首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To resolve the fine-scale architecture of anoxic protistan communities, we conducted a cultivation-independent 18S rRNA survey in the superanoxic Framvaren Fjord in Norway. We generated three clone libraries along the steep O2/H2S gradient, using the multiple-primer approach. Of 1,100 clones analyzed, 753 proved to be high-quality protistan target sequences. These sequences were grouped into 92 phylotypes, which displayed high protistan diversity in the fjord (17 major eukaryotic phyla). Only a few were closely related to known taxa. Several sequences were dissimilar to all previously described sequences and occupied a basal position in the inferred phylogenies, suggesting that the sequences recovered were derived from novel, deeply divergent eukaryotes. We detected sequence clades with evolutionary importance (for example, clades in the euglenozoa) and clades that seem to be specifically adapted to anoxic environments, challenging the hypothesis that the global dispersal of protists is uniform. Moreover, with the detection of clones affiliated with jakobid flagellates, we present evidence that primitive descendants of early eukaryotes are present in this anoxic environment. To estimate sample coverage and phylotype richness, we used parametric and nonparametric statistical methods. The results show that although our data set is one of the largest published inventories, our sample missed a substantial proportion of the protistan diversity. Nevertheless, statistical and phylogenetic analyses of the three libraries revealed the fine-scale architecture of anoxic protistan communities, which may exhibit adaptation to different environmental conditions along the O2/H2S gradient.  相似文献   

2.
Molecular surveys suggest that communities of microbial eukaryotes are remarkably rich, because even large clone libraries seem to capture only a minority of species. This provides a qualitative picture of protistan richness but does not measure its real extent either locally or globally. Statistical analysis can estimate a community's richness, but the specific methods used to date are not always well grounded in statistical theory. Here we study a large protistan molecular survey from an anoxic water column in the Cariaco Basin (Caribbean Sea). We group individual 18S rRNA gene sequences into operational taxonomic units (OTUs) using different cutoff values for sequence similarity (99 to 50%) and systematically apply parametric models and nonparametric estimators to the OTU frequency data to estimate the total protistan diversity. The parametric models provided statistically sound estimates of protistan richness, with biologically meaningful standard errors, maximal data usage, and extensive model diagnostics and were preferable to the available nonparametric tools. Our clone library exceeded 700 clones but still covered only a minority of species and less than half of the larger protistan clades. Our estimates of total protistan richness portray the target community as very rich at all OTU levels, with hundreds of different populations apparently co-occurring in the small (3-liter) volume of our sample, as well as dozens of clades of the highest taxonomic order. These estimates are among the first for microbial eukaryotes that are obtained using state-of-the-art statistical methods and can serve as benchmark numbers for the local diversity of protists.  相似文献   

3.
Molecular surveys suggest that communities of microbial eukaryotes are remarkably rich, because even large clone libraries seem to capture only a minority of species. This provides a qualitative picture of protistan richness but does not measure its real extent either locally or globally. Statistical analysis can estimate a community's richness, but the specific methods used to date are not always well grounded in statistical theory. Here we study a large protistan molecular survey from an anoxic water column in the Cariaco Basin (Caribbean Sea). We group individual 18S rRNA gene sequences into operational taxonomic units (OTUs) using different cutoff values for sequence similarity (99 to 50%) and systematically apply parametric models and nonparametric estimators to the OTU frequency data to estimate the total protistan diversity. The parametric models provided statistically sound estimates of protistan richness, with biologically meaningful standard errors, maximal data usage, and extensive model diagnostics and were preferable to the available nonparametric tools. Our clone library exceeded 700 clones but still covered only a minority of species and less than half of the larger protistan clades. Our estimates of total protistan richness portray the target community as very rich at all OTU levels, with hundreds of different populations apparently co-occurring in the small (3-liter) volume of our sample, as well as dozens of clades of the highest taxonomic order. These estimates are among the first for microbial eukaryotes that are obtained using state-of-the-art statistical methods and can serve as benchmark numbers for the local diversity of protists.  相似文献   

4.
Molecular techniques, based on clone library of 18S rRNA gene, were employed to ascertain the diversity of microeukaryotic organisms in sediments from the East Sea. A total of 261 clones were recovered from surface sediments. Most of the clone sequences (90%) were affiliated with protists, dominated by Ciliates (18%) and Dinoflagellates (19%) of Alveolates, phototrophic Stramenopiles (11%), and Cercozoa (20%). Many of the clones were related to uncultivated eukaryotes clones retrieved from anoxic environments with several highly divergent 18S rRNA gene sequences. However, no clones were related to cultivated obligate anaerobic protists. Protistan communities between subsurface layers of 1 and 9 cm shared 23% of total phylotypes which comprised 64% of total clones retrieved. Analysis of diversity indices and rarefaction curve showed that the protistan community within the 1 cm layer exhibited higher diversity than the 9 cm layer. Our results imply that diverse protists remain to be uncovered within marine benthic environments.  相似文献   

5.
Microbial communities of extreme environments have often been assumed to have low species richness. We analysed 18S rRNA gene signatures in a sample collected below the chemocline of the anoxic Mariager Fjord in Denmark, and from these data we computed novel parametric and standard nonparametric estimates of protistan phylotype richness. Our results indicate unexpectedly high richness in this environment: at the 99.5% phylotype definition, our most conservative estimate was 568 phylotypes (+/-114, standard error). Phylogenetic analyses revealed that the sequences collected cover the majority of described lineages in the eukaryotic domain. Out of 384 sequences analysed, 307 were identified as protistan targets, none of which was identical to known sequences. However, based on what is known about species that are phylogenetically related to the Mariager sequences, most of the latter seem to belong to strictly or facultative anaerobe organisms. We also found signatures that together with other environmental 18S rRNA gene sequences represent environmental clades of possibly high taxonomic levels (class to kingdom level). One of these clades, consisting exclusively of sequences from anoxic sampling sites, branches at the base of the eukaryotic evolutionary tree among the earliest eukaryotic lineages. Assuming eukaryotic evolution under oxygen-depleted conditions, these sequences may represent immediate descendants of early eukaryotic ancestors.  相似文献   

6.
Environmental factors restrict the distribution of microbial eukaryotes but the exact boundaries for eukaryotic life are not known. Here, we examine protistan communities at the extremes of salinity and osmotic pressure, and report rich assemblages inhabiting Bannock and Discovery, two deep-sea superhaline anoxic basins in the Mediterranean. Using a rRNA-based approach, we detected 1,538 protistan rRNA gene sequences from water samples with total salinity ranging from 39 to 280 g/Kg, and obtained evidence that this DNA was endogenous to the extreme habitat sampled. Statistical analyses indicate that the discovered phylotypes represent only a fraction of species actually inhabiting both the brine and the brine-seawater interface, with as much as 82% of the actual richness missed by our survey. Jaccard indices (e.g., for a comparison of community membership) suggest that the brine/interface protistan communities are unique to Bannock and Discovery basins, and share little (0.8–2.8%) in species composition with overlying waters with typical marine salinity and oxygen tension. The protistan communities from the basins’ brine and brine/seawater interface appear to be particularly enriched with dinoflagellates, ciliates and other alveolates, as well as fungi, and are conspicuously poor in stramenopiles. The uniqueness and diversity of brine and brine-interface protistan communities make them promising targets for protistan discovery.  相似文献   

7.
Molecular approaches that target the total DNA pool recovered from permanently anoxic marine ecosystems have revealed an extraordinary diversity of prokaryotes and unicellular eukaryotes. However, the presence of gene sequences contained within the extracellular DNA pool is still largely neglected. We have investigated the preservation, origin and genetic imprint of extracellular DNA recovered from permanently anoxic deep-sea sediments of the Black Sea. Despite high DNase activities, huge amounts of total extracellular DNA were found in both the surface and subsurface sediment layers, suggesting reduced availability of the extracellular DNA pool to nuclease degradation. The reduced degradation of the total extracellular DNA was confirmed by its low decay rate and the high accumulation in the deeper sediment layers. The copy numbers of 16S and 18S rDNA contained within the extracellular DNA pool in both the surface and subsurface sediment layers was very high, indicating that permanently anoxic sediments of the deep Black Sea are hot spots of preserved extracellular gene sequences. The extracellular DNA recovered from these sediment layers also contained highly diversified 18S rDNA sequences. These were not only representative of the major protistan lineages, but also of new very divergent lineages, branching as independent clades at the base of the tree. Our findings indicate that the extracellular DNA pool is a major archive of present/past eukaryotic gene sequences, and they highlight the importance of integrating molecular cell-oriented approaches with molecular analyses of the extracellular DNA pool, for a better assessment of microbial diversity and temporal changes in marine benthic ecosystems.  相似文献   

8.
The Cariaco Basin off the Venezuelan coast in the Caribbean Sea is the world's largest truly marine body of anoxic water. The first rRNA survey of microbial eukaryotes in this environment revealed a number of novel lineages, but sampled only a fraction of the entire diversity. The goal of this study was to significantly improve recovery of protistan rRNA from the Basin. This was achieved by a systematic application of multiple PCR primer sets and substantially larger sequencing efforts. We focused on the most diverse habitat in the basin, anoxic waters approximately 100m below the oxic-anoxic interface, and detected novel lineages that escaped the single PCR primer approach. All clones obtained proved unique. A 99% sequence similarity cut-off value combined these clones into operational taxonomic units (OTUs), over 75% of which proved novel. Some of these OTUs form deep branches within established protistan groups. Others signify discovery of novel protistan lineages that appear unrelated to any known microeukaryote. Surprisingly, even this large-scale multi-primer rRNA approach still missed a substantial part of the samples' rRNA diversity. The overlap between the species lists obtained with different primers is low, with only 4% of OTUs shared by all three libraries, and the number of species detected only once is large (55%). This strongly indicates that, at least in anoxic environments, protistan diversity may be much larger than is commonly thought. A single sample appears to contain thousands of largely novel protistan species. Multiple PCR primer combinations may be needed to capture these species.  相似文献   

9.
The frontiers of eukaryote life in nature are still unidentified. In this study, we analysed protistan communities in the hypersaline (up to 365 g l−1 NaCl) anoxic L'Atalante deep-sea basin located in the eastern Mediterranean Sea. Targeting 18S ribosomal RNA retrieved from the basin's lower halocline (3501 m depth) we detected 279 protistan sequences that grouped into 42 unique phylotypes (99% sequence similarity). Statistical analyses revealed that these phylotypes account only for a proportion of the protists inhabiting this harsh environment with as much as 50% missed by this survey. Most phylotypes were affiliated with ciliates (45%), dinoflagellates (21%), choanoflagelates (10%) and uncultured marine alveolates (6%). Sequences from other taxonomic groups like stramenopiles, Polycystinea , Acantharea and Euglenozoa , all of which are typically found in non-hypersaline deep-sea systems, are either missing or very rare in our cDNA clone library. Although many DHAB sequences fell within previously identified environmental clades, a large number branched relatively deeply. Phylotype richness, community membership and community structure differ significantly from a deep seawater reference community (3499 m depth). Also, the protistan community in the L'Atalante basin is distinctively different from any previously described hypersaline community. In conclusion, we hypothesize that extreme environments may exert a high selection pressure possibly resulting in the evolution of an exceptional and distinctive assemblage of protists. The deep hypersaline anoxic basins in the Mediterranean Sea provide an ideal platform to test for this hypothesis and are promising targets for the discovery of undescribed protists with unknown physiological capabilities.  相似文献   

10.
Protists play a crucial role for ecosystem function(ing) and oxygen is one of the strongest barriers against their local dispersal. However, protistan diversity in freshwater habitats with oxygen gradients received very little attention. We applied high‐throughput sequencing of the V9 region (18S rRNA gene) to provide a hitherto unique spatiotemporal analysis of protistan diversity along the oxygen gradient of a freshwater meromictic lake (Lake Alatsee, SW Germany). In the mixolimnion, the communities experienced most seasonal structural changes, with Stramenopiles dominating in autumn and Dinoflagellata in summer. The suboxic interface supported the highest diversity, but only 23 OTUs95% (mainly Euglenozoa, after quality check and removal of operational taxonomic units (OTUs) with less than three sequences) were exclusively associated with this habitat. Eukaryotic communities in the anoxic monimolimnion showed the most stable seasonal pattern, with Chrysophyta and Bicosoecida being the dominant taxa. Our data pinpoint to the ecological role of the interface as a short‐term ‘meeting point’ for protists, contributing to the coupling of the mixolimnion and the monimolimnion. Our analyses of divergent genetic diversity suggest a high degree of previously undescribed OTUs. Future research will have to reveal if this result actually points to a high number of undescribed species in such freshwater habitats.  相似文献   

11.
Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80 000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36 000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100 000–500 000 species), suggesting a degree of protistan endemism.  相似文献   

12.
The diversity of protistan assemblages has traditionally been studied using microscopy and morphological characterization, but these methods are often inadequate for ecological studies of these communities because most small protists inherently lack adequate taxonomic characters to facilitate their identification at the species level and many protistan species also do not preserve well. We have therefore used a culture-independent approach (denaturing gradient gel electrophoresis [DGGE]) to obtain an assessment of the genetic composition and distribution of protists within different microhabitats (seawater, meltwater or slush on sea-ice floes, and ice) of the Ross Sea, Antarctica. Samples of the same type (e.g., water) shared more of the same bands than samples of different types (e.g., ice versus water), despite being collected from different sites. These findings imply that samples from the same environment have a similar protistan species composition and that the type of microenvironment significantly influences the protistan species composition of these Antarctic assemblages. It should be noted that a large number of bands among the samples within each microhabitat were distinct, indicating the potential presence of significant genetic diversity within each microenvironment. Sequence analysis of selected DGGE bands revealed sequences that represent diatoms, dinoflagellates, ciliates, flagellates, and several unidentified eukaryotes.  相似文献   

13.
The diversity of protistan assemblages has traditionally been studied using microscopy and morphological characterization, but these methods are often inadequate for ecological studies of these communities because most small protists inherently lack adequate taxonomic characters to facilitate their identification at the species level and many protistan species also do not preserve well. We have therefore used a culture-independent approach (denaturing gradient gel electrophoresis [DGGE]) to obtain an assessment of the genetic composition and distribution of protists within different microhabitats (seawater, meltwater or slush on sea-ice floes, and ice) of the Ross Sea, Antarctica. Samples of the same type (e.g., water) shared more of the same bands than samples of different types (e.g., ice versus water), despite being collected from different sites. These findings imply that samples from the same environment have a similar protistan species composition and that the type of microenvironment significantly influences the protistan species composition of these Antarctic assemblages. It should be noted that a large number of bands among the samples within each microhabitat were distinct, indicating the potential presence of significant genetic diversity within each microenvironment. Sequence analysis of selected DGGE bands revealed sequences that represent diatoms, dinoflagellates, ciliates, flagellates, and several unidentified eukaryotes.  相似文献   

14.
Present knowledge of microbial diversity is decidedly incomplete (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000). Protistan phylogenies are particularly deficient and undoubtedly exclude clades of principal ecological and evolutionary importance (S. L. Baldauf, Science 300:1703-1706, 2003). The rRNA approach has been extraordinarily successful in expanding the global prokaryotic record (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000) but has rarely been used in protistan discovery. Here we report the first application of the 18S rRNA approach to a permanently anoxic environment, the Cariaco Basin off the Venezuelan coast. On the basis of rRNA sequences, we uncovered a substantial number of novel protistan lineages. These included new clades of the highest taxonomic level unrelated to any known eukaryote as well as deep branches within established protistan groups. Three novel lineages branch at the base of the eukaryotic evolutionary tree preceding, contemporary with, or immediately following the earliest eukaryotic branches. These newly discovered protists may retain traits reminiscent of an early eukaryotic ancestor(s).  相似文献   

15.
Molecular ecology methods based on 18S rRNA amplification and sequencing have revealed an astounding diversity of microbial eukaryotes in every environment sampled so far. This is certainly true of new species and genera, as essentially every new survey discovers a wealth of novel diversity at this level. This is almost certain for taxa that are higher in taxonomic hierarchy, as many molecular surveys reported novel clades within established protistan phyla, with some of these clades repeatedly confirmed by subsequent studies. It may also be that the molecular approaches discovered several lineages of the highest taxonomic order, but this claim has not been vigorously verified as yet. Overall, the field of protistan diversity remains in its infancy. The true scale of this diversity is unknown, and so are the distribution of this diversity, its patterns, spatial and temporal dynamics, and ecological role. The sampled diversity appears to be just the tip of the iceberg, and this offers outstanding opportunities for microbial discovery for the purposes of both basic and applied research. Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.  相似文献   

16.
17.
This is the second paper in a series of three that investigates eukaryotic microbial diversity and taxon distribution in the Cariaco Basin, Venezuela, the ocean''s largest anoxic marine basin. Here, we use phylogenetic information, multivariate community analyses and statistical richness predictions to test whether protists exhibit habitat specialization within defined geochemical layers of the water column. We also analyze spatio-temporal distributions of protists across two seasons and two geographic sites within the basin. Non-metric multidimensional scaling indicates that these two basin sites are inhabited by distinct protistan assemblages, an observation that is supported by the minimal overlap in observed and predicted richness of sampled sites. A comparison of parametric richness estimations indicates that protistan communities in closely spaced—but geochemically different—habitats are very dissimilar, and may share as few as 5% of total operational taxonomic units (OTUs). This is supported by a canonical correspondence analysis, indicating that the empirically observed OTUs are organized along opposing gradients in oxidants and reductants. Our phylogenetic analyses identify many new clades at species to class levels, some of which appear restricted to specific layers of the water column and have a significantly nonrandom distribution. These findings suggest many pelagic protists are restricted to specific habitats, and likely diversify, at least in part due to separation by geochemical barriers.  相似文献   

18.
The oxic-anoxic transition zone of the Black Sea comprises a large suboxic zone as well as anoxic and sulfidic waters. While the prokaryotes and biogeochemical cycles that characterize this zone have been frequently studied, little is known about the diversity or ecology of its microbial eukaryotes. Here, we present the first broad qualitative report of the protist species composition in the Black Sea redoxcline using molecular tools. Fingerprint analysis from the whole redoxcline revealed a complex community structure of metabolically active protists with distinct shifts along the redox gradient. Additionally, 18S rRNA gene clone libraries were used to compare protist species composition of suboxic and sulfidic water layers. Among the ciliates, sequences related to Pleuronema and Strombidium were dominant in both water layers whereas sequences affiliated with anaerobic plagiopylids and Cyclidium were detected only in the sulfidic zone. Among the flagellates, mainly stramenopiles (mostly bicosoecids and chrysophytes) occurred throughout the redoxcline. In the sulfidic zone we found stramenopile sequences but also euglenozoans, jakobids and choanoflagellates that were related to clonal sequences from other anoxic marine habitats, thus indicating the existence of globally distributed groups of anoxic flagellates. Higher species diversity in the sulfidic zone and about twice as many novel sequence types of ciliates and stramenopiles compared with the suboxic layer emphasizes the importance of anoxic, sulfidic waters as habitat for high protist diversity although the function of these organisms is yet unknown.  相似文献   

19.
Flooded rice fields have become a model system for the study of soil microbial ecology. In Italian rice fields, in particular, aspects from biogeochemistry to molecular ecology have been studied, but the impact of protistan grazing on the structure and function of the prokaryotic community has not been examined yet. We compared an untreated control soil with a gamma-radiation-sterilized soil that had been reinoculated with a natural bacterial assemblage. In order to verify that the observed effects were due to protistan grazing and did not result from sterilization, we set up a third set of microcosms containing sterilized soil that had been reinoculated with natural assemblage bacteria plus protists. The spatial and temporal changes in the protistan and prokaryotic communities were examined by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) analysis, respectively, both based on the small-subunit gene. Sequences retrieved from DGGE bands were preferentially affiliated with Cercozoa and other bacteriovorous flagellates. Without protists, the level of total DNA increased with incubation time, indicating that the level of the microbial biomass was elevated. Betaproteobacteria were preferentially preyed upon, while low-G + C-content gram-positive bacteria became more dominant under grazing pressure. The bacterial diversity detectable by T-RFLP analysis was greater in the presence of protists. The level of extractable NH4+ was lower and the level of extractable SO4(2-) was higher without protists, indicating that nitrogen mineralization and SO4(2-) reduction were stimulated by protists. Most of these effects were more obvious in the partially oxic surface layer (0 to 3 mm), but they could also be detected in the anoxic subsurface layer (10 to 13 mm). Our observations fit well into the overall framework developed for protistan grazing, but with some modifications pertinent to the wetland situation: O2 was a major control, and O2 availability may have limited directly and indirectly the development of protists. Although detectable in the lower anoxic layer, grazing effects were much more obvious in the partially oxic surface layer.  相似文献   

20.
Present knowledge of microbial diversity is decidedly incomplete (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000). Protistan phylogenies are particularly deficient and undoubtedly exclude clades of principal ecological and evolutionary importance (S. L. Baldauf, Science 300:1703-1706, 2003). The rRNA approach has been extraordinarily successful in expanding the global prokaryotic record (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000) but has rarely been used in protistan discovery. Here we report the first application of the 18S rRNA approach to a permanently anoxic environment, the Cariaco Basin off the Venezuelan coast. On the basis of rRNA sequences, we uncovered a substantial number of novel protistan lineages. These included new clades of the highest taxonomic level unrelated to any known eukaryote as well as deep branches within established protistan groups. Three novel lineages branch at the base of the eukaryotic evolutionary tree preceding, contemporary with, or immediately following the earliest eukaryotic branches. These newly discovered protists may retain traits reminiscent of an early eukaryotic ancestor(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号