首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   29篇
  2021年   4篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   10篇
  2013年   10篇
  2012年   14篇
  2011年   13篇
  2010年   14篇
  2009年   9篇
  2008年   14篇
  2007年   12篇
  2006年   7篇
  2005年   10篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2001年   10篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   6篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1982年   2篇
  1981年   1篇
  1979年   8篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1962年   1篇
排序方式: 共有218条查询结果,搜索用时 31 毫秒
1.
The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks.  相似文献   
2.
Human leukocyte typing sera of known specificities were used to test the leukocyte antigens of vervet monkeys. The results suggest that these leukocytes contained an antigen resembling the HL-A7 antigen of human leukocytes. This is similar to a previous observation with leukocytes from baboons. These findings are consistent with the suggestion that the 4a/4b complex is the precursor substance from which the other specificities have evolved.  相似文献   
3.
A novel deoxyribonuclease, exonuclease V, has been purified approximately 30,000-fold from Saccharomyces cerevisiae. Exonuclease V is localized in the nucleus. The nuclease degrades single-stranded, but not double-stranded, DNA from the 5'-end. The products of exonuclease action are dinucleotides, except the 3'-terminal tri- and tetranucleotides which are not degraded. Studies with synthetic oligo- and polynucleotides with specified sequence elements showed that exonuclease V cleaves off dinucleotides as primary digestion products. Thus, the polymers (pT)9pA(pT)n and (pT)10pA(pT)n yielded pTpA and pApT as digestion products, respectively. Removal of the 5'-terminal phosphate from the DNA substrate results in reduced binding of the enzyme to the substrate. In addition, the initial hydrolytic cut by exonuclease V on the dephosphorylated substrate produces a mixture of dinucleoside monophosphates and trinucleoside diphosphates. The enzyme is processive in action.  相似文献   
4.
5.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
6.
Human metapneumovirus (HMPV) encodes a small hydrophobic (SH) protein of unknown function. HMPV from which the SH open reading frame was deleted (HMPVΔSH) was viable and displayed similar replication kinetics, cytopathic effect and plaque size compared with wild type HMPV in several cell-lines. In addition, no differences were observed in infection efficiency or cell-to-cell spreading in human primary bronchial epithelial cells (HPBEC) cultured at an air-liquid interphase. Host gene expression was analyzed in A549 cells infected with HMPV or HMPVΔSH using microarrays and mass spectrometry (MS) based techniques at multiple time points post infection. Only minor differences were observed in mRNA or protein expression levels. A possible function of HMPV SH as apoptosis blocker, as proposed for several members of the family Paramyxoviridae, was rejected based on this analysis. So far, a clear phenotype of HMPV SH deletion mutants in vitro at the virus and host levels is absent.  相似文献   
7.
Abstract

Three DNA polymerases are thought to function at the eukaryotic DNA replication fork. Currently, a coherent model has been derived for the composition and activities of the lagging strand machinery. RNA-DNA primers are initiated by DNA polymerase α -primase. Loading of the proliferating cell nuclear antigen, PCNA, dissociates DNA polymerase α and recruits DNA polymerase δ and the flap endonuclease FEN1 for elongation and in preparation for its requirement during maturation, respectively. Nick translation by the strand displacement action of DNA polymerase δ, coupled with the nuclease action of FEN1, results in processive RNA degradation until a proper DNA nick is reached for closure by DNA ligase I. In the event of excessive strand displacement synthesis, other factors, such as the Dna2 nuclease/helicase, are required to trim excess flaps. Paradoxically, the composition and activity of the much simpler leading strand machinery has not been clearly established. The burden of evidence suggests that DNA polymerase ε normally replicates this strand, but under conditions of dysfunction, DNA polymerase δ may substitute.  相似文献   
8.
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.  相似文献   
9.
Genomic ribonucleotides incorporated during DNA replication are commonly repaired by RNase H2‐dependent ribonucleotide excision repair (RER). When RNase H2 is compromised, such as in Aicardi‐Goutières patients, genomic ribonucleotides either persist or are processed by DNA topoisomerase 1 (Top1) by either error‐free or mutagenic repair. Here, we present a biochemical analysis of these pathways. Top1 cleavage at genomic ribonucleotides can produce ribonucleoside‐2′,3′‐cyclic phosphate‐terminated nicks. Remarkably, this nick is rapidly reverted by Top1, thereby providing another opportunity for repair by RER. However, the 2′,3′‐cyclic phosphate‐terminated nick is also processed by Top1 incision, generally 2 nucleotides upstream of the nick, which produces a covalent Top1–DNA complex with a 2‐nucleotide gap. We show that these covalent complexes can be processed by proteolysis, followed by removal of the phospho‐peptide by Tdp1 and the 3′‐phosphate by Tpp1 to mediate error‐free repair. However, when the 2‐nucleotide gap is associated with a dinucleotide repeat sequence, sequence slippage re‐alignment followed by Top1‐mediated religation can occur which results in 2‐nucleotide deletion. The efficiency of deletion formation shows strong sequence‐context dependence.  相似文献   
10.

Background  

Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号