首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Plant and animal ferritins stem from a common ancestor, but plant ferritins exhibit various features that are different from those of animal ferritins. Phytoferritin is observed in plastids (e.g., chloroplasts in leaves, amyloplasts in tubers and seeds), whereas animal ferritin is largely found in the cytoplasm. The main difference in structure between plant and animal ferritins is the two specific domains (TP and EP) at the N-terminal sequence of phytoferritin, which endow phytoferritin with specific iron chemistry. As a member of the nonheme iron group of dietary iron sources, phytoferritin consists of 24 subunits that assemble into a spherical shell storing up to ∼ 2000 Fe3 + in the form of an iron oxyhydroxide-phosphate mineral. This feature is distinct from small molecule nonheme iron existing in cereals, which has poor bioavailability.

Scope of review

This review focuses on the relationship between structure and function of phytoferritin and the recent progress in the use of phytoferritin as iron supplement.

Major conclusions

Phytoferritin, especially from legume seeds, represents a novel alternative dietary iron source.

General significance

An understanding of the chemistry and biology of phytoferritin, its interaction with iron, and its stability against gastric digestion is beneficial to design diets that will be used for treatment of global iron deficiency.  相似文献   

2.
The iron redox and hydrolysis chemistry of the ferritins   总被引:2,自引:0,他引:2  

Background

Ferritins are ubiquitous and well-characterized iron storage and detoxification proteins. In bacteria and plants, ferritins are homopolymers composed of H-type subunits, while in vertebrates, they typically consist of 24 similar subunits of two types, H and L. The H-subunit is responsible for the rapid oxidation of Fe(II) to Fe(III) at a dinuclear center, whereas the L-subunit appears to help iron clearance from the ferroxidase center of the H-subunit and support iron nucleation and mineralization.

Scope of review

Despite their overall similar structures, ferritins from different origins markedly differ in their iron binding, oxidation, detoxification, and mineralization properties. This chapter provides a brief overview of the structure and function of ferritin, reviews our current knowledge of the process of iron uptake and mineral core formation, and highlights the similarities and differences of the iron oxidation and hydrolysis chemistry in a number of ferritins including those from archaea, bacteria, amphibians, and animals.

General Significance

Prokaryotic ferritins and ferritin-like proteins (Dps) appear to preferentially use H2O2 over O2 as the iron oxidant during ferritin core formation. While the product of iron oxidation at the ferroxidase centers of these and other ferritins is labile and is retained inside the protein cavity, the iron complex in the di-iron cofactor proteins is stable and remains at the catalytic site. Differences in the identity and affinity of the ferroxidase center ligands to iron have been suggested to influence the distinct reaction pathways in ferritins and the di-iron cofactor enzymes.

Major conclusions

The ferritin 3-fold channels are shown to be flexible structures that allow the entry and exit of different ions and molecules through the protein shell. The H- and L-subunits are shown to have complementary roles in iron oxidation and mineralization, and hydrogen peroxide appears to be a by-product of oxygen reduction at the FC of most ferritins. The di-iron(III) complex at the FC of some ferritins acts as a stable cofactor during iron oxidation rather than a catalytic center where Fe(II) is oxidized at the FC followed by its translocation to the protein cavity.  相似文献   

3.
4.

Background

The Ferritins are part of the extensive ‘Ferritin-like superfamily’ which have diverse functions but are linked by the presence of a common four-helical bundle domain. The role performed by Ferritins as the cellular repository of excess iron is unique. In many ways Ferritins act as tiny organelles in their ability to secrete iron away from the delicate machinery of the cell, and then to release it again in a controlled fashion avoiding toxicity. The Ferritins are ancient proteins, being common in all three domains of life. This ubiquity reflects the key contribution that Ferritins provide in achieving iron homeostasis.

Scope of the review

This review compares the features of the different Ferritins and considers how they, and other members of the Ferritin-like superfamily, have evolved. It also considers relevant features of the eleven other known families within the Ferritin-like superfamily, particularly the highly diverse rubrerythrins.

Major conclusions

The Ferritins have travelled a considerable evolutionary journey, being derived from far more simplistic rubrerythrin-like molecules which play roles in defence against toxic oxygen species. The forces of evolution have moulded such molecules into three distinct types of iron storing (or detoxifying) protein: the classical and universal 24-meric ferritins; the haem-containing 24-meric bacterioferritins of prokaryotes; and the prokaryotic 12-meric Dps proteins. These three Ferritin types are similar, but also possess unique properties that distinguish them and enable then to achieve their specific physiological purposes.

General significance

A wide range of biological functions have evolved from a relatively simple structural unit.  相似文献   

5.
Iron stored in phytoferritin plays an important role in the germination and early growth of seedlings. The protein is located in the amyloplast where it stores large amounts of iron as a hydrated ferric oxide mineral core within its shell-like structure. The present work was undertaken to study alternate mechanisms of core formation in pea seed ferritin (PSF). The data reveal a new mechanism for mineral core formation in PSF involving the binding and oxidation of iron at the extension peptide (EP) located on the outer surface of the protein shell. This binding induces aggregation of the protein into large assemblies of ∼400 monomers. The bound iron is gradually translocated to the mineral core during which time the protein dissociates back into its monomeric state. Either the oxidative addition of Fe2+ to the apoprotein to form Fe3+ or the direct addition of Fe3+ to apoPSF causes protein aggregation once the binding capacity of the 24 ferroxidase centers (48 Fe3+/shell) is exceeded. When the EP is enzymatically deleted from PSF, aggregation is not observed, and the rate of iron oxidation is significantly reduced, demonstrating that the EP is a critical structural component for iron binding, oxidation, and protein aggregation. These data point to a functional role for the extension peptide as an iron binding and ferroxidase center that contributes to mineralization of the iron core. As the iron core grows larger, the new pathway becomes less important, and Fe2+ oxidation and deposition occurs directly on the surface of the iron core.The chemistry of iron and oxygen in a number of non-heme di-iron proteins has been a subject of intense interest because of their varied roles in oxygen activation and catalysis, substrate hydrolysis, oxygen transport, redox reactions, H2O2, and iron detoxification and iron storage. Di-iron centers have similar structural motifs consisting of a combination of carboxylate and histidine ligands that either bind or bridge the two metal ions of the di-nuclear active site; di-iron proteins containing these centers include methane monooxygenase, ribonucleotide reductase, rubrerythrin, stearoyl desaturase, purple acid phosphatase, hemerythrin, the Dps proteins, and ferritins (16). Despite their similar di-nuclear centers, each of these proteins fulfills a distinct biological role that seems to be mediated by the nature of the first and second coordination sphere of the di-iron center.Ferritins are a class of intracellular iron storage and detoxification proteins that facilitate the oxidation of iron by molecular oxygen or hydrogen peroxide to form a hydrous ferric oxide mineral core within their interiors (13). Rapid Fe2+ oxidation occurs at the di-iron ferroxidase center located on the H-subunit of the mammalian protein. Unlike the H-chain, the more acidic L-subunit lacks the ferroxidase center but contains a putative nucleation site responsible for slower iron oxidation and mineralization (7). The shapes of both the H- and L-subunit are nearly cylindrical and composed of a four-α-helix bundle containing two antiparallel helix pairs (A, B and C, D) connected by a long non-helical stretch, the BC-loop, between B and C helices. A fifth short helix (E helix) lies at one end of the bundle at 60° to its axis (1, 2).From an evolutionary point of view, plant and animal ferritins arose from a common ancestor, but plant ferritins exhibit various specific features as compared with animal ferritins. Plant ferritins are observed in plastids (chloroplasts in leaves, amyloplasts in tubers and seeds, etc.) where iron is incorporated into the ferritin shell to form the mineral core, whereas animal ferritins are largely found in the cytoplasm of cell (1, 8). Ferritins from dried soybean and pea seed consist of two subunits of 26.5 and 28.0 kDa, which are designated H-1 and H-2, respectively, share ∼80% amino acid sequence identity (9, 10), and contain ferroxidase centers. The two subunits are synthesized from a 32-kDa precursor with a unique two-domain N-terminal sequence containing a transit peptide (TP)2 and an extension peptide (EP). The TP is responsible for precursor targeting to plastids (11). Upon transport to plastids, the TP is cleaved from the subunit precursor, resulting in the formation of the mature subunit which assembles into a 24-mer apoferritin within the plastids (11, 12). The EP domain is kept at the N-terminal extremity of the mature plant ferritins, but its function remains unknown. It is absent in animal ferritins. For soybean ferritin, further processing of the 26.5-kDa subunit occurs through excising a short C-terminal amino acid sequence (16 amino acid residues) that corresponds to the E helix of the mammalian ferritin subunit (9). Compared with their own precursors, H-1 is devoid of both the N-terminal TP domain and the C-terminal E helix, whereas H-2 lacks the N-terminal TP domain only (13). However, the amino acids constituting the ferroxidase center are strictly conserved in all the plant ferritins except for pea seed ferritin where His-62 replaces Glu-62 (14, 15).Iron oxidation/mineralization in human ferritin occurs by at least three reaction pathways (16, 17). After Fe2+ binding at the ferroxidase site, the protein-catalyzed oxidation of Fe2+ occurs, H2O2 is the product of O2 reduction, and a mineral core of Fe3+ is produced, written for simplicity as Fe(O)OH(core) (Equation 1) (18, 19). Some of the H2O2 generated in Equation 1 reacts with additional Fe2+ in the Fe2+ + H2O2 detoxification reaction (Equation 2) to produce H2O (16, 20). Once a mineral core of sufficient size has developed, Fe2+ autoxidation becomes significant, and iron oxidation and hydrolysis occurs primarily on the growing surface of the mineral through an autocatalytic process where O2 is reduced completely to H2O (Equation 3) (1, 7, 17). Based on the above reactions and on identification of intermediates by resonance Raman spectroscopy, Mössbauer spectroscopy, and EXAFS (extended x-ray absorption fine structure), the mechanism of mineral core formation in mammalian ferritins has been reasonably well established (18, 2123). Initially two Fe2+ are oxidized by O2 at the ferroxidase center to form a transient μ-1,2-peroxodi-Fe3+ intermediate, which rapidly decays to form a μ-oxo di-Fe3+ complex(es), releasing H2O2 to the solution. The μ-oxo(hydroxo) bridged di-Fe3+ dimer(s) then translocates from the ferroxidase center to the inner cavity to form an incipient core, which ultimately leads to the formation of the mineral core itself. However, this mechanism of oxidative deposition of iron is only applicable to ferritins such as horse spleen ferritin and human H-chain ferritin, which regenerate activity at their ferroxidase centers. In contrast, the ferroxidase centers of human mitochondrial ferritin (24), Escherichia coli bacterioferritin (25), E. coli bacterial ferritin A (26), and pea seed ferritin (PSF) (27) lack significant regeneration activity, and Fe3+ produced at their centers migrates with difficulty from the center to the cavity to form the initial core. These observations raise the question as to whether alternate pathways exist for core formation in these proteins, in particular in phytoferritins, the focus of this work.In the present study we have looked for alternate mechanisms of iron deposition in PSF and demonstrate that ferritin-ferritin aggregation occurs during the oxidative deposition of iron in PSF when more than 48 Fe2+/shell are added to the apoprotein (apoPSF), an amount exceeding the 24 ferroxidase center binding capacity for Fe2+/3+. Such aggregation was also induced by the addition of Fe3+ directly to PSF. The data indicate that binding occurs on the outer surface of the ferritin shell at sites involving the extension peptide. Upon standing, the iron induced aggregate reversibly dissociates to its original undissociated form, whereas the iron migrates to the mineral core. This finding represents an alternate pathway for iron deposition in phytoferritin.  相似文献   

6.

Background

All reported plant ferritins are heteropolymers comprising two different H-type subunits. Whether or not homopolymeric plant ferritin occurs in nature is an open question.

Methods

A homopolymeric phytoferritin from adzuki bean seeds (ASF) was obtained by various protein purification techniques for the first time, which shares the highest identity (89.6%) with soybean seed H-1 ferritin (rH-1). Therefore, we compared iron oxidation activity and protein stability of ASF with those of rH-1 by stopped-flow combined with light scattering or UV/Vis spectrophotography, SDS- and native- PAGE analyses. Additionally, a new rH-1 variant (S68E) was prepared by site-directed mutagenesis approach to elucidate their difference in protein stability.

Results

At high iron loading of protein, the extension peptide (EP) of plant ferritin was involved in iron oxidation, and the EP of ASF exhibited a much stronger iron oxidative activity than that of rH-1. Besides, ASF is more stable than rH-1 during storage, which is ascribed to one amino acid residue, Ser68.

Conclusions

ASF exhibits a different mechanism in iron oxidation from rH-1 at high iron loading of protein, and a higher stability than rH-1. These differences are mainly stemmed from their different EP sequences.

General significance

This work demonstrates that plant cells have evolved the EP of phytoferritin to control iron chemistry and protein stability by exerting a fine tuning of its amino acid sequence.  相似文献   

7.

Background

Bacteria adopt a variety of lifestyles in their natural habitats and can alternate among different lifestyles in response to environmental changes. At high cell densities, bacteria can form extracellular matrix encased cell population on submerged tangible surfaces (biofilms), or at the air–liquid interface (pellicles). Compared to biofilm, pellicle lifestyle allows for better oxygen access, but is metabolically more costly to maintain. Further understanding of pellicle formation and environmental cues that influence cellular choices between these lifestyles will definitely improve our appreciation of bacterial interaction with their environments.

Methods

Shewanella oneidensis cells were cultured in 24-well plates with supplementation of varied divalent cations, and pellicles formed under such conditions were evaluated. Mutants defective in respiration of divalent cations were used to further characterize and confirm unique impacts of iron.

Results and conclusions

Small amount of Fe2 + was essential for pellicle formation, but presence of over-abundant iron (0.3 mM Fe2 + or Fe3 +) led to pellicle disassociation without impairing growth. Such impacts were found due to S. oneidensis-mediated formation of insoluble alternative electron acceptors (i.e., Fe3O4) under physiologically relevant conditions. Furthermore, we demonstrated that cells preferred a lifestyle of forming biofilm and respiring on such insoluble electron acceptors under tested conditions, even to living in pellicles.

General significance

Our finding suggests that bacterial lifestyle choice involves balanced evaluation of multiple aspects of environmental conditions, and yet-to-be-characterized signaling mechanism is very likely underlying such processes.  相似文献   

8.

Background

Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes.

Scope of review

Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions.

Major conclusions

The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems.

General significance

Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

9.
Dynamic equilibria in iron uptake and release by ferritin   总被引:7,自引:0,他引:7  
The function of ferritins is to store and release ferrous iron. During oxidative iron uptake, ferritin tends to lower Fe2+ concentration, thus competing with Fenton reactions and limiting hydroxy radical generation. When ferritin functions as a releasing iron agent, the oxidative damage is stimulated. The antioxidant versus pro-oxidant functions of ferritin are studied here in the presence of Fe2+, oxygen and reducing agents. The Fe2+-dependent radical damage is measured using supercoiled DNA as a target molecule. The relaxation of supercoiled DNA is quantitatively correlated to the concentration of exogenous Fe2+, providing an indirect assay for free Fe2+. After addition of ferrous iron to ferritin, Fe2+ is actively taken up and asymptotically reaches a stable concentration of 1–5 m. Comparable equilibrium concentrations are found with plant or horse spleen ferritins, or their apoferritins. After addition of ascorbate, iron release is observed using ferrozine as an iron scavenger. Rates of iron release are dependent on ascorbate concentration. They are about 10 times larger with pea ferritin than with horse ferritin. In the absence of ferrozine, the reaction of ascorbate with ferritins produces a wave of radical damage; its amplitude increases with increased ascorbate concentrations with plant ferritin; the damage is weaker with horse ferritin and less dependent on ascorbate concentrations.  相似文献   

10.
Bacterioferritin (BFR) is a bacterial member of the ferritin family that functions in iron metabolism and protects against oxidative stress. BFR differs from the mammalian protein in that it is comprised of 24 identical subunits and is able to bind 12 equivalents of heme at sites located between adjacent pairs of subunits. The mechanism by which iron enters the protein to form the dinuclear (ferroxidase) catalytic site present in every subunit and the mineralized iron core housed within the 24-mer is not well understood. To address this issue, the properties of a catalytically functional assembly variant (E128R/E135R) of Escherichia coli BFR are characterized by a combination of crystallography, site-directed mutagenesis, and kinetics. The three-dimensional structure of the protein (1.8 Å resolution) includes two ethylene glycol molecules located on either side of the dinuclear iron site. One of these ethylene glycol molecules is integrated into the surface of the protein that would normally be exposed to solvent, and the other is integrated into the surface of the protein that would normally face the iron core where it is surrounded by the anionic residues Glu47, Asp50, and Asp126. We propose that the sites occupied by these ethylene glycol molecules define regions where iron interacts with the protein, and, in keeping with this proposal, ferroxidase activity decreases significantly when they are replaced with the corresponding amides.Bacterioferritin (BFR)4 is a prokaryotic form of ferritin that has been identified in a number of bacteria (13). Despite low sequence similarity with eukaryotic ferritins, the three-dimensional structures and functional properties of BFRs from Escherichia coli, Rhodobacter capsulatus, Desulfovibrio desulfuricans, and Azotobacter vinelandii (410) are remarkably reminiscent of those reported for mammalian ferritins. For example, BFRs are oligomeric proteins comprised of 24 subunits (∼18 kDa each) that catalyze oxidation of Fe2+ by dioxygen (ferroxidase activity) to promote formation of a mineralized iron core that can contain as many as 2700 iron atoms/ 24-meric molecule (11). On the other hand, those BFRs that have been characterized differ from the mammalian proteins in that the 24 subunits are identical, and each possesses a catalytic dinuclear iron center that is referred to as the ferroxidase site (in mammalian ferritins, only the H-chains possess such catalytic sites). The pairwise arrangement of BFR monomers within the 24-mer creates 12 binding sites for heme, commonly protoheme IX but iron-coproporphyrin III in D. desulfuricans BFR, in which a methionyl residue on the surface of adjacent BFR monomers provides an axial ligand to create a b-type heme-binding site with bismethionine axial coordination (12, 13). Although a functional role for the heme of BFR has not been identified, the functional role of BFR is believed to be in iron storage and detoxification (14), thereby protecting against oxidative stress (15).The subunits of BFR are arranged to form eight 3-fold channels and six 4-fold channels. These channels have been proposed as possible entry and exit routes for iron incorporation into or release from the central iron core. For human ferritin, the 3-fold channel plays a significant role in the transport of iron into the iron core (16), but a similar role for this channel in BFR has not been demonstrated.The dinuclear ferroxidase site located within each subunit binds two iron atoms. Coordination of these iron atoms involves Glu51 and Glu127 as bridging ligands for both irons, Glu18 and His54 as ligands for FE1, and Glu94 and His130 as ligands for FE2. Previous studies of E. coli BFR have demonstrated that the ferroxidase center is essential for core formation and that core formation involves at least three kinetically distinguishable phases (11, 17). Phase 1 involves the very rapid reversible binding of two Fe2+ ions to each of the 24 dinuclear ferroxidase centers and can be studied by monitoring small changes in the spectrum of the bound heme. Phase 2 occurs in the presence of dioxygen (or an alternative oxidant such as hydrogen peroxide) and involves the rapid oxidation of each di-Fe2+ center to form an intermediate that is probably an oxo- or hydroxo-bridged di-Fe3+ center. In the presence of Fe2+ exceeding the amount required to saturate the ferroxidase centers, a slower reaction, Phase 3, is observed in which a large ferric oxyhydroxo mineral is synthesized within the protein cavity. The change in absorbance at 340 nm that is observed during aerobic addition of Fe2+ to apo-BFR results from Phases 2 and 3 but is influenced by the kinetics of Phase 1. Although Phases 1 and 2 are well characterized, less is known about Phase 3. This phase probably involves the interaction of Fe2+ (or Fe3+) with amino acid residues on the inner surface of the ferritin oligomer, as part of a complex and poorly defined process known as nucleation. Further information on this phase of core formation is now required.An assembly variant of E. coli BFR (E128R/E135R) has been shown previously to form stable subunit dimers that bind one equivalent of protoheme IX and not to form higher order oligomers (18). Each monomer in this minimal functional unit can form a dinuclear iron center that catalyzes the formation of a minimal iron core comprised of four to six iron atoms before precipitating (18, 19). The overall kinetics of Fe2+ oxidation observed on addition of Fe2+ to this variant are similar to those observed for wild-type BFR but have not been reported in detail. Nevertheless, the properties of this variant are of interest because the minimal structural unit that it forms constitutes a potentially important experimental model for evaluating detailed mechanistic features of BFR function. Simplification of the oligomeric structure of the protein as represented by this variant form of BFR makes the inner surface of the protein as accessible to bulk solvent as the outer surface, thereby removing any kinetic influences of the channels present in the 24-mer protein.The present paper reports detailed kinetic and structural studies that validate this dimeric variant of BFR as a model of the minimal functional unit of wild-type BFR. In addition, the crystallographic structural data suggest a likely functional role of acidic inner surface residues in iron core formation that led to construction of a family of variants of the stable subunit dimer involving replacement of Glu47, Asp50, and Asp126 by site-directed mutagenesis. Kinetic studies of these additional variants confirm a functional role for these residues and lead to the proposal of a model of BFR action.  相似文献   

11.
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores, consider how iron might be released from ferritins, and examine in detail how three selected ferritins oxidise Fe2+ to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins.  相似文献   

12.

Background

Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.

Methods

This study uses the techniques of chemical relaxation and spectrophotometric detection.

Results

Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.

Conclusion

Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.

General significance

Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +.  相似文献   

13.

Background

The concentration of iron in the brain increases with aging. Furthermore, it has also been observed that patients suffering from neurological diseases (e.g. Parkinson, Alzheimer…) accumulate iron in the brain regions affected by the disease. Nevertheless, it is still not clear whether this accumulation is the initial cause or a secondary consequence of the disease. Free iron excess may be an oxidative stress source causing cell damage if it is not correctly stored in ferritin cores as a ferric iron oxide redox-inert form.

Scope

Both, the composition of ferritin cores and their location at subcellular level have been studied using analytical transmission electron microscopy in brain tissues from progressive supranuclear palsy (PSP) and Alzheimer disease (AD) patients.

Major conclusions

Ferritin has been mainly found in oligodendrocytes and in dystrophic myelinated axons from the neuropili in AD. In relation to the biomineralization of iron inside the ferritin shell, several different crystalline structures have been observed in the study of physiological and pathological ferritin. Two cubic mixed ferric–ferrous iron oxides are the major components of pathological ferritins whereas ferrihydrite, a hexagonal ferric iron oxide, is the major component of physiological ferritin. We hypothesize a dysfunction of ferritin in its ferroxidase activity.

General significance

The different mineralization of iron inside ferritin may be related to oxidative stress in olygodendrocites, which could affect myelination processes with the consequent perturbation of information transference.  相似文献   

14.

Background

Iron oxidation is thought to be predominantly handled enzymatically in the body, to minimize spontaneous combustion with oxygen and to facilitate cellular iron export by loading transferrin. This process may be impaired in disease, and requires more accurate analytical assays to interrogate enzymatic- and auto-oxidation within a physiologically relevant environment.

Method

A new triplex ferroxidase activity assay has been developed that overcomes the previous assay limitations of measuring iron oxidation at a physiologically relevant pH and salinity.

Results

Revised enzymatic kinetics for ceruloplasmin (Vmax ≈ 35 μM Fe3 +/min/μM; Km ≈ 15 μM) are provided under physiological conditions, and inhibition by sodium azide (Ki for Ferric Gain 78.3 μM, Ki for transferrin loading 8.1 × 104 μM) is quantified. We also used this assay to characterize the non-enzymatic oxidation of iron that proceeded linearly under physiological conditions.

Conclusions and general significance

These findings indicate that the requirement of an enzyme to oxidize iron may only be necessary under conditions of adverse pH or anionic strength, for example from hypoxia. In a normal physiological environment, Fe3 + incorporation into transferrin would be sufficiently enabled by the biological polyanions that are prevalent within extracellular fluids.  相似文献   

15.

Background

Blood-barrier systems are essential in controlling iron levels in organs such as the brain and eye, both of which experience hypoxia in pathological conditions. While hypoxia's effects on numerous iron regulatory and storage proteins have been studied, little is known about how hypoxia affects iron metabolism. Iron also controls glutamate production and secretion; therefore the effects of hypoxia on iron metabolism and glutamate secretion were studied in polarized retinal pigmented epithelial (RPE) cells.

Methods

Primary canine RPE were cultured in Millicells to create polarized cell cultures. Iron uptake and efflux were measured in hypoxic and normoxic conditions. RPE were loaded with 59Fe-transferrin. Glutamate concentrations in the cell conditioned media were also measured.

Results

Hypoxia induced a large increase in iron efflux from RPE in the basolateral direction. Glutamate secretion occurred mainly in the basolateral direction which is away from the retina and out of the eye in vivo. Glutamate secretion was doubled under hypoxic conditions.

Conclusions

Hypoxia is known to induce oxidative damage. The current results show that iron, a key catalyst of free radical generation, is removed from RPE under hypoxic conditions which may help protect RPE from oxidative stress. Results obtained here indicate the importance of using polarized tight junctional cells as more physiologically relevant models for blood-barrier-like systems.

General significance

While the effects of hypoxia on iron efflux and glutamate secretion may be protective for RPE cells and retina, increased glutamate secretion in the brain could cause some of the damaging neurological effects seen in stroke.  相似文献   

16.

Background

Heme oxidative degradation has been extensively investigated in peroxidases but not in catalases. The verdoheme formation, a product of heme oxidation which inactivates the enzyme, was studied in Proteus mirabilis catalase.

Methods

The verdoheme was generated by adding peracetic acid and analyzed by mass spectrometry and spectrophotometry.

Results

Kinetics follow-up of different catalase reactional intermediates shows that i) the formation of compound I always precedes that of verdoheme, ii) compound III is never observed, iii) the rate of compound II decomposition is not compatible with that of verdoheme formation, and iv) dithiothreitol prevents the verdoheme formation but not that of compound II, whereas NADPH prevents both of them. The formation of verdoheme is strongly inhibited by EDTA but not increased by Fe3+ or Cu2+ salts. The generation of verdoheme is facilitated by the presence of protein radicals as observed in the F194Y mutated catalase. The inability of the inactive variant (H54F) to form verdoheme, indicates that the heme oxidation is fully associated to the enzyme catalysis.

Conclusion

These data, taken together, strongly suggest that the verdoheme formation pathway originates from compound I rather than from compound II.

General significance

The autocatalytic verdoheme formation is likely to occur in vivo.  相似文献   

17.

Background

The mechanism of how the hydrophilic threefold channel (C3) of ferritin nanocages facilitates diffusion of diverse metal ions into the internal cavity remains poorly explored.

Methods

Computational modeling and free energy estimations were carried out on R. catesbeiana H´ ferritin. Transit features and associated energetics for Fe2+, Mg2+, Zn2+ ions through the C3 channel have been examined.

Results

We highlight that iron conduction requires the involvement of two Fe2+ ions in the channel. In such doubly occupied configuration, as observed in X-ray structures, Fe2+ is displaced from the internal site (stabilized by D127) at lower energetic cost. Moreover, comparison of Fe2+, Mg2+ and Zn2+ transit features shows that E130 geometric constriction provides not only an electrostatic anchor to the incoming ions but also differentially influence their diffusion kinetics.

Conclusions

Overall, the study provides insights into Fe2+ entry mechanism and characteristic features of metal-protein interactions that influence the metal ions passage. The dynamics data suggest that E130 may act as a metal selectivity gate. This implicates an ion-specific entry mechanism through the channel with the distinct diffusion kinetics being the discriminating factor.

General Significance

Ferritin nanocages not only act as biological iron reservoirs but also have gained importance in material science as template scaffolds for synthesizing metal nanoparticles. This study provides mechanistic understanding on the conduction of different metal ions through the channel.  相似文献   

18.

Background

The gastric pathogen Helicobacter pylori relies on nickel-containing urease and hydrogenase enzymes in order to colonize the host. Incorporation of Ni2+ into urease is essential for the function of the enzyme and requires the action of several accessory proteins, including the hydrogenase accessory proteins HypA and HypB and the urease accessory proteins UreE, UreF, UreG and UreH.

Methods

Optical biosensing methods (biolayer interferometry and plasmon surface resonance) were used to screen for interactions between HypA, HypB, UreE and UreG.

Results

Using both methods, affinity constants were found to be 5 nM and 13 nM for HypA–UreE and 8 μM and 14 μM for UreG-UreE. Neither Zn2+ nor Ni2+ had an effect on the kinetics or stability of the HypA–UreE complex. By contrast, addition of Zn2+, but not Ni2+, altered the kinetics and greatly increased the stability of the UreE–UreG complex, likely due in part to Zn2+-mediated oligomerization of UreE. Finally our results unambiguously show that HypA, UreE and UreG cannot form a heterotrimeric protein complex in vitro; instead, HypA and UreG compete with each other for UreE recognition.

General significance

Factors influencing the pathogen's nickel budget are important to understand pathogenesis and for future drug design.  相似文献   

19.

Background

The activation of various P2 receptors (P2R) by extracellular nucleotides promotes diverse cellular events, including the stimulation of cell signaling protein and increases in [Ca2+]i. We report that some agents that can block P2X7R receptors also promote diverse P2X7R-independent effects on cell signaling.

Methods

We exposed native rat parotid acinar cells, salivary gland cell lines (Par-C10, HSY, HSG), and PC12 cells to suramin, DIDS (4,4′-diisothiocyano stilbene-2,2′-disulfonic acid), Cibacron Blue 3GA, Brilliant Blue G, and the P2X7R-selective antagonist A438079, and examined the activation/phosphorylation of ERK1/2, PKCδ, Src, CDCP1, and other signaling proteins.

Results

With the exception of suramin, these agents blocked the phosphorylation of ERK1/2 by BzATP in rat parotid acinar cells; but higher concentrations of suramin blocked ATP-stimulated 45Ca2+ entry. Aside from A438079, these agents increased the phosphorylation of ERK1/2, Src, PKCδ, and other proteins (including Dok-1) within minutes in an agent- and cell type-specific manner in the absence of a P2X7R ligand. The stimulatory effect of these compounds on the tyrosine phosphorylation of CDCP1 and its Src-dependent association with PKCδ was blocked by knockdown of CDCP1, which also blocked Src and PKCδ phosphorylation.

Conclusions

Several agents used as P2X7R blockers promote the activation of various signaling proteins and thereby act more like receptor agonists than antagonists.

General significance

Some compounds used to block P2 receptors have complicated effects that may confound their use in blocking receptor activation and other biological processes for which they are employed, including their use as blockers of various ion transport proteins.  相似文献   

20.

Background

Vanadium is an essential transition metal in biological systems. Several key proteins related to vanadium accumulation and its physiological function have been isolated, but no vanadium ion transporter has yet been identified.

Methods

We identified and cloned a member of the Nramp/DCT family of membrane metal transporters (AsNramp) from the ascidian Ascidia sydneiensis samea, which can accumulate extremely high levels of vanadium in the vacuoles of a type of blood cell called signet ring cells (also called vanadocytes). We performed immunological and biochemical experiments to examine its expression and transport function.

Results

Western blotting analysis showed that AsNramp was localized at the vacuolar membrane of vanadocytes. Using the Xenopus oocyte expression system, we showed that AsNramp transported VO2+ into the oocyte as pH-dependent manner above pH 6, while no significant activity was observed below pH 6. Kinetic parameters (Km and Vmax) of AsNramp-mediated VO2+ transport at pH 8.5 were 90 nM and 9.1 pmol/oocyte/h, respectively. A rat homolog, DCT1, did not transport VO2+ under the same conditions. Excess Fe2+, Cu2+, Mn2+, or Zn2+ inhibited the transport of VO2+. AsNramp was revealed to be a novel VO2+/H+ antiporter, and we propose that AsNramp mediates vanadium accumulation coupled with the electrochemical gradient generated by vacuolar H+-ATPase in vanadocytes.

General Significance

This is the first report of identification and functional analysis on a membrane transporter for vanadium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号