首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Green  Barry G. 《Chemical senses》1991,16(6):675-689
Psychophysical measurements were made of the perceived intensityand quality of sensations of chemical irritation before andafter the tip of the tongue had been desensitized to capsaicin(10 ppm). The results of the first experiment showed that capsaicindesensitization tended to reduce the perceived intensity ofirritation produced by approximately equipotent concentrationsof capsaicin (3 ppm), ethanol (30%), cinnamic aldehyde (2.5%)and NaCl (5M) applied to the tongue on filter paper disks; however,the reduction in irritation was less for the latter three compoundsthan for capsaicin and failed to reach statistical significancefor ethanol. Ratings of sensation quality suggested that thefour irritants produced different quality ‘profiles’,and that ethanol and cinnamic aldehyde were characterized bysensations of numbness as well as by sensations of burning andstinging/pricking. Follow-up experiments in which subjects ratedthe perceived intensity of individual sensation qualities showedthat desensitization dramatically reduced the burning and stinging/prickingcomponents of irritation, but left the sensations of numbnessand chemogenic warmth unchanged. It is concluded that lingualchemesthetic sensations are multidimensional, and mediated byboth capsaicinsensitive and capsaicin-insensitive sensory pathways.  相似文献   

2.
The aim of this study was to investigate tactile sensitivity near the site of primary hyperalgesia evoked by capsaicin applied topically to the dorsolateral aspect of the hand. In the first experiment (N = 15), touch thresholds increased in the fifth finger ipsilateral to the topically applied capsaicin, but remained unchanged at greater distances from the site of capsaicin treatment. In a second experiment (N = 12), the effect of the capsaicin treatment on sensations evoked not only by light touch but also by warmth, heat-pain, and pressure-pain to a 2-mm diameter steel probe was investigated in the fifth finger. Again, tactile sensitivity was inhibited at the fifth finger, even though stimulation with a cotton bud evoked no discomfort; moreover, sensitivity to warmth and heat-pain were unimpaired. However, sensitivity to pressure-pain increased in the fifth finger after the capsaicin treatment, possibly due to activation of nociceptors sandwiched between the probe tip and bone that normally responded to sharp stimuli. These findings suggest that the central mechanisms that mediate secondary mechanical hyperalgesia suppress sensitivity to innocuous tactile sensations. This effect may contribute to tactile hypoesthesia in chronic pain conditions.  相似文献   

3.
Green  Barry G. 《Chemical senses》1986,11(3):371-382
The interaction between thermal and chemical stimulation inthe oral cavity was studied in two experiments by measuringthe perceived intensity of thermal sensations in the presenceof capsaicin, and the perceived intensity of the ‘burning’sensations produced by capsaicin at several solution temperatures.It is demonstrated in the first experiment that capsaicin intensifiessensations of warmth (particularly at moderateto-high temperatures)and slightly but consistently reduces the intensity of perceivedcold. On the other hand, the burning sensation induced by capsaicinis enhanced by warming and inhibited by cooling. The secondexperiment confirmed the existence of a second inhibitory factorin addition to cooling, possibly of tactile origin. Viewed togetherthe results of both experiments indicate that complex sensoryinteractions may take place in the trigeminal system duringsimultaneous chemical, thermal and mechanical stimulation.  相似文献   

4.
The effect of oral capsaicin on taste sensations in humans was reinvestigated with attention to methodological issues raised in previous studies, including the mode of presentation and temperature of the tastant stimulus, as well as the sensitizing and desensitizing properties of capsaicin. One-half of the dorsal anterior tongue was pre-treated with capsaicin, followed by bilateral tastant application (sucrose, NaCl, quinine, monosodium glutamate and citric acid). Subjects indicated on which side the taste intensity was greater in a two-alternative, forced-choice procedure and also rated taste intensity independently on each side of the tongue. Each of the five tastants was tested sequentially, with reapplication of capsaicin between trials in order to maintain a constant level of burn. Four experiments were conducted: (i) a high concentration (33 p.p.m.) (109 microM) capsaicin effect on taste intensity elicited by high tastant concentrations; (ii) a high concentration capsaicin effect on taste intensity elicited by low tastant concentrations; (iii) a low concentration (1.5 p.p.m.) (4.9 microM) capsaicin effect on taste intensity elicited by low tastant concentrations; and (iv) validation of the method for localizing taste by pre-treating one side of the tongue with Gymnema sylvestre, followed by bilateral application of sucrose. In the first experiment, a significant proportion of the subjects chose the non-treated side in the two-alternative, forced-choice procedure and assigned significantly higher ratings to that side for sucrose-induced sweetness, quinine-induced bitterness and glutamate-induced umami sensations. Salty and sour sensations were not different between sides. A 15 min break was imposed in order to allow the capsaicin burn to disappear and desensitization to set in, followed by reapplication of the tastant test solutions. There were no bilateral differences in the intensity of the sensations elicited by any of the five tastants. Similar results were obtained in experiments 2 and 3. In the fourth experiment, all 15 subjects tested chose the side not treated with Gymnema sylvestre as having a stronger sweet taste and assigned significantly higher ratings to that side, thereby validating the method for taste localization. These results indicate that oral capsaicin reduces certain but not all taste sensations and are discussed in terms of possible physiological and cognitive interactions.  相似文献   

5.
We explore interactions between the irritant effects of oralcapsaicin and gustatory and olfactory sensations, and the extentto which experience with chili pepper, and liking for its sensoryproperties are associated with changes in the perception oforal capsaicin. Oral capsaicin partially masks gustatory andolfactory sensations, but surprisingly, it does not interferewith flavor identification Regular users rate the intensityof orally-induced irritation from capsaicin as markedly lowerIn spite of this difference, the partial masking of the magnitudeof olfactory or gustatory sensations exerted by capsaicin isapproximately equal in the two groups. There are indicationsthat decrements in flavor identification under capsaicin aregreater in chili dislikers (non-eaters). The pattern of resultssuggests that the masking effect of capsaicin on taste and smellarises at the stage of processing before (or on a parallel pathto) the appreciation of the magnitude of the capsaicin-inducedburn sensation.  相似文献   

6.
It was recently shown that the cutaneous sensitivity to airpuffs is decreased by a low-frequency vibrotactile masker in the hairy skin, and by a low-frequency but especially by a high-frequency masker in the glabrous skin. In the current study, the spatial features of this masking effect were determined in four healthy human subjects, using a reaction time paradigm. The masking effect decreased monotonically with increasing interstimulus distance, and identically in longitudinal and transverse (i.e., lateral) directions in the palm or dorsal surface of the hand. The masking effect was stronger in the glabrous than in the hairy skin, especially in the fingers. In the glabrous skin, the spread of masking effect produced by a high-frequency masker was more extensive than that produced by a low-frequency masker. The mechanical spread of high-frequency vibration was less extensive than that of low-frequency vibration in the skin. In the glabrous skin, a masker applied to the tip of the finger produced a stronger masking effect on sensations in the base of the finger than when the masker was located at the base and the test stimulus was located at the tip. It is concluded that mechanical spread of vibration in the skin is of minor importance in explaining the masking effects. Different peripheral neural mechanisms underlie the airpuff-elicited sensations in the hairy and glabrous skin. The afferent inhibitory mechanisms are stronger for signals coming from the glabrous skin of the fingers than for signals coming from the hairy skin. Furthermore, the peripheral innervation density and size of the cortical representational areas may be of importance in determining the magnitude of the masking effect.  相似文献   

7.
It was recently shown that the cutaneous sensitivity to airpuffs is decreased by a low-frequency vibrotactile masker in the hairy skin, and by a low-frequency but especially by a high-frequency masker in the glabrous skin. In the current study, the spatial features of this masking effect were determined in four healthy human subjects, using a reaction time paradigm. The masking effect decreased monotonically with increasing interstimulus distance, and identically in longitudinal and transverse (i.e., lateral) directions in the palm or dorsal surface of the hand. The masking effect was stronger in the glabrous than in the hairy skin, especially in the fingers. In the glabrous skin, the spread of masking effect produced by a high-frequency masker was more extensive than that produced by a low-frequency masker. The mechanical spread of high-frequency vibration was less extensive than that of low-frequency vibration in the skin. In the glabrous skin, a masker applied to the tip of the finger produced a stronger masking effect on sensations in the base of the finger than when the masker was located at the base and the test stimulus was located at the tip. It is concluded that mechanical spread of vibration in the skin is of minor importance in explaining the masking effects. Different peripheral neural mechanisms underlie the airpuff-elicited sensations in the hairy and glabrous skin. The afferent inhibitory mechanisms are stronger for signals coming from the glabrous skin of the fingers than for signals coming from the hairy skin. Furthermore, the peripheral innervation density and size of the cortical representational areas may be of importance in determining the magnitude of the masking effect.  相似文献   

8.
The ability to localize a chemical stimulus applied to the skin of the forearm was compared to the ability to localize a punctate tactile stimulus. The chemical stimulus was a single, 6-μ1 drop of a 1.0% solution of capsaicin in an ethanol vehicle; the tactile stimulus was a polyester monofilament that exerted 7.5 g of force. Subjects attempted to localize the stimuli at 30-sec intervals for a period of 13.5 min, and rated the perceived intensity and quality of the chemogenic sensations. To avoid generating potentially confounding tactile sensations, localization attempts were made by pointing to the area of sensation with a focused light beam. The results showed that overall, chemical localization was inferior to tactile localization: The absolute error of localization averaged 2.5 cm for capsaicin compared to 1.4 cm for the monofilament. The experiment also revealed that chemical localization (1) varied significantly across arms, (2) exhibited a relatively strong bias toward the elbow, and (3) appeared to be unaffected by the perceived intensity of the sensation. The dominant sensation quality reported was itch. The results are discussed in the context of cutaneous localization in general and localization in the nociceptive system in particular.  相似文献   

9.
Lim J  Green BG 《Chemical senses》2007,32(1):31-39
Although it has long been studied as a pure sensory irritant, the ability of capsaicin to evoke, mask, and desensitize bitter taste suggests that burning sensations and bitter taste might be closely related perceptually. The current study investigated the psychophysical relationship between bitterness and burning using 2 different approaches. In Experiment 1, spatial discrimination of 4 taste stimuli was measured in the presence or absence of capsaicin. The subjects' task was to report which of 3 swabs, spaced 1 cm apart and presented to the tongue tip, contained a taste stimulus when 1) water was presented on the other 2 swabs or 2) when 10 muM capsaicin was presented on all 3 swabs. The presence of capsaicin did not change performance on the 3 alternative forced-choice (3-AFC) task for sweet, sour, and salty stimuli, while the localization error for 1.8 mM quinine sulfate (QSO(4)) increased significantly. In Experiment 2, the perceptual similarity/dissimilarity of taste stimuli and capsaicin was measured directly using pairs of stimuli applied to opposite sides of the tongue tip on swabs separated by 2 cm. Multidimensional scaling analyses showed that capsaicin fell nearer to QSO(4) than to any other taste stimulus. Cluster analysis corroborated this finding: capsaicin was closely linked with QSO(4) and the capsaicin-QSO(4) group was separated from the other taste stimuli. The latter result indicated that bitterness was more similar to burning than to the other tastes. These findings imply that despite being mediated by different sensory modalities, bitterness and burn are qualitatively similar. We speculate that this similarity reflects a common function of these 2 sensations as sensory signals of potentially harmful stimuli.  相似文献   

10.
TRPV1 and TRPV3 are two heat-sensitive ion channels activated at distinct temperature ranges perceived by human as hot and warm, respectively. Compounds eliciting human sensations of heat or warmth can also potently activate these channels. In rodents, TRPV3 is expressed predominantly in skin keratinocytes, whereas in humans TRPV1 and TRPV3 are co-expressed in sensory neurons of dorsal root ganglia and trigeminal ganglion and are known to form heteromeric channels with distinct single channel conductances as well as sensitivities to TRPV1 activator capsaicin and inhibitor capsazepine. However, how heteromeric TRPV1/TRPV3 channels respond to heat and other stimuli remains unknown. In this study, we examined the behavior of heteromeric TRPV1/TRPV3 channels activated by heat, capsaicin, and voltage. Our results demonstrate that the heteromeric channels exhibit distinct temperature sensitivity, activation threshold, and heat-induced sensitization. Changes in gating properties apparently originate from interactions between TRPV1 and TRPV3 subunits. Our results suggest that heteromeric TRPV1/TRPV3 channels are unique heat sensors that may contribute to the fine-tuning of sensitivity to sensory inputs.  相似文献   

11.
Summary The association between mast cells (visualized by routine staining and immunohistochemistry for histamine) and capsaicin-sensitive nerves (containing calcitonin gene-related peptide (CGRP) and substance P (SP)) was studied in the pig. In the 1-ethyl-3(3-diethylaminopropyl)carbodiimide (EDCDI)-fixed skin tissue, histamine-containing mast cells and CGRP/SP-positive nerves were found in close association around blood vessels. In the EDCDI-fixed airway mucosa, only single histamine-containing mast cells were detected. However, many alcian blue-positive mast cells were found, sometimes close to the airway epithelium where CGRP/SP-containing nerve fibres were absent 2 days after systemic capsaicin pretreatment, but no changes in the number and distribution of tissue mast cells, granulocytes or lymphocytes, or the number of blood leukocytes were detected. Local injection of allergen, histamine and capsaicin into the skin of pigs actively sensitized with ascaris antigen caused a rapid light red-flare (vasodilation) reaction. Allergen and histamine, but not capsaicin, also produced plasma protein extravasation. In contrast to the absent flare, the protein extravasation response still occurred in capsaicin-treated pigs. The sensitivity to ascaris antigen was mediated by an IgE-like antibody. We conclude that a functional and morphological relationship exists between histamine-containing mast cells and capsaicin-sensitive sensory nerves in the pig skin. Mast cells and sensory nerves are also found in the airway mucosa and appear to be closely associated with the epithelium.  相似文献   

12.
In virtually all fur-coated and feathered animals, shaking movements of the body, similar to that made by a dog when wet, occur in response to irritation of the skin or in response to sensations of intense cold. Vigorous shaking movements occur in rats undergoing opiate withdrawal. I was led by this observation to investigations on the pharmacology of agents that stimulate or inhibit shaking. Thyrotropin-releasing hormone, injected centrally at submicrogram doses, produced in nondependent, barbiturate-anesthetized animals, shaking behavior identical in its general features to that of morphine withdrawal. AG-3-5 (1-[2-hydroxyphenyl]-4[3-nitrophenyl]-1,2,3,6-tetrahydropyrimidine-2-one), another chemical stimulant of shaking, produced specific sensations of cold in man by a peripheral site of action. In this context, it should be noted that sensations of cold, and the associated emotional discomfort, are conspicuous symptoms of opiate withdrawal in man. Shaking movements elicited by a variety of stimuli were inhibited by central administration of nanomolar doses of drugs that act as agonists on opiate, muscarinic, and alpha-adrenergic receptors. These observations may provide information on a) the identity of substances in brain that, when released, provoke opiate withdrawal signs and symptoms; b) the chemical nature of substances that stimulate peripheral cold receptors; and c) the pharmacologic classification of centrally acting agents that attenuate withdrawal and produce antinociception.  相似文献   

13.
To investigate whether local activity of capsaicin-sensitive sensory afferents in the skin has a modulatory role in the reflex cutaneous vasodilator response to hyperthermia in humans, experiments were conducted in two parts. First, low-dose topical capsaicin (0.025%) was administered acutely to stimulate local activity of these afferents. Second, we temporarily desensitized these nerves in a small area of skin using chronic capsaicin treatment (0.075% for 7 days). Each intervention was followed by whole body heating using water-perfused suits and then by local warming to 42 degrees C for assessment of maximum cutaneous vascular conductance. Skin blood flow was measured by laser-Doppler flowmetry and divided by mean arterial pressure (Finapres) for assessment of cutaneous vascular conductance. Maximum vascular conductance was not influenced by either acute or chronic capsaicin treatment (P > 0.10). After acute capsaicin, baseline cutaneous vascular conductance was elevated above that at control sites (25.34 +/- 6.25 vs. 10.57 +/- 2.42%max; P < 0.05). However, internal temperature thresholds for vasodilation were not affected by either acute or chronic capsaicin (P > 0.10). Furthermore, neither acute (control: 112.74 +/- 36.83 vs. acute capsaicin: 96.92 +/- 28.92%max/ degrees C; P > 0.10) nor chronic (control: 142.45 +/- 61.89 vs. chronic capsaicin: 132.12 +/- 52.60%max/ degrees C; P > 0.10) capsaicin administration influenced the sensitivity of the reflex cutaneous vasodilator response. We conclude that local activity of capsaicin-sensitive afferents in the skin does not modify reflex cutaneous vasodilation during hyperthermia.  相似文献   

14.
Common food irritants elicit oral heat or cool sensations via actions at thermosensitive transient receptor potential (TRP) channels. We used a half-tongue, 2-alternative forced-choice procedure coupled with bilateral pain intensity ratings to investigate irritant effects on heat and cold pain. The method was validated in a bilateral thermal difference detection task. Capsaicin, mustard oil, and cinnamaldehyde enhanced lingual heat pain elicited by a 49 degrees C stimulus. Mustard oil and cinnamaldehyde weakly enhanced lingual cold pain (9.5 degrees C), whereas capsaicin had no effect. Menthol significantly enhanced cold pain and weakly reduced heat pain. To address if capsaicin's effect was due to summation of perceptually similar thermal and chemical sensations, one-half of the tongue was desensitized by application of capsaicin. Upon reapplication, capsaicin elicited little or no irritant sensation yet still significantly enhanced heat pain on the capsaicin-treated side, ruling out summation. In a third experiment, capsaicin significantly enhanced pain ratings to graded heat stimuli (47 degrees C to 50 degrees C) resulting in an upward shift of the stimulus-response function. Menthol may induce cold hyperalgesia via enhanced thermal gating of TRPM8 in peripheral fibers. Capsaicin, mustard oil, and cinnamaldehyde may induce heat hyperalgesia via enhanced thermal gating of TRPV1 that is coexpressed with TRPA1 in peripheral nociceptors.  相似文献   

15.
Wang S  Elitt CM  Malin SA  Albers KM 《生理学报》2008,60(5):565-570
Artemin is a neuronal survival and differentiation factor in the glial cell line-derived neurotrophic factor family.Its receptor GFRα3 is expressed by a subpopulation of nociceptor type sensory neurons in the dorsal root and trigeminal ganglia(DRG and TG).These neurons co-express the heat,capsaicin and proton-sensitive channel TRPV1 and the cold and chemical-sensitive channel TRPA1.To further investigate the effects of artemin on sensory neurons,we isolated transgenic mice(ARTN-OE mice) that overexpress art...  相似文献   

16.
Psychophysical methods were used to assess changes in the intensityof irritant sensations elicited by repeated application of capsaicinand nicotine delivered unilaterally to the tongue of human subjects.Whereas capsaicin (0.5 or 3 p.p.m.; repeated at 1 min intervalsover 10 min) evoked progressively stronger ratings of irritation(sensitization),there was a significant decrement in irritation ratings (desensitization)to repeated application of nicotine (0.1%). A two-alternativeforced-choice (2-AFC) procedure was additionally used to testfor self- and cross-desensitization. After the subjects hadreceived either repeated capsaicin or nicotine, a rest periodensued followed by the 2-AFC procedure. Either capsaicin ornicotine was delivered bilaterally to the tongue and subjectswere asked to choose which side yielded a stronger sensation.Following capsaicin pretreatment, subjects reported that capsaicinevoked a stronger sensation on the previously untreated side(capsaicin self-desensitization). Similar self-desensitizationwas observed with nicotine. Furthermore, nicotine evoked a significantlyweaker sensation on the side of the tongue pretreated with capsaicin(cross-desensitization). In contrast, capsaicin did not consistentlyevoke a weaker sensation on the nicotine-pretreated side, indicatingan absence of cross-desensitization. These results are discussedin terms of physiological mechanisms that might underlie thecontrasting sensory effects of nicotine versus capsaicin. Chem.Senses 22: 483–492, 1997.  相似文献   

17.
Three experiments were conducted to measure the sensory irritationproduced by two prototypical gustatory stimuli: citric acidand NaCl. The stimuli were applied to the tip of the tongueon filter paper disks. The first experiment revealed that solutionsof NaCl and citric acid that produced approximately equal tastesensations also produced similar amounts of irritation; thatthe psychophysical functions for irritation were approximatelytwice as steep as the functions for taste; and that irritationgrew over time for NaCl but not for citric acid. When viewedas a percentage of the taste sensation at 25 s, NaCl irritationaveraged 23% at the lowest concentration and 70% at the highestconcentration; citric acid irritation averaged 44% at the lowestconcentration and 98% at the highest concentration. The secondexperiment investigated whether the irritation produced by thesetwo stimuli was mediated via capsaicin-sensitive (CS) fibers.The experiment included a pre-test, an irritation treatmentwith either capsaicin (a desensitizing agent) or zingerone (anon-desensitizing agent), a 15 min rest period and a post-test.Reductions in irritation and taste occurred following treatmentwith both capsaicin and zingerone. A third experiment demonstratedthat the majority of the effect of zingerone on taste and irritationwas due to a perceptual context effect. After the context effectwas taken into account, capsaicin desensitization remained significantfor both salt taste and salt irritation at the highest concentration.A similar pattern of results for citric acid suggests that bothcitric acid and NaCl produce irritation in part via CS fibers.The results are discussed in terms of the ability of subjectsto discriminate the gustatory and chemesthetic components oforal sensations and the role of salt and acid irritation inflavor perception.  相似文献   

18.
The longstanding question of whether temperature is sensed via separate sensory systems for warmth and cold was investigated by measuring individual differences in perception of nonpainful heating and cooling. Sixty-two subjects gave separate ratings of the intensity of thermal sensations (warmth, cold) and nociceptive sensations (burning/stinging/pricking) produced by cooling (29 degrees C) or heating (37 degrees C) local regions of the forearm. Stimuli were delivered via a 4 x 4 array of 8 mm x 8 mm Peltier thermoelectric modules that enabled test temperatures to be presented sequentially to individual modules or simultaneously to the full array. Stimulation of the full array showed that perception of warmth and cold were highly correlated (Pearson r = 0.83, p < 0.05). Ratings of nonpainful nociceptive sensations produced by the two temperatures were also correlated, but to a lesser degree (r = 0.44), and the associations between nociceptive and thermal sensations (r = 0.35 and 0.22 for 37 and 29 degrees C, respectively) were not significant after correction for multiple statistical tests. Intensity ratings for individual modules indicated that the number of responsive sites out of 16 was a poor predictor of temperature sensations but a significant predictor of nociceptive sensations. The very high correlation between ratings of thermal sensations conflicts with the classical view that warmth and cold are mediated by separate thermal modalities and implies that warm-sensitive and cold-sensitive spinothalamic pathways converge and undergo joint modulation in the central nervous system. Integration of thermal stimulation from the skin and body core within the thermoregulatory system is suggested as the possible source of this convergence.  相似文献   

19.
Nicotine contacting mucous membranes elicits irritation that decreases with repeated exposures (self-desensitization). We investigated the time course of nicotine self-desensitization and compared it with that of capsaicin. Nicotine (300 mM, 10 microl) was applied to one-half of the dorsal tongue and vehicle to the other. Following a rest period ranging from 0.5 to 48 h, nicotine (5 microl) was reapplied to each side of the tongue and subjects indicated on which side they experienced stronger irritation and separately rated the intensity of the sensation on each side. After intervals of 0.5, 1, and 24 h, a significant majority of subjects chose the vehicle-treated side as having stronger irritation and assigned significantly higher intensity ratings to that side, indicating self-desensitization. The effect was not present after 48 h. By comparison, 10 parts per million (ppm) (33 microM) capsaicin induced significant self-desensitization at 1 but not 24 h, whereas a higher concentration of capsaicin (100 ppm, 330 microM) induced significant self-desensitization at intervals of 1, 24, and 48 h. These results indicate that initial exposure to nicotine or capsaicin can markedly attenuate irritant sensations elicited by subsequent exposure to these irritants hours to days later.  相似文献   

20.
Vanilloid agonists such as capsaicin activate ion flux through the TRPV1 channel, a heat- and ligand-gated cation channel that transduces painful chemical or thermal stimuli applied to peripheral nerve endings in skin or deep tissues. We have probed the SAR of a variety of 1,4-dihydropyridine (DHP) derivatives as novel 'enhancers' of TRPV1 activity by examining changes in capsaicin-induced elevations in (45)Ca(2+)-uptake in either cells ectopically expressing TRPV1 or in cultured dorsal root ganglion (DRG) neurons. The enhancers increased the maximal capsaicin effect on (45)Ca(2+)-uptake by typically 2- to 3-fold without producing an action when used alone. The DHP enhancers contained 6-aryl substitution and small alkyl groups at the 1 and 4 positions, and a 3-phenylalkylthioester was tolerated. Levels of free intracellular Ca(2+), as measured by calcium imaging, were also increased in DRG neurons when exposed to the combination of capsaicin and the most efficacious enhancer 23 compared to capsaicin alone. Thus, DHPs can modulate TRPV1 channels in a positive fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号