首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This work displayed the force capabilities of the musculoskeletal system of the forefinger under external loading. Different states of normal and pathological fingers are studied. We evaluated the impact of losing musculo-tendon unit strength capacities in terms of maximal output fingertip force and tendon tensions distribution. A biomechanical model for a static force analysis is developed through anatomical and kinematic studies. An optimisation approach is then used to determine tendon tension distribution when performing an isometric task. Furthermore, pathological fingers with common cases of injured flexors and extensors are analysed. The method of simulation for forefinger abnormities is described. Furthermore, the simulation results are interpreted.  相似文献   

2.
BackgroundBiomechanical models are a useful tool to estimate tendon tensions. Unfortunately, in previous fingers' models, each finger acts independently from the others. This is contradictory with hand motor control theories which show that fingers are functionally linked in order to balance the wrist/forearm joint with minimal tendon tensions. (i.e. principle of minimization of the secondary moments). We propose to adapt a hand biomechanical model according to this principle by including the wrist joint. We will determine whether the finger tendon tensions changed with the wrist joint added to the model.MethodsTwo models have been tested: one considering fingers independently (model A) and one with the fingers mechanically linked by the inclusion of the wrist balance (model B). A single set of data, additional results from the literature and in-vivo values have been used to compare the results.ResultsModel A corroborates previous results in the literature. Contrast results were obtained with model B, especially for the Ring and Little fingers. Different tendon tensions were obtained, particularly, in finger extensor muscles critical to balance the wrist.DiscussionWe discuss the biomechanical results in accordance with the hand/finger motor control theories. It appears that the wrist joint balance is critical for finger tendon tension estimation. When including the wrist joint into finger models, the tendon tension estimations agree well with the minimization of secondary moments and the force deficit.  相似文献   

3.
Objective estimates of fingertip force reduction following peripheral nerve injuries would assist clinicians in setting realistic expectations for rehabilitating strength of grasp. We quantified the reduction in fingertip force that can be biomechanically attributed to paralysis of the groups of muscles associated with low radial and ulnar palsies. We mounted 11 fresh cadaveric hands (5 right, 6 left) on a frame, placed their forefingers in a functional posture (neutral abduction, 45° of flexion at the metacarpophalangeal and proximal interphalangeal joints, and 10° at the distal interphalangeal joint) and pinned the distal phalanx to a six-axis dynamometer. We pulled on individual tendons with tensions up to 25% of maximal isometric force of their associated muscle and measured fingertip force and torque output. Based on these measurements, we predicted the optimal combination of tendon tensions that maximized palmar force (analogous to tip pinch force, directed perpendicularly from the midpoint of the distal phalanx, in the plane of finger flexion–extension) for three cases: non-paretic (all muscles of forefinger available), low radial palsy (extrinsic extensor muscles unavailable) and low ulnar palsy (intrinsic muscles unavailable). We then applied these combinations of tension to the cadaveric tendons and measured fingertip output. Measured palmar forces were within 2% and 5° of the predicted magnitude and direction, respectively, suggesting tendon tensions superimpose linearly in spite of the complexity of the extensor mechanism. Maximal palmar forces for ulnar and radial palsies were 43 and 85% of non-paretic magnitude, respectively (p<0.05). Thus, the reduction in tip pinch strength seen clinically in low radial palsy may be partly due to loss of the biomechanical contribution of forefinger extrinsic extensor muscles to palmar force. Fingertip forces in low ulnar palsy were 9° further from the desired palmar direction than the non-paretic or low radial palsy cases (p<0.05).  相似文献   

4.
The multi-joint model is a kinematic simulation of the long flexor tendons of the fingers. The tendons modeled are the flexor pollicis longus, the flexor digitorum profundus, and the flexor digitorum superficialis. The simulated tendons are displayed on an Evans and Sutherland PS330 color graphics terminal attached to a display of articulated bones of the hand. As a user changes the position of the joints of the simulated hand, the simulation displays the new tendon path and the excursion of the tendon for the new position of the hand. The multi-joint model is one component of a comprehensive model for use in a hand biomechanics computer workstation.  相似文献   

5.
The aim of this study was to analyze the manual patterns used by tufted capuchin monkeys (Cebus apella) to retrieve a small food item from a narrow tube, with special attention focused on the independent use of single fingers, fine digit movements, hand preference, and intermanual differences in the time it took the monkeys to obtain the food. The capuchins (n = 20) mainly used their forefinger to extract the food from the tube. The simultaneous use of the index and middle fingers occurred less frequently, and the use of the forefinger in combination with other digits occurred rarely. The capuchins demonstrated a capacity to move single digits independently when the fingers were locating the food inside the tube, and displayed a high mobility of the distal phalanx joints. However, they possessed only a limited capacity to coordinate single fingers in space, and displayed only a slight degree of manual preshaping when they approached the tube. A hand-preference analysis failed to reveal any significant lateral bias for the group, since both adults (> or = 5 years) and immature individuals (<5 years) of both sexes used either hand with the same frequency. Conversely, a latency analysis showed a significant interaction between the subject's age and performance difference between hands: in adults, but not in immature individuals, the left hand was faster than the right hand in retrieving food.  相似文献   

6.
In the human hand, independent movement control of individual fingers is limited. One potential cause for this is mechanical connections between the tendons and muscle bellies corresponding to the different fingers. The aim of this study was to determine the tendon displacement of the flexor digitorum superficialis (FDS) of both the instructed and the neighboring, non-instructed fingers during single finger flexion movements. In nine healthy subjects (age 22–29 years), instructed and non-instructed FDS finger tendon displacement of the index, middle and ring finger was measured using 2D ultrasound analyzed with speckle tracking software in two conditions: active flexion of all finger joints with all fingers free to move and active flexion while the non-instructed fingers were restricted. Our results of the free movement protocol showed an average tendon displacement of 27 mm for index finger flexion, 21 mm for middle finger flexion and 17 mm for ring finger flexion. Displacements of the non-instructed finger tendons (≈12 mm) were higher than expected based of the amount of non-instructed finger movement. In the restricted protocol, we found that, despite minimal joint movements, substantial non-instructed finger tendon displacement (≈9 mm) was still observed, which was interpreted as a result of tendon strain. When this strain component was subtracted from the tendon displacement of the non-instructed fingers during the free movement condition, the relationship between finger movement and tendon displacement of the instructed and non-instructed finger became comparable. Thus, when studying non-instructed finger tendon displacement it is important to take tendon strain into consideration.  相似文献   

7.
Soft tissue reconstructive surgery for rheumatoid-related proximal interphalangeal joint deformities frequently fails to produce the long-term predicted results. Detailed information on the biomechanics of this joint, under both normal and pathological conditions, is required to assess the efficacy of such surgical intervention. A biomechanical model of the proximal interphalangeal joint has been developed to investigate tendon and joint loading during real life three-dimensional activities. Based on a rigid body mechanics approach, the model uses high resolution MRI scans to obtain anatomical tendon and bone geometries in conjunction with three-dimensional kinematic and loading data. The model incorporates an optimisation routine which minimises overall maximum tendon stress in the eight individual elements considered. Radial and ulnar joint force components are included at the proximal interphalangeal joint level. Two simulated pathological versions of the mathematical model are developed to accommodate the altered anatomic relationships after tendon reconstructive surgery. Joint forces of up to 450N and common usage of the extensor mechanism during normal pinching and grasping activities are predicted. The ulnar lateral bands of the extensor tendon are generally loaded to a greater extent than the radial bands. Extensor tendon and joint forces in the simulated pathological models are significantly higher than those in the normal model. Combined with the poor tendon quality of rheumatoid arthritis patients generally, these amplified internal forces may lead to further joint deformation.  相似文献   

8.
Rock climbers are often using the unique crimp grip position to hold small ledges. Thereby the proximal interphalangeal (PIP) joints are flexed about 90 degrees and the distal interphalangeal joints are hyperextended maximally. During this position of the finger joints bowstringing of the flexor tendon is applying very high load to the flexor tendon pulleys and can cause injuries and overuse syndromes. The objective of this study was to investigate bowstringing and forces during crimp grip position. Two devices were built to measure the force and the distance of bowstringing and one device to measure forces at the fingertip. All measurements of 16 fingers of four subjects were made in vivo. The largest amount of bowstringing was caused by the flexor digitorum profundus tendon in the crimp grip position being less using slope grip position (PIP joint extended). During a warm-up, the distance of bowstringing over the distal edge of the A2 pulley increased by 0.6mm (30%) and was loaded about 3 times the force applied at the fingertip during crimp grip position. Load up to 116N was measured over the A2 pulley. Increase of force in one finger holds by the quadriga effect was shown using crimp and slope grip position.  相似文献   

9.
With increasing computer power, computer simulation of human movement has become a popular research tool. However, time to complete simulations can still be long even on powerful computers. One possibility for reducing simulation time, with models of musculo-skeletal system, is to simulate the muscle using a rigid tendon rather than the more realistic compliant tendon. This study examines the effect of tendon elasticity on muscle force output under different dynamic conditions. A single muscle, point mass model was used and simulations were performed varying the mass, the tendon length, the initial position, and the task. For simulations for relatively slow motion, as experienced for example in upper limb reaching motions or rising from a chair, tendon properties had little influence on muscle force, in contrast simulations of an explosive task similar to jumping or throwing tendon had a much larger effect.  相似文献   

10.
A micro-manipulation system using a two-fingered micro-hand, an auto-focusing optical microscope, and user interfaces was developed. This micro-hand has 6 degrees of freedom (DOF): 3 DOF for each of the two fingers. These fingers work just like the thumb and forefinger. Thus, this hand can grasp, move, rotate, and release micro-objects, such as biological cells. A human operator can operate this hand using a joystick or a keyboard, while seeing the microscope image displayed on a monitor. The present paper describes two applications of this system to the field of bioscience. The first application involves extraction of cytoplasm from a cell using two, two-fingered micro-hands. One hand holds the cell firmly, while the other hand makes a hole in the cell and tears it. Then, the hand holding the cell squeezes the cytoplasm from the cell. The second application involves measurement of the mechanical properties of living cells using the micro-finger and a micro-force sensor based on the Atomic Force Microscope (AFM) principle. The AFM cantilever is placed within the microscopic field. The micro-finger holds a cell and presses it against the cantilever tip. By measuring the pressing force and the deformation of the cell, the cell's force-deformation curve is obtained.  相似文献   

11.
The force and excursion within the canine digital flexor tendons were measured during passive joint manipulations that simulate those used during rehabilitation after flexor tendon repair and during active muscle contraction, simulating the active rehabilitation protocol. Tendon force was measured using a small buckle placed upon the tendon while excursion was measured using a suture marker and video analysis method. Passive finger motion imposed with the wrist flexed resulted in dramatically lower tendon force (approximately 5 N) compared to passive motion imposed with the wrist extended (approximately 17 N). Lower excursions were seen at the level of the proximal interphalangeal joint with the wrist flexed (approximately 1.5 mm) while high excursion was observed when the wrist was extended or when synergistic finger and wrist motion were imposed (approximately 3.5 mm). Bivariate discriminant analysis of both force and excursion data revealed a natural clustering of the data into three general mechanical paradigms. With the wrist extended and with either one finger or four fingers manipulated, tendons experienced high loads of approximately 1500 g and high excursions of approximately 3.5 mm. In contrast, the same manipulations performed with the wrist flexed resulted in low tendon forces (4-8 N) and low tendon excursions of approximately 1.5 mm. Synergistic wrist and finger manipulation provided the third paradigm where tendon force was relatively low (approximately 4 N) but excursion was as high as those seen in the groups which were manipulated with the wrist extended. Active muscle contraction produced a modest tendon excursion (approximately 1 mm) and high or low tendon force with the wrist extended or flexed, respectively. These data provide the basis for experimentally testable hypotheses with regard to the factors that most significantly affect functional recovery after digital flexor tendon injury and define the normal mechanical operating characteristics of these tendons.  相似文献   

12.
With increasing computer power, computer simulation of human movement has become a popular research tool. However, time to complete simulations can still be long even on powerful computers. One possibility for reducing simulation time, with models of musculo-skeletal system, is to simulate the muscle using a rigid tendon rather than the more realistic compliant tendon. This study examines the effect of tendon elasticity on muscle force output under different dynamic conditions. A single muscle, point mass model was used and simulations were performed varying the mass, the tendon length, the initial position, and the task. For simulations for relatively slow motion, as experienced for example in upper limb reaching motions or rising from a chair, tendon properties had little influence on muscle force, in contrast simulations of an explosive task similar to jumping or throwing tendon had a much larger effect.  相似文献   

13.
A biomechanical model of the forearm, consisting of 61 muscle-tendon systems or tendons and 8 sections, is presented. The model can be used to calculate the muscle forces when resultant of the external forces and the motion is known. Calculations are based on constraints of muscle forces, joint forces, contact forces, and tendon junctions, and a load sharing principle telling which of the feasible solutions are likely and which are not. Fatigue is accounted for by updating the upper limits of the muscle forces according to the loading history. As an example, the model is used to predict the load sharing between the fingers when they are pressed against a table with a given total force.  相似文献   

14.
LEARNING OBJECTIVES: After reading this article, the participant should be able to: 1. Make decisions on flexor tendon repair based on current evidence. 2. Perform some important tendon transfers after viewing Dr. Kozin's videos. 3. Inject local anesthesia for wide-awake flexor tendon repair after viewing the appropriate videos in the article. 4. Use relative motion extension splints for the postoperative management of extensor tendon injuries. SUMMARY: This article provides a practical, clinically useful overview of some of the current best techniques and evidence available to the plastic surgeon in the treatment of flexor and extensor tendon injuries, tendon transfers, trigger fingers, mallet fingers, boutonniere deformities, and De Quervain tenosynovitis. Twelve short movies and drawings emphasize important points of diagnosis and treatment of tendon disorders.  相似文献   

15.
Previous epidemiological studies indicate that the use of thumb-push mechanical pipettes is associated with musculoskeletal disorders (MSDs) in the hand. The goal of the current study was to analyze the loading in the muscle–tendon units in the thumb during pipetting. The hand is modeled as a multi-body linkage system and includes four fingers (index, long, ring, and little finger), a thumb, and a palm segment. Since the current study is focused on the thumb, the model includes only nine muscles attached to the thumb via tendons. The time-histories of joint angles and push force at the pipette plunger during pipetting were determined experimentally and used as model input; whereas forces in the muscle–tendon units in the thumb were calculated via an inverse dynamic approach combined with an optimization procedure. Results indicate that all nine muscles have force outputs during pipetting, and the maximal force was in the abductor pollicis brevis (APB). The ratio of the mean peak muscle force to the mean peak push force during the dispensing cycle was approximately 2.3, which is comparable to values observed in grasping tasks in the literature. The analysis method and results in the current study provide a mechanistic understanding of MSD risk factors associated with pipetting, and may be useful in guiding ergonomic designs for manual pipettes.  相似文献   

16.
BackgroundPotentially toxic elements, such as lead, can bioaccumulate and alter human physiology. Human biomonitoring is an essential tool to evaluate chemical exposures in different biological matrices (blood, urine, saliva, nails, and hair). Of these biological matrices, nails are favorable for their ease of sampling, transport and storage. The aim of this study was to investigate possible correlations between blood lead levels (BLL) and washed and non-washed fingernail lead levels (FLL) in 55 adults living in a lead-contaminated area.MethodVenous blood and fingernail (thumbs and forefingers) samples were collected. Nails from the left hand were washed with Triton X-100 (0.5 % m/v) and HNO3 solution, while nails from the right hand were not submitted to the pre-analytical procedures. Samples were analyzed by graphite furnace atomic absorption spectrometry, and pairwise correlations were used to correlate lead concentrations between BLL and FLL; nails from fingers of the same hand and between washed and unwashed fingernails. Principal component analysis was performed and scatter diagrams were plotted to investigate correlations.ResultsA non-significant positive correlation was found between BLL and washed forefinger nails lead (r = 0.219, p = 0.112) and between BLL and thumbnail lead levels (r = 0.182, p = 0.191). Comparison of fingernails from the same hand (thumb and forefinger), showed that lead concentrations of non-washed nails varied widely, even on analyses of transversal fragments from the same nail. Lead levels in non-washed forefinger nails were not correlated with non-washed thumbnails (r = 0.169, p = 0.219). Conversely, washed thumb and forefinger nails were found to be correlated (r = 0.39, p = 0.003). Washed and non-washed nails were also found to be correlated (p < 0.0001).ConclusionIn conclusion, the results showed that non-washed nails are not a reliable biomarker for lead exposure. Although washing nails before analysis may reduce external contamination, the correlation of lead concentrations between fingers is poor for fingernail lead levels to serve as an internal dose biomarker to lead exposure. In addition, levels in washed nails were not significantly correlated with blood lead levels. Fingernail lead levels seem to serve as an indicator of lead exposure sources in contact with the individual, but not as a reliable biomarker of internal dose.  相似文献   

17.
After a pulley rupture, most climbers regain the full function of their previously uninjured fingers. However, in some cases of pulley rupture, a persistent inflammation of the tendon sheath is observed. In this study, 16 cadaver fingers were loaded until pulley rupture and then studied for the rupturing mechanism. In addition, two patients with this pathology were investigated using ultrasound and MRI, and received surgery. In 13 fingers, a rupture of one or several pulleys occurred and almost always at the medial or lateral insertion. In one finger, a capsizing of the pulley underneath the intact tendon sheath was observed, leading to an avulsion between tendon and tendon sheath. A similar pathology was observed in the ultrasound imaging, in MRI, and during surgery in two patients with prolonged recovery after minor pulley rupture. In cases of prolonged tenosynovitis after minor pulley rupture, a capsizing of the pulley stump is probably the cause for constant friction leading to inflammation. In those cases, a surgical removal of the remaining pulley stump and sometimes a pulley repair may be necessary.  相似文献   

18.
During maximal voluntary contraction (MVC) with several fingers, the following three phenomena are observed: (1) the total force produced by all the involved fingers is shared among the fingers in a specific manner (sharing); (2) the force produced by a given finger in a multi-finger task is smaller than the force generated by this finger in a single-finger task (force deficit); (3) the fingers that are not required to produce any force by instruction are involuntary activated (enslaving). We studied involuntary force production by individual fingers (enslaving effects, EE) during tasks when (an)other finger(s) of the hand generated maximal voluntary pressing force in isometric conditions. The subjects (n = 10) were instructed to press as hard as possible on the force sensors with one, two, three and four fingers acting in parallel in all possible combinations. The EE were (A) large, the slave fingers always producing a force ranging from 10.9% to 54.7% of the maximal force produced by the finger in the single-finger task; (B) nearly symmetrical; (C) larger for the neighboring fingers; and (D) non-additive. In most cases, the EE from two or three fingers were smaller than the EE from at least one finger (this phenomenon was coined occlusion). The occlusion cannot be explained only by anatomical musculo-tendinous connections. Therefore, neural factors contribute substantially to the EE. A neural network model that accounts for all the three effects has been developed. The model consists of three layers: the input layer that models a central neural drive; the hidden layer modeling transformation of the central drive into an input signal to the muscles serving several fingers simultaneously (multi-digit muscles); and the output layer representing finger force output. The output of the hidden layer is set inversely proportional to the number of fingers involved. In addition, direct connections between the input and output layers represent signals to the hand muscles serving individual fingers (uni-digit muscles). The network was validated using three different training sets. Single digit muscles contributed from 25% to 50% of the total finger force. The master matrix and the enslaving matrix were computed; they characterize the ability of a given finger to enslave other fingers and its ability to be enslaved. Overall, the neural network modeling suggests that no direct correspondence exists between neural command to an individual finger and finger force. To produce a desired finger force, a command sent to an intended finger should be scaled in accordance with the commands sent to the other fingers. Received: 17 October 1997 / Accepted in revised form: 12 May 1998  相似文献   

19.
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver''s middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.  相似文献   

20.
A potential cause of non-contact anterior cruciate ligament (ACL) injury is landing on an extended knee. In line with this hypothesis, studies have shown that the ACL is elongated with decreasing knee flexion angle. Furthermore, at low flexion angles the patellar tendon is oriented to increase the anterior shear component of force acting on the tibia. This indicates that knee extension represents a position in which the ACL is taut, and thus may have an increased propensity for injury, particularly in the presence of excessive force acting via the patellar tendon. However, there is very little in vivo data to describe how patellar tendon orientation and ACL elongation interact during flexion. Therefore, this study measured the patellar tendon tibial shaft angle (indicative of the relative magnitude of the shear component of force acting via the patellar tendon) and ACL length in vivo as subjects performed a quasi-static lunge at varying knee flexion angles. Spearman rho rank correlations within each individual revealed that flexion angles were inversely correlated to both ACL length (rho = −0.94 ± 0.07, mean ± standard deviation, p < 0.05) and patellar tendon tibial shaft angle (rho = −0.99 ± 0.01, p < 0.05). These findings indicate that when the knee is extended, the ACL is both elongated and the patellar tendon tibial shaft angle is increased, resulting in a relative increase in anterior shear force on the tibia acting via the patellar tendon. Therefore, these data support the hypothesis that landing with the knee in extension is a high risk scenario for ACL injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号