首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cells are constantly exposed to assaults that cause DNA damage, which must be detected and repaired to prevent genome instability. The DNA damage response is mediated by key kinases that activate various signaling pathways. In Saccharomyces cerevisiae, one of these kinases is Mec1, which phosphorylates numerous targets, including H2A and the DNA damage protein Rtt107. In addition to being phosphorylated, Rtt107 contains six BRCA1 C-terminal (BRCT) domains, which typically recognize phospho-peptides. Thus Rtt107 represented an opportunity to study complementary aspects of the phosphorylation cascades within one protein. Here we sought to describe the functional roles of the multiple BRCT domains in Rtt107. Rtt107 BRCT5/6 facilitated recruitment to sites of DNA lesions via its interaction with phosphorylated H2A. Rtt107 BRCT3/4 also contributed to Rtt107 recruitment, but BRCT3/4 was not sufficient for recruitment when BRCT5/6 was absent. Intriguingly, both mutations that affected Rtt107 recruitment also abrogated its phosphorylation. Pointing to its modular nature, replacing Rtt107 BRCT5/6 with the BRCT domains from the checkpoint protein Rad9 was able to sustain Rtt107 function. Although Rtt107 physically interacts with both the endonuclease Slx4 and the DNA replication and repair protein Dpb11, only Slx4 was dependent on Rtt107 for its recruitment to DNA lesions. Fusing Rtt107 BRCT5/6 to Slx4, which presumably allows artificial recruitment of Slx4 to DNA lesions, alleviated some phenotypes of rtt107Δ mutants, indicating the functional importance of Slx4 recruitment. Together this data revealed a key function of the Rtt107 BRCT domains for targeting of both itself and its interaction partners to DNA lesions.  相似文献   

2.
The DNA damage checkpoint pathway is activated in response to DNA lesions and replication stress to preserve genome integrity. However, hyper-activation of this surveillance system is detrimental to the cell, because it might prevent cell cycle re-start after repair, which may also lead to senescence. Here we show that the scaffold proteins Slx4 and Rtt107 limit checkpoint signalling at a persistent double-strand DNA break (DSB) and at uncapped telomeres. We found that Slx4 is recruited within a few kilobases of an irreparable DSB, through the interaction with Rtt107 and the multi-BRCT domain scaffold Dpb11. In the absence of Slx4 or Rtt107, Rad9 binding near the irreparable DSB is increased, leading to robust checkpoint signalling and slower nucleolytic degradation of the 5′ strand. Importantly, in slx4Δ sae2Δ double mutant cells these phenotypes are exacerbated, causing a severe Rad9-dependent defect in DSB repair. Our study sheds new light on the molecular mechanism that coordinates the processing and repair of DSBs with DNA damage checkpoint signalling, preserving genome integrity.  相似文献   

3.
DNA replication fork stalling poses a major threat to genome stability. This is counteracted in part by the intra-S phase checkpoint, which stabilizes arrested replication machinery, prevents cell-cycle progression and promotes DNA repair. The checkpoint kinase Mec1/ATR and RecQ helicase Sgs1/BLM contribute synergistically to fork maintenance on hydroxyurea (HU). Both enzymes interact with replication protein A (RPA). We identified and deleted the major interaction sites on Sgs1 for Rpa70, generating a mutant called sgs1-r1. In contrast to a helicase-dead mutant of Sgs1, sgs1-r1 did not significantly reduce recovery of DNA polymerase α at HU-arrested replication forks. However, the Sgs1 R1 domain is a target of Mec1 kinase, deletion of which compromises Rad53 activation on HU. Full activation of Rad53 is achieved through phosphorylation of the Sgs1 R1 domain by Mec1, which promotes Sgs1 binding to the FHA1 domain of Rad53 with high affinity. We propose that the recruitment of Rad53 by phosphorylated Sgs1 promotes the replication checkpoint response on HU. Loss of the R1 domain increases lethality selectively in cells lacking Mus81, Slx4, Slx5 or Slx8.  相似文献   

4.
The yeast checkpoint protein kinase Mec1, the ortholog of human ATR, is the essential upstream regulator of the cell cycle checkpoint in response to DNA damage and to stalling of DNA replication forks. The activity of Mec1/ATR is not directly regulated by the DNA substrates that signal checkpoint activation. Rather the signal appears to be transduced to Mec1 by factors that interact with the signaling DNA substrates. One of these factors, the DNA damage checkpoint clamp Rad17-Mec3-Ddc1 (human 9-1-1) is loaded onto gapped DNA resulting from the partial repair of DNA damage, and the Ddc1 subunit of this complex activates Mec1. In vertebrate cells, the TopBP1 protein (Cut5 in S. pombe and Dpb11 in S. cervisiae) that is also required for establishment of the replication fork, functions during replication fork dysfunction to activate ATR. Both mechanisms of activation generally upregulate the kinase activity towards all downstream targets.  相似文献   

5.
Replication fork stalling at DNA lesions is a common problem during the process of DNA replication. One way to allow the bypass of these lesions is via specific recombination-based mechanisms that involve switching of the replication template to the sister chromatid. Inherent to these mechanisms is the formation of DNA joint molecules (JMs) between sister chromatids. Such JMs need to be disentangled before chromatid separation in mitosis and the activity of JM resolution enzymes, which is under stringent cell cycle control, is therefore up-regulated in mitosis. An additional layer of control is facilitated by scaffold proteins. In budding yeast, specifically during mitosis, Slx4 and Dpb11 form a cell cycle kinase-dependent complex with the Mus81-Mms4 structure-selective endonuclease, which allows efficient JM resolution by Mus81. Furthermore, Slx4 and Dpb11 interact even prior to joining Mus81 and respond to replication fork stalling in S-phase. This S-phase complex is involved in the regulation of the DNA damage checkpoint as well as in early steps of template switch recombination. Similar interactions and regulatory principles are found in human cells suggesting that Slx4 and Dpb11 may have an evolutionary conserved role organizing the cellular response to replication fork stalling.  相似文献   

6.
In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down‐regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase‐independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4‐Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi‐BRCT‐domain (MBD) module that recapitulates the action of Slx4‐Rtt107 in checkpoint down‐regulation. MBD mimics the damage‐induced Dpb11‐Slx4‐Rtt107 complex by synergistically interacting with lesion‐specific phospho‐sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11‐Slx4‐Rtt107 or MBD via a cooperative ‘two‐site‐docking’ mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio‐temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT‐domains interactions.  相似文献   

7.
Replication fork stalling at DNA lesions is a common problem during the process of DNA replication. One way to allow the bypass of these lesions is via specific recombination-based mechanisms that involve switching of the replication template to the sister chromatid. Inherent to these mechanisms is the formation of DNA joint molecules (JMs) between sister chromatids. Such JMs need to be disentangled before chromatid separation in mitosis and the activity of JM resolution enzymes, which is under stringent cell cycle control, is therefore up-regulated in mitosis. An additional layer of control is facilitated by scaffold proteins. In budding yeast, specifically during mitosis, Slx4 and Dpb11 form a cell cycle kinase-dependent complex with the Mus81-Mms4 structure-selective endonuclease, which allows efficient JM resolution by Mus81. Furthermore, Slx4 and Dpb11 interact even prior to joining Mus81 and respond to replication fork stalling in S-phase. This S-phase complex is involved in the regulation of the DNA damage checkpoint as well as in early steps of template switch recombination. Similar interactions and regulatory principles are found in human cells suggesting that Slx4 and Dpb11 may have an evolutionary conserved role organizing the cellular response to replication fork stalling.  相似文献   

8.
RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint kinase Mec1, and it forms complexes with DNA repair enzymes, including the nuclease subunit Slx4, but the role of Rtt107 in the DNA damage response remains unclear. We find that Rtt107 interacts with chromatin when cells are treated with compounds that cause replication forks to arrest. This damage-dependent chromatin binding requires the acetyltransferase Rtt109, but it does not require acetylation of the known Rtt109 target, histone H3-K56. Chromatin binding of Rtt107 also requires the cullin Rtt101, which seems to play a direct role in Rtt107 recruitment, because the two proteins are found in complex with each other. Finally, we provide evidence that Rtt107 is bound at or near stalled replication forks in vivo. Together, these results indicate that Rtt109, Rtt101, and Rtt107, which genetic evidence suggests are functionally related, form a DNA damage response pathway that recruits Rtt107 complexes to damaged or stalled replication forks.  相似文献   

9.
RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal-domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint protein kinase Mec1, although the mechanism by which Rtt107 is targeted by Mec1 after checkpoint activation is currently unclear. Slx4, a component of the Slx1-Slx4 structure-specific nuclease, formed a complex with Rtt107. Deletion of SLX4 conferred many of the same DNA-repair defects observed in rtt107delta, including DNA damage sensitivity, prolonged DNA damage checkpoint activation, and increased spontaneous DNA damage. These phenotypes were not shared by the Slx4 binding partner Slx1, suggesting that the functions of the Slx4 and Slx1 proteins in the DNA damage response were not identical. Of particular interest, Slx4, but not Slx1, was required for phosphorylation of Rtt107 by Mec1 in vivo, indicating that Slx4 was a mediator of DNA damage-dependent phosphorylation of the checkpoint effector Rtt107. We propose that Slx4 has roles in the DNA damage response that are distinct from the function of Slx1-Slx4 in maintaining rDNA structure and that Slx4-dependent phosphorylation of Rtt107 by Mec1 is critical for replication restart after alkylation damage.  相似文献   

10.
Genomic integrity is maintained by the coordinated interaction of many DNA damage response pathways, including checkpoints, DNA repair processes, and cell cycle restart. In Saccharomyces cerevisiae, the BRCA1 C-terminal domain-containing protein Rtt107/Esc4 is required for restart of DNA replication after successful repair of DNA damage and for cellular resistance to DNA-damaging agents. Rtt107 and its interaction partner Slx4 are phosphorylated during the initial phase of DNA damage response by the checkpoint kinases Mec1 and Tel1. Because the natural chromatin template plays an important role during the DNA damage response, we tested whether chromatin modifications affected the requirement for Rtt107 and Slx4 during DNA damage repair. Here, we report that the sensitivity to DNA-damaging agents of rtt107Δ and slx4Δ mutants was rescued by inactivation of the chromatin regulatory pathway leading to H3 K79 trimethylation. Further analysis revealed that lack of Dot1, the H3 K79 methyltransferase, led to activation of the translesion synthesis pathway, thereby allowing the survival in the presence of DNA damage. The DNA damage-induced phosphorylation of Rtt107 and Slx4, which was mutually dependent, was not restored in the absence of Dot1. The antagonistic relationship between Rtt107 and Dot1 was specific for DNA damage-induced phenotypes, whereas the genomic instability caused by loss of Rtt107 was not rescued. These data revealed a multifaceted functional relationship between Rtt107 and Dot1 in the DNA damage response and maintenance of genome integrity.  相似文献   

11.
Following DNA damage or replication stress, budding yeast cells activate the Rad53 checkpoint kinase, promoting genome stability in these challenging conditions. The DNA damage and replication checkpoint pathways are partially overlapping, sharing several factors, but are also differentiated at various levels. The upstream kinase Mec1 is required to activate both signaling cascades together with the 9-1-1 PCNA-like complex and the Dpb11 (hTopBP1) protein. After DNA damage, Dpb11 is also needed to recruit the adaptor protein Rad9 (h53BP1). Here we analyzed the mechanisms leading to Mec1 activation in vivo after DNA damage and replication stress. We found that a ddc1Δdpb11-1 double mutant strain displays a synthetic defect in Rad53 and H2A phosphorylation and is extremely sensitive to hydroxyurea (HU), indicating that Dpb11 and the 9-1-1 complex independently promote Mec1 activation. A similar phenotype is observed when both the 9-1-1 complex and the Dpb4 non-essential subunit of DNA polymerase ε (Polε) are contemporarily absent, indicating that checkpoint activation in response to replication stress is achieved through two independent pathways, requiring the 9-1-1 complex and Polε.  相似文献   

12.
Ulrich Rass 《Chromosoma》2013,122(6):499-515
Genome duplication requires that replication forks track the entire length of every chromosome. When complications occur, homologous recombination-mediated repair supports replication fork movement and recovery. This leads to physical connections between the nascent sister chromatids in the form of Holliday junctions and other branched DNA intermediates. A key role in the removal of these recombination intermediates falls to structure-specific nucleases such as the Holliday junction resolvase RuvC in Escherichia coli. RuvC is also known to cut branched DNA intermediates that originate directly from blocked replication forks, targeting them for origin-independent replication restart. In eukaryotes, multiple structure-specific nucleases, including Mus81–Mms4/MUS81–EME1, Yen1/GEN1, and Slx1–Slx4/SLX1–SLX4 (FANCP) have been implicated in the resolution of branched DNA intermediates. It is becoming increasingly clear that, as a group, they reflect the dual function of RuvC in cleaving recombination intermediates and failing replication forks to assist the DNA replication process.  相似文献   

13.
Nucleolytic processing by nucleases can be a relevant mechanism to allow repair/restart of stalled replication forks. However, nuclease action needs to be controlled to prevent overprocessing of damaged replication forks that can be detrimental to genome stability. The checkpoint protein Rad9/53BP1 is known to limit nucleolytic degradation (resection) of DNA double‐strand breaks (DSBs) in both yeast and mammals. Here, we show that loss of the inhibition that Rad9 exerts on resection exacerbates the sensitivity to replication stress of Mec1/ATR‐defective yeast cells by exposing stalled replication forks to Dna2‐dependent degradation. This Rad9 protective function is independent of checkpoint activation and relies mainly on Rad9‐Dpb11 interaction. We propose that Rad9/53BP1 supports cell viability by protecting stalled replication forks from extensive resection when the intra‐S checkpoint is not fully functional.  相似文献   

14.
When DNA is damaged or DNA replication goes awry, cells activate checkpoints to allow time for damage to be repaired and replication to complete. In Saccharomyces cerevisiae, the DNA damage checkpoint, which responds to lesions such as double-strand breaks, is activated when the lesion promotes the association of the sensor kinase Mec1 and its targeting subunit Ddc2 with its activators Ddc1 (a member of the 9-1-1 complex) and Dpb11. It has been more difficult to determine what role these Mec1 activators play in the replication checkpoint, which recognizes stalled replication forks, since Dpb11 has a separate role in DNA replication itself. Therefore we constructed an in vivo replication-checkpoint mimic that recapitulates Mec1-dependent phosphorylation of the effector kinase Rad53, a crucial step in checkpoint activation. In the endogenous replication checkpoint, Mec1 phosphorylation of Rad53 requires Mrc1, a replisome component. The replication-checkpoint mimic requires colocalization of Mrc1-LacI and Ddc2-LacI and is independent of both Ddc1 and Dpb11. We show that these activators are also dispensable for Mec1 activity and cell survival in the endogenous replication checkpoint but that Ddc1 is absolutely required in the absence of Mrc1. We propose that colocalization of Mrc1 and Mec1 is the minimal signal required to activate the replication checkpoint.  相似文献   

15.
The protein kinase Mec1 (ATR ortholog) and its partner Ddc2 (ATRIP ortholog) play a key role in DNA damage checkpoint responses in budding yeast. Previous studies have established the model in which Ddc1, a subunit of the checkpoint clamp, and Dpb11, related to TopBP1, activate Mec1 directly and control DNA damage checkpoint responses at G1 and G2/M. In this study, we show that Ddc2 contributes to Mec1 activation through a Ddc1- or Dpb11-independent mechanism. The catalytic activity of Mec1 increases after DNA damage in a Ddc2-dependent manner. In contrast, Mec1 activation occurs even in the absence of Ddc1 and Dpb11 function at G2/M. Ddc2 recruits Mec1 to sites of DNA damage. To dissect the role of Ddc2 in Mec1 activation, we isolated and characterized a separation-of-function mutation in DDC2, called ddc2-S4. The ddc2-S4 mutation does not affect Mec1 recruitment but diminishes Mec1 activation. Mec1 phosphorylates histone H2A in response to DNA damage. The ddc2-S4 mutation decreases phosphorylation of histone H2A more significantly than the absence of Ddc1 and Dpb11 function does. Our results suggest that Ddc2 plays a critical role in Mec1 activation as well as Mec1 localization at sites of DNA damage.  相似文献   

16.
The Saccharomyces cerevisiae Mec1-Ddc2 protein kinase (human ATR-ATRIP) initiates a signal transduction pathway in response to DNA damage and replication stress to mediate cell cycle arrest. The yeast DNA damage checkpoint clamp Ddc1-Mec3-Rad17 (human Rad9-Hus1-Rad1: 9-1-1) is loaded around effector DNA and thereby activates Mec1 kinase. Dpb11 (Schizosaccharomyces pombe Cut5/Rad4 or human TopBP1) is an essential protein required for the initiation of DNA replication and has a role in checkpoint activation. In this study, we demonstrate that Dpb11 directly activates the Mec1 kinase in phosphorylating the downstream effector kinase Rad53 (human Chk1/2) and DNA bound RPA. However, DNA was not required for Dpb11 to function as an activator. Dpb11 and yeast 9-1-1 independently activate Mec1, but substantial synergism in activation was observed when both activators were present. Our studies suggest that Dpb11 and 9-1-1 may partially compensate for each other during yeast checkpoint function.  相似文献   

17.
To ensure proper replication and segregation of the genome, eukaryotic cells have evolved surveillance systems that monitor and react to impaired replication fork progression. In budding yeast, the intra-S phase checkpoint responds to stalled replication forks by downregulating late-firing origins, preventing spindle elongation and allowing efficient resumption of DNA synthesis after recovery from stress. Mutations in this pathway lead to high levels of genomic instability, particularly in the presence of DNA damage. Here we demonstrate by chromatin immunoprecipitation that when yeast replication forks stall due to hydroxyurea (HU) treatment, DNA polymerases alpha and epsilon are stabilized for 40-60 min. This requires the activities of Sgs1, a member of the RecQ family of DNA helicases, and the ATM-related kinase Mec1, but not Rad53 activation. A model is proposed whereby Sgs1 helicase resolves aberrantly paired structures at stalled forks to maintain single-stranded DNA that allows RP-A and Mec1 to promote DNA polymerase association.  相似文献   

18.
The S‐phase checkpoint is a surveillance mechanism, mediated by the protein kinases Mec1 and Rad53 in the budding yeast Saccharomyces cerevisiae (ATR and Chk2 in human cells, respectively) that responds to DNA damage and replication perturbations by co‐ordinating a global cellular response necessary to maintain genome integrity. A key aspect of this response is the stabilization of DNA replication forks, which is critical for cell survival. A defective checkpoint causes irreversible replication‐fork collapse and leads to genomic instability, a hallmark of cancer cells. Although the precise mechanisms by which Mec1/Rad53 maintain functional replication forks are currently unclear, our knowledge about this checkpoint function has significantly increased during the last years. Focusing mainly on the advances obtained in S. cerevisiae, the present review will summarize our understanding of how the S‐phase checkpoint preserves the integrity of DNA replication forks and discuss the most recent findings on this topic.  相似文献   

19.
There are many barriers that replication forks must overcome in order to duplicate a genome in vivo. These barriers include damage to the template DNA and proteins bound to this template. If replication is halted by such a block, then the block must be either removed or bypassed for replication to continue. If continuation of replication employs the original fork, avoiding the need to reload the replication apparatus, then the blocked replisome must retain functionality. In vivo studies of Escherichia coli replication forks suggest that replication forks blocked by protein-DNA complexes retain the ability to resume replication upon removal of the block for several hours. Here we tested the functional stability of replication forks reconstituted in vitro and blocked by lac repressor-operator complexes. Once a fork comes to a halt at such a block, it cannot continue subsequently to translocate through the block until addition of IPTG induces repressor dissociation. However, the ability to resume replication is retained only for 4-6 min regardless of the topological state of the template DNA. Comparison of our in vitro data with previous in vivo data suggests that either accessory factors that stabilise blocked forks are present in vivo or the apparent stability of blocked forks in vivo is due to continual reloading of the replication apparatus at the site of the block.  相似文献   

20.
Mec1 (ATR in humans) is the principal kinase responsible for checkpoint activation in response to replication stress and DNA damage in Saccharomyces cerevisiae. Checkpoint initiation requires stimulation of Mec1 kinase activity by specific activators. The complexity of checkpoint initiation in yeast increases with the complexity of chromosomal states during the different phases of the cell cycle. In G1 phase, the checkpoint clamp 9–1–1 is both necessary and sufficient for full activation of Mec1 kinase whereas in G2/M, robust checkpoint function requires both 9–1–1 and the replisome assembly protein Dpb11 (human TopBP1). A third activator, Dna2, is employed specifically during S phase to stimulate Mec1 kinase and to initiate the replication checkpoint. Dna2 is an essential nuclease–helicase that is required for proper Okazaki fragment maturation, for double-strand break repair, and for protecting stalled replication forks. Remarkably, all three Mec1 activators use an unstructured region of the protein, containing two critically important aromatic residues, in order to activate Mec1. A role for these checkpoint activators in channeling aberrant replication structures into checkpoint complexes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号