-, hexa- and nona-peptides found in the central repetitive region of wheat glutenin genes were also present in the rye genes. Duplications and deletions of these motifs are responsible for allelic variation at the Glu-R1 locus. Orthologous genes (from different genomes) were more closely related than paralogous genes (x- and y-type), supporting the hypothesis of gene duplication before Triticeae speciation. Differences in the number and position of cysteine residues identified alleles which in wheat are associated with good dough quality. SDS proteins encoded by some characterised alleles were presumptively identified.  相似文献   

17.
High molecular weight (HMW) glutenin subunits are conserved seed storage proteins in wheat and related species. Here we describe a more detailed characterization of the HMW glutenin subunits from Aegilops searsii, which is diploid and contains the Ss genome related to the S genome of Aegilops speltoides and the A, B and D genomes of hexaploid wheat. SDS-PAGE experiments revealed two subunits (one x and one y) for each of the nine Ae. searsii accessions analyzed, indicating that the HMW glutenin subunit gene locus of Ae. searsii is similar to the Glu-1 locus found in wheat in containing both x and y genes. The primary structure of the four molecularly cloned subunits (from two Ae. searsii accessions) was highly similar to that of the previously reported x and y subunits. However, in one accession (IG49077), the last 159 residues of the x subunit (1Ssx49077), which contained the sequence element GHCPTSPQQ, were identical to those of the y subunit (1Ssy49077) from the same accession. Consequently, 1Ssx49077 contains an extra cysteine residue located at the C-terminal part of its repetitive domain, which is novel compared to the x-type subunits reported so far. Based on this and previous studies, the structure and expression of the Glu-1 locus in Ae. searsii is discussed. A hypothesis on the genetic mechanism generating the coding sequence for the novel 1Ssx49077 subunit is presented.  相似文献   

18.
A novel y-type high molecular mass glutenin subunit (HMM-GS) possessing a mobility that is slightly slower than that of the subunit Dy10 obtained by SDS-PAGE, named Dy10.1t, in the wild wheat Aegilops tauschii was identified by 1- and 2-dimensional gel electrophoresis, capillary electrophoresis, and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The gene encoding the HMM subunit Dy10.1t was amplified with allele-specific PCR primers, and the amplified products were cloned and sequenced. The coding domain of the Dy10.1t subunit gene consisted of 1980 bp encoding a protein of 658 residues with an M rs of 68 611 Da, which was similar to the M rs determined by MALDI-TOF-MS. The deduced amino acid sequence indicated that Dy10.1t subunit displayed a greater similarity to the Dy12 subunit, differing by only 8 amino acid substitutions. Six coding region single-nucleotide polymorphisms were discovered in the Dy10.1t gene by multiple alignments (1 per 330 bp), 1 in the N-terminal domain and the others in the central repeats. Five of them resulted in residue substitutions, whereas 3 created enzyme site changes. The homology and neighbour-joining trees constructed from code domain sequences of 20 x- and y-type glutenin genes from different Triticum species separated into 2 halves, which corresponded to the x-type and y-type HMM glutenin alleles. Phylogenetic analysis revealed that the Glu-1 gene duplication event probably occurred at about 16.83 million years ago, whereas the divergence times of A, B, and D genomes within x-type and y-type halves were before 7.047 and 10.54 million years ago, respectively.  相似文献   

19.
Analysis by SDS-PAGE of total protein fractions from single seeds of Aegilops cylindrica (genomes C and D) and Triticum timopheevi (genomes A and G) showed the presence of three bands corresponding to high molecular weight subunits of glutenin (HMW subunits) in the former and two major bands and a minor band corresponding to HMW subunits in the latter. Three Ae. cylindrica and two T. timopheevi HMW subunit gene sequences, each comprising the entire coding region, were amplified by polymerase chain reaction (PCR) and their complete nucleotide sequences determined. A combination of N-terminal amino acid sequencing of the proteins identified by SDS-PAGE and alignments of the derived amino acid sequences of the proteins encoded by the PCR products identified the Ae. cylindrica HMW subunits as 1Cx, 1Cy and 1Dy, and the T. timopheevi HMW subunits as 1Gx, 1Ax and 1Ay. It was not clear whether or not a 1Gy HMW subunit was present in T. timopheevi. The PCR products from Ae. cyclindrica were derived from 1Cy and 1Dy genes and a silent 1Dx gene containing an in-frame internal stop codon, while those from T. timopheevi were derived from 1Ax and 1Ay genes. The 1Cx, 1Gx and 1Gy sequences were not amplified successfully. The proteins encoded by the five novel genes had similar structures to previously characterized HMW subunits of bread wheat (Triticum aestivum). Differences and similarities in sequence and structure, and in the distribution of cysteine residues (relevant to the ability of HMW subunits to form high Mr polymers) distinguished the HMW subunits of x- and y-type and of each genome rather than those of the different species. There was no evidence of a change in HMW subunit expression or structure resulting from selective breeding of bread wheat. The novel 1Ax, 1Ay, 1Cy and 1Dy HMW subunits were expressed in Escherichia coli, and the expressed proteins were shown to have very similar mobilities to the endogenous HMW subunits on SDS-PAGE. The truncated 1Dx gene from Ae. cylindrica failed to express in E. coli, and no HMW subunit-related protein of the size predicted for the truncated 1Dx subunit could be identified by immunodetection in seed extracts.  相似文献   

20.
利用SDS-PAGE检测了2份类大麦属植物的高分子量谷蛋白亚基组成,在小麦的高分子量区域仅检测到1条蛋白带,因此怀疑其y型亚基没有表达.根据其它高分子量谷蛋白提取方法的结果以及基因编码区部分序列测定,确认其y型高分子量谷蛋白基因是沉默的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号