首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Protective vasodilation during acid back diffusion into the rat gastric mucosa depends on activation of sensory neurons and mast cell degranulation with histamine release. We hypothesized that these two mediator systems interact and that histamine partly exerts its effect via sensory nerves. Gastric blood flow (GBF) and luminal histamine were measured in chambered stomachs, and mast cell numbers were assessed by morphometry. Ablation of sensory neurons and depletion of mast cells were produced by pretreatment with capsaicin or dexamethasone, respectively. Mucosal exposure to 1.5 M NaCl and then to pH 1.0 saline in ablated and control rats caused increased luminal histamine and reduced numbers of mast cells. Enterochromaffin-like cell marker pancreastatin remained unchanged. Only control rats responded with an increase in GBF. Capsaicin stimulation (640 microM) of the undamaged mucosa induced identical increase in GBF and unchanged mast cell mass in normal and dexamethasone-treated rats. Increase in GBF after topical exposure to histamine (30 mM) in rats pretreated with capsaicin or a calcitonin gene-related peptide (CGRP)(1) antagonist human CGRP(8-37) or exposed to the calcium pore blocker ruthenium red was less than one-half of that in control rats. These data suggest that mast cell-derived histamine is involved in gastric vasodilatation during acid back diffusion partly via sensory neurons.  相似文献   

2.
Intravenous (IV) infusions of neurotensin (NT) in anesthetized guinea pigs elicited dose-dependent pressor effects and tachycardia. Both effects were significantly reduced or abolished in guinea pigs given a chronic treatment with the neurotoxin capsaicin. In guinea pig isolated atria NT evoked a positive inotropic and chronotropic effect. Both effects were completely abolished in atria derived from capsaicin-treated guinea pigs. The positive inotropic and chronotropic effects of NT in guinea pig atria were mimicked by capsaicin and calcitonin gene-related peptide (CGRP). These results were interpreted as an indication that NT produces its cardiovascular effects in guinea pigs by activating capsaicin-sensitive sensory neurons.  相似文献   

3.
4.
Pretreatment with capsaicin caused a depletion of substance P (SP)-, neurokinin A (NKA)- and calcitonin gene-related peptide (CGRP)-like immunoreactivity (-LI) from the trigeminal ganglion, dura mater and cerebral arteries. The effect of capsaicin on isolated basilar arteries of guinea pig resulted in a biphasic relaxant response of histamine precontracted vessels. The first phase of the capsaicin-induced relaxation was absent in capsaicin-treated guinea pigs. Furthermore, repeated administration of capsaicin decreased the first but not the second phase of relaxation, supporting the view that a stored agent was released, while the second phase probably was due to a direct effect of capsaicin per se. The biphasic effect was not modified by the SP antagonist Spantide in a concentration that blocks tachykinin response (3.10(-6) M), nor by removal of the endothelium. There was no significant difference in pD2 values (-log concentration eliciting half maximum relaxation) between relaxations induced by SP, NKA, neurokinin B, neuropeptide K or CGRP in capsaicin pretreated as compared to vehicle-treated animals. These results are in support of the assumption that CGRP is involved in the capsaicin-induced relaxation caused by release of vasoactive agents from sensory afferent nerves.  相似文献   

5.
Yu J  Tan GS  Deng PY  Xu KP  Hu CP  Li YJ 《Regulatory peptides》2005,125(1-3):93-97
Previous investigations have indicated that calcitonin gene-related peptide (CGRP), a principal transmitter in capsaicin-sensitive sensory nerves, could alleviate cardiac anaphylaxis injury. Rutaecarpine relaxes vascular smooth by stimulation of CGRP release via activation of vanilloid receptor subtype 1 (VR1). In the present study, we examined the role of capsaicin-sensitive sensory nerves in anaphylactic vessels and the effect of rutaecarpine on antigen-challenged constriction in the guinea pig isolated thoracic aorta. The aortas were challenged with 0.01 mg/ml bovine serum albumin, and the tension of aorta rings was continuously monitored. The amount of CGRP released from thoracic aortas was determined in the absence or presence of rutaecarpine. Antigen challenge caused a vasoconstrictor response concomitantly with an increase in the release of CGRP from the isolated thoracic aorta, and the vasoconstrictor responses were potentiated by CGRP8-37 (10 microM) or capsaicin (1 microM). Pretreatment with diphenhydramine (1 microM) markedly decreased antigen-challenged vasoconstriction. Acute application of capsaicin (0.03 or 0.1 microM) significantly inhibited vasoconstrictor responses. Pretreatment with rutaecarpine (10 or 30 microM) significantly increased CGRP release concomitantly with decrease in antigen-challenged vasoconstriction, which was abolished by CGRP8-37 (10 microM) or capsazepine (10 microM). The present results suggest that an increase in the release of CGRP during vascular anaphylaxis may be a beneficial compensatory response, and that rutaecarpine inhibits antigen-challenged vasoconstriction, which is related to stimulation of endogenous CGRP release via activation of VR1.  相似文献   

6.
Electrical stimulation of rat sensory nerves produces cutaneous vasodilation and plasma protein extravasation, a phenomenon termed "neurogenic inflammation". Rat skin on the dorsum of the paw developed neurogenic inflammation after electrical stimulation of the saphenous nerve. In tissue sections, the extravasation of the supravital dye monastral blue B identified permeable vessels. Mast cells were identified by toluidine blue stain. Permeable vessels were significantly more dense in the superficial 120 microns of the dermis than in the deeper dermis, whereas mast cells were significantly more frequent in the deeper dermis. The relationships between nociceptive sensory nerve fibers, permeable vessels, and mast cells were examined by indirect immunohistochemistry for calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and substance P (SP). CGRP-, NKA-, and SP-containing nerves densely innervated the superficial dermis and appeared to innervate the vessels that became permeable during neurogenic inflammation. In contrast, mast cells were not associated with either permeable vessels or nerve fibers. These data suggest that electrical stimulation of rat sensory nerves produces vascular permeability by inducing the release of neuropeptides that may directly stimulate the superficial vascular bed. Mast cells may not be involved in this stage of cutaneous neurogenic inflammation in rat skin.  相似文献   

7.
Francis Rioux  H  l  ne Bachelard  Jean Barab    Serge St-Pierre 《Peptides》1986,7(6):1087-1094
Topical application of picomoles of neurotensin (NT) on the surface of the left ventricle (epicardial application) of anesthetized guinea pigs evoked dose-dependent pressor effects and tachycardia. The pressor response to epicardial NT was attenuated by pentolinium, a mixture of phentolamine and propranolol, or by guanethidine. However it was not affected by indomethacin, atropine or by a mixture of mepyramine and cimetidine. The tachycardia caused by epicardial NT was not modified by any of the aforementioned drugs. Both the pressor effects and tachycardia elicited by epicardial application of NT were markedly inhibited by chronic treatment of guinea pigs with capsaicin, and by topical application of lidocaine or tetrodotoxin to the surface of the left ventricle. Epicardial application of calcitonin gene-related peptide (CGRP), substance P (SP) or capsaicin also elicited tachycardia and either a decrease (CGRP and SP) or increase of blood pressure (capsaicin) in anesthetized guinea pigs. Epicardial application of NT, CGRP, or capsaicin in isolated, perfused hearts of guinea pigs also caused tachycardia. Together, these results suggest that the pressor responses to topical application of NT on the surface of the left ventricle in anesthetized guinea pigs are partially reflex in nature and likely to result from the stimulation by NT of cardiac sympathetic, capsaicin-sensitive, sensory nerve endings, whereas the tachycardia caused by epicardial NT appears to be due both to direct and indirect effects of NT on ventricular muscle cells. The possible participation of CGRP and/or SP in the chronotropic effect of NT applied on the epicardium, and their putative role as neurotransmitter of cardiac, capsaicin-sensitive, sensory neurons are discussed.  相似文献   

8.
Deng PY  Ye F  Zhu HQ  Cai WJ  Deng HW  Li YJ 《Regulatory peptides》2003,114(2-3):175-182
Previous investigations have indicated that capsaicin-sensitive sensory nerves play an important role in modulation of the peripheral resistance of the circulation system. In the present study, we examined the role of capsaicin-sensitive sensory nerves in two-kidney, one-clip (2K1C) renovascular hypertension rats. Systolic blood pressure (BP) was monitored by the tail-cuff method throughout the experiment. Concentrations of calcitonin gene-related peptide (CGRP) in the plasma, the level of CGRP mRNA in dorsal root ganglia (DRG) and the density of CGRP immunoreactive (CGRP-ir) fibers in mesenteric artery were measured. Blood pressure was significantly elevated at day 10 postoperation (BP was 143+/-10 and 114+/-7 mm Hg for 2K1C and Sham groups, respectively, p<0.05). Treatment with capsaicin, which selectively depletes neurotransmitters in sensory nerves, enhanced hypertensive responses to clipping (BP was 168+/-7 and 143+/-10 mm Hg at day 10 postoperation for Cap1+2K1C and 2K1C groups, respectively, p<0.05), and BP in the rats treated with a second injection of capsaicin was greater than that in the rats treated with a single injection of capsaicin (At day 30 postoperation, BP was 199+/-7 and 166+/-9 mm Hg for Cap2+2K1C and 2K1C groups, respectively, p<0.01; mean arterial pressure was 185.2+/-6.6 and 150.5+/-4.1 mm Hg for Cap2+2K1C and 2K1C groups, respectively, p<0.01). The expression of alpha-CGRP mRNA in DRG (122.87+/-3.67 arbitrary units, p<0.05), the level of CGRP in the plasma (75.40+/-4.99 pg/ml, p<0.01) and the density of CGRP-ir fibers in mesenteric artery (525.67+/-31.42 intersections, p<0.05) were significantly increased in 2K1C rats. Treatment with capsaicin, a single injection or a second injection, prevented the increased in the expression of CGRP mRNA in DRG. However, the decreased level of CGRP was only observed in the rats treated with a second capsaicin. These results suggest that in 2K1C hypertensive rats, the activity of capsaicin-sensitive sensory nerves is increased, which is playing a compensatory depressor role to partially counteract the increase in blood pressure, and that the cardiovascular actions of CGRP is mediated by the alpha-CGRP isoform.  相似文献   

9.
Yu S  Stahl E  Li Q  Ouyang A 《Life sciences》2008,82(5-6):324-330
Antigen challenge in sensitized guinea pig esophagus in vitro induces mast cell degranulation and histamine release. This study tests the hypothesis that antigen inhalation in vivo induces infiltration of the esophageal epithelium by mast cells and eosinophils via a histamine pathway. Actively sensitized guinea pigs were exposed to inhaled 0.1% ovalbumin. One or 24 h after inhalation exposure, the esophagus was processed for immunofluorescent staining of mast cell tryptase and eosinophil major basic protein (MBP). Additional animals were pretreated with thioperamide, a histamine H4/H3 receptor antagonist. Total tryptase- and MBP-labeled cells and percent of positive cells in the epithelial layer were counted. The total number of mast cells was unchanged after inhalation challenge, but the percentage in the epithelium increased 1 h after challenge. The total number of eosinophils increased 1 h after challenge, and the percentage migrating to the epithelium increased by 24 h after challenge. Mast cell migration into the mucosal epithelium preceded that of eosinophils. Thioperamide inhibited mast cell and eosinophil migration. In conclusion, antigen inhalation in sensitized animals induces mast cells and eosinophils to infiltrate in the esophageal epithelium via histamine-mediated mechanism.  相似文献   

10.
Low pH medium has been shown to activate the 'efferent' function of capsaicin-sensitive primary sensory neurons. Calcitonin gene-related peptide (CGRP) is released from capsaicin-sensitive afferents of guinea-pig superior sagittal and transverse sinuses (SSTS), by capsaicin or bradykinin. Here, we report that low pH medium produces a remarkable release of CGRP from SSTS, which was dependent on the concentration of hydrogen ions of the medium (pH 7-5). Moreover, the pH 5-evoked release of CGRP-LI was markedly reduced (by about 70%) in a calcium-free medium containing 1 mM EDTA or abolished in samples pre-exposed to 10 microM capsaicin. The present observation that lowering of the pH promotes release of a powerful vasoactive peptide from perivascular capsaicin-sensitive sensory nerves may have some relevance in the pathophysiology of brain injury and migraine headaches.  相似文献   

11.
The occurrence and distribution of calcitonin gene-related peptide (CGRP) in the lower airways was studied by means of immunohistochemistry and radioimmunoassay (RIA) in combination with high performance liquid chromatography (HPLC). CGRP-like immunoreactivity (-LI) was observed in nerves from the epiglottis down to peripheral bronchi in rat, cat and guinea pig and also in human bronchi. Double staining revealed colocalization of CGRP-LI and substance P (SP)-LI in cell bodies of nodose and jugular ganglia as well as in axons and nerve terminals of the airways. Systemic capsaicin pretreatment induced a marked loss of the CGRP- and SP-immunoreactive (-IR) nerves in the lower airways. CGRP-IR was also present in epithelial endocrine cells and neuroepithelial bodies. The content of CGRP-LI as measured with RIA in guinea pig bronchi was significantly lower after capsaicin pretreatment. Analysis of human bronchial extracts revealed that CGRP-LI coeluted with synthetic human CGRP on HPLC. In the isolated perfused guinea pig lung capsaicin exposure caused overflow of CGRP-LI suggesting release from peripheral branches of sensory nerves. Both in vivo experiments in the guinea pig measuring insufflation pressure as well as in vitro studies on isolated guinea pig and human bronchi showed that whereas tachykinins contracted bronchial smooth muscle no contractile or relaxing effect was elicited by human or rat CGRP. However, CGRP caused relaxation of serotonin precontracted guinea pig and human pulmonary arteries. In conclusion, the presence and release of CGRP-LI from capsaicin sensitive nerves in the lower airways adds another possible mediator, in addition to tachykinins, of vascular reactions upon sensory nerve irritation.  相似文献   

12.
Calcitonin gene-related peptide (CGRP), but not substance P (SP), was found to inhibit edema-promoting actions of inflammatory mediators (histamine, leukotrine B4, 5-hydroxytryptamine) in vivo in the hamster cheek pouch, human skin, and rat paw. The effect of CGRP was present in the low nanomolar dose range, and it was mimicked by activation of sensory nerves with capsaicin which caused release of endogenous CGRP-like immunoreactivity (IR). The findings provide new information on the potential impact of sensory nerve activation during inflammatory processes by indicating that sensory nerves may play an anti-inflammatory role.  相似文献   

13.
Permeability changes in the guinea-pig skin following intradermal (i.d.) injection of tachykinin agonists or antigen were monitored through the extravasation of 99mTc-labelled human serum albumin and blood flow changes through the accumulation of 51Cr-labelled microspheres. A variety of synthetic and natural tachykinins, including substance P and neurokinins A and B, were shown to be potent inducers of permeability changes. Neurokinins A and B, but not substance P, were also shown to be apparent vasoconstrictor agents. Permeability responses in sensitized guinea pigs to i.d. injection of antigen and substance P, but not histamine, were abolished by pretreatment with the tachykinin antagonists [D-Arg1, D-Pro2, D-Trp7,9, Leu11]-substance P and [D-Pro2, D-Trp7,9]-substance P. Interpretation of such results was complicated by the fact that such antagonists may in themselves induce mast cell activation. Depletion of substance P containing neurons by pretreatment of guinea pigs with capsaicin also produced significant inhibition of antigen-induced permeability changes. These results indicate a possible role for tachykinins, such as substance P, in cutaneous anaphylaxis in the guinea pig.  相似文献   

14.
Summary The peptidergic innervation of lymphoid tissue and the lung in relation to mast cells was studied in rat. The sensitivity of neuropeptide-containing nerves to capsaicin treatment and immunization was also examined. Measurements of the content of neurokinin A and calcitonin gene-related peptide revealed that the lung contained the highest content of both neuropeptides; lymph nodes had intermediate levels, whereas the spleen had the lowest content. Immuhohistochemistry showed that the calcitonin gene-related peptide- and neurokinin A-immunoreactive nerves in lymph nodes were mainly found around blood vessels, whereas in the lung the nerves were present within the lining respiratory epithelium, bronchial smooth muscle, around blood vessels and close to lymphoid aggregates. Combined immunohistochemistry for serotonin (5-hydroxytryptamine), as a marker for mast cells, and tachykinins or calcitonin gene-related peptide revealed that a close association was often present between the nerves and 5-hydroxytryptamine-positive cells in the bronchi of the lung, while 5-hydroxytryptamine-positive cells were not observed in lymph nodes. The neurokinin A and calcitonin gene-related peptide content in lymph nodes, spleen and lung, but not the content of neuropeptide Y, was markedly decreased by capsaicin treatment, suggesting a sensory origin for the two former peptides. Aerosol immunization increased the levels of calcitonin gene-related peptide in the lung, whereas the content in mediastinal lymph nodes was not affected. These data demonstrate a peptidergic innervation mainly of blood vessels in lymphoid tissue and a close relation between sensory nerves and mast cells as well as lymphoid aggregates in the bronchi of the lung. This further suggests that the sensory innervation of lymph nodes is mainly related to regulation of vascular tone and lymph flow. Furthermore, at the site of immunization, i.e., in the airway mucosa, sensory nerve mediators may interact both with mast cells and lymphoid cells.  相似文献   

15.
Hu CP  Li NS  Xiao L  Deng HW  Li YJ 《Regulatory peptides》2003,114(1):45-49
In the present study, we examined whether rutaecarpine protects against myocardial ischemia-reperfusion injury in rats and whether the protective effects of rutaecarpine are related to activation of capsaicin-sensitive sensory nerves. Rats were pretreated with rutaecarpine 10 min before the experiment, and then the left main coronary artery of rat hearts was subjected to 60-min occlusion followed by 3-h reperfusion. The infarct size, serum concentration of creatine kinase, and CGRP concentration in plasma were measured. Pretreatment with rutaecarpine (100 or 300 microg/kg, i.v.) significantly reduced infarct size and creatine kinase release concomitantly with a significant increase in plasma concentrations of CGRP. These effects of rutaecarpine were completely abolished by capsazepine (38 mg/kg, s.c.), a competitive vanilloid receptor antagonist, or by pretreatment with capsaicin (50 mg/kg, s.c.), which selectively depletes transmitters in capsaicin-sensitive sensory nerves. These results suggest that rutaecarpine protects against myocardial ischemia-reperfusion injury in rats and that the protective effects of rutaecarpine are related to activation of capsaicin-sensitive sensory nerves via activating vanilloid receptors.  相似文献   

16.
Stimulation of sensory nerves in the airway mucosa causes local release of the neuropeptides substance P and calcitonin gene-related peptide (CGRP). In this study we used a modification of the reference-sample microsphere technique to measure changes in regional blood flow and cardiac output distribution produced in the rat by substance P, CGRP, and capsaicin (a drug that releases endogenous neuropeptides from sensory nerves). Three sets of microspheres labeled with different radionuclides were injected into the left ventricle of anesthetized F344 rats before, immediately after, and 5 min after left ventricular injections of capsaicin, substance P, or CGRP. The reference blood sample was withdrawn from the abdominal aorta and was simultaneously replaced with 0.9% NaCl at 37 degrees C. We found that stimulation of sensory nerves with a low dose of capsaicin causes a large and selective increase in microvascular blood flow in the extrapulmonary airways. The effect of capsaicin is mimicked by systemic injection of substance P but not by CGRP, suggesting that substance P is the main agent of neurogenic vasodilation in rat airways.  相似文献   

17.
Capsaicin, the pungent component of hot peppers, and the venom of the spider Phoneutria nigriventer are able to activate sensory nerves resulting in cutaneous neurogenic plasma extravasation. This study was undertaken to compare the ability of these substances to evoke oedema in the rat hind-paw and mechanisms underlying this effect. Subplantar injection of either Phoneutria nigriventer venom (PNV; 1-100 microg/paw) or capsaicin (10-200 microg/paw) caused a significant paw oedema that was potentiated by CGRP (10 pmol/paw). In rats treated neonatally with capsaicin to deplete neuropeptides, the paw oedema induced by either PNV (100 microg/paw) or capsaicin (100 microg/paw) was partially reduced (P<0.05). The tachykinin NK1 receptor antagonist SR140333 (0.2 micromol/kg; i.v.) prevented the paw oedema induced by the tachykinin NK1 receptor agonist GR73632 (30 pmol/paw) and partially reduced paw oedema induced by PNV or capsaicin. Treatment of rats with compound 48/80 (5 mg/kg; s.c. 3 days) or with both H1 receptor antagonist (mepyramine; 1 nmol/paw) and 5-HT receptor antagonist (methysergide; 1 nmol/paw) significantly inhibited PNV- or capsaicin-induced paw oedema. The combined treatment with mepyramine and methysergide and SR140333 further reduced PNV- and capsaicin-induced paw oedema. The bradykinin B2 receptor antagonist Hoe 140 affected neither PNV- nor capsaicin-induced responses. Our results suggest that PNV and capsaicin each induce paw oedema that is partially mediated by activation of sensory fibers culminating in the release of substance P as well as by activation of mast cells which in turn release amines such as histamine and 5-HT.  相似文献   

18.
The possible trophic influence of the capsaicin-sensitive extrinsic innervation of the gastrointestinal mucosa was investigated. Rats were treated neonatally with capsaicin. The gastrointestinal content of serotonin and glucagon-like immunoreactivity were used as a measure of the effect on the endocrine gut mucosa and gastrointestinal aminopeptidase and alkaline phosphatase activities were used as a measure of the effect on the gut brush-border. The gastrointestinal content of the neuropeptides substance P, VIP and CGRP were used to monitor effects on the innervation of the gut. The depletion of substance P-immunoreactivity(-IR) and calcitonin gene-related peptide(CGRP)-IR in extracts of urinary bladder and lung from the capsaicin-treated rats is evidence of the efficacy of capsaicin treatment in affecting a loss of C-fibre sensory nerves. The significant depletion of CGRP-IR measured in the stomach and duodenum of capsaicin-treated rats indicated the loss of the C-fibre sensory innervation to the gastrointestinal tract. The gastrointestinal content of VIP and substance P, which are predominantly within intrinsic gut neurones, were unaffected by capsaicin treatment. In all regions of the gastrointestinal tract of capsaicin-treated rats, the serotonin and glucagon-IR levels were not significantly different from those in controls. Similarly the levels of activity of the brush-border enzymes were not significantly effected by capsaicin treatment. This suggest the absence of any major trophic influence of capsaicin-sensitive sensory nerves on the gut endocrine mucosa and the brush border.  相似文献   

19.
Stimulation of capsaicin sensitive nerves or administration of calcitonin gene-related peptide (CGRP) before induction of acute pancreatitis (AP) attenuates pancreatic damage, whereas CGRP administration after development of AP aggravates lesion of pancreatic tissue. The aim of this study was to determine the effect of prolonged activity of sensory nerves or CGRP administration on the pancreatic repair after repeated episodes of AP. Five episodes of acute caerulein-induced pancreatitis (10 microg/kg/h for 5 h s.c.) were performed at weekly intervals in rats receiving either vehicle or capsaicin at the sensory nerve stimulatory dose (0.5 mg/kg, 3 times daily), or CGRP (10 microg/kg, 3 times daily). Two weeks after the last induction of AP morphological signs of pancreatic damage, pancreatic blood flow (PBF), serum and pancreatic amylase activity, fecal chymotrypsin activity, pancreatic weight, pancreatic RNA and DNA content, as well as, serum interleukin-1beta (Il-1beta ) were assessed. Pancreata of animals receiving vehicle alone showed almost full recovery within two weeks after last episode of pancreatitis induction. In capsaicin-treated group of rats, we observed the increase in PBF by 44% and in serum Il-1beta concentration by 91%. The pancreatic amylase activity, fecal activity of chymotrypsin, pancreatic nucleic acids content and DNA synthesis were decreased. In rats treated with CGRP the alterations in PBF, serum Il-1beta concentration, as well as, in pancreatic and fecal activity of enzymes were similar to capsaicin treated group but less pronounced. We conclude that prolonged activity of capsaicin-sensitive sensory nerves and the presence of their main mediator-CGRP during pancreatic regeneration after AP leads to pancreatic functional insufficiency typical for chronic pancreatitis.  相似文献   

20.
Deng PY  Ye F  Cai WJ  Deng HW  Li YJ 《Regulatory peptides》2004,119(3):155-161
Previous investigations have demonstrated that capsaicin-sensitive sensory nerves are involved in the development of hypertension in some rat models of hypertension. To determine the role played by calcitonin gene-related peptide (CGRP; the predominant neurotransmitter in capsaicin-sensitive sensory nerves) in a rat model of neurogenic hypertension, in which hypertension was induced by injecting 50 microl of 10% phenol in the lower pole of the left kidney, systolic blood pressure (SBP) was monitored by the tail-cuff method throughout the experiment. Fifteen days after injection of phenol, mean arterial pressure (MAP), concentrations of CGRP in the plasma, the expression of CGRP mRNA in dorsal root ganglia (DRG) and CGRP content in laminae I and II of the spinal cord were measured. SBP was significantly increased 5 days after the intrarenal injection of phenol (164+/-7 mm Hg, p<0.01). At the end of experiment, blood pressure (BP) was significantly elevated in the phenol-injected rats compared with the controls (SBP: 187+/-6 vs. 122+/-4 mm Hg, p<0.01; MAP: 157.56+/-3.02 vs. 103.80+/-2.04 mm Hg, p<0.01). Treatment with capsaicin, which selectively depletes neurotransmitters from the capsaicin-sensitive nerves, failed to enhance the development of hypertensive responses to the intrarenal injection of phenol. Intravenous administration of CGRP(8-37), the specific CGRP receptor antagonist, also failed to increase the already elevated MAP. The expression of CGRP mRNA (both alpha- and beta-CGRP isoforms), the content of CGRP in laminae I and II of the dorsal horn of the spinal cord and the concentration of CGRP in the plasma was decreased in the rats treated with phenol. These results suggest that CGRP does not play a counterregulatory role in the phenol-induced hypertensive rats, and support the hypothesis that reduction of CGRP (alpha and beta isoforms) could contribute to a blood pressure elevation in this setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号